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Groupoids and the Associative Law II.
(Groupoids with Small Semigroup Distance)

TOMAS KEPKA,*) MILAN TRCH**)
MFF UK Praha

Received 20 January 1991

Groupoids with small semigroup distance are studied.

Studuji se grupoidy s malou pologrupovou vzdélenosti.

This paper is a continuation of the first part [1]. Here, groupoids with small
semigroup distance are investigated.

II.1 The semigroup distance

1.1 Let G(°), G(*) be groupoids with the same underlying set G. We put
dist(G(°), G(*)) = card({(x, y) € GP; x0y # x = y}).

For a groupoid G, let sdist(G) = min dist(G, G(*)) where G(*) runs through
all semigroups having the same underlying set as G.

If G is finite and of order n, then 0 =< sdist(G) < r’. If G is infinite, then
0 = sdist(G) = card(G). Clearly, G is a semigroup iff sdist(G) = 0.

1.2 Example. Let S be a set containing at least two-elements and let xy = y
for all x, y € S. Then S is a semigroup (the semigroup of right zeros or left units).
Take a, b € S, a # b and define an operation * on Sbya*a= b and x* y =
= y otherwise. Clearly, sdist(S, S(*)) =1 and a*(a*a)=a*b = b and
(axa)* a= b*a= a Consequently S(*) is not associative and sdist(S(*)) =
=1.

1.3 Remark. Let G be a finite groupoid of order n. For every x € G, let

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovskd 83, Czecho-
slovakia

**) Department of Pedagogy, Charles University, 116 39 Praha 1, M. D. Rettigové 4, Czecho-
slovakia
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o(x) = card({(x, y) € G @; yz = z}). Then ) o(x) = n? and hence o(a) = n
x€G
for at least one a € G. Now, put x* y = a for all x, y€ G so that G(*) is

a semigroup with zero multiplication. Clearly, dist(G, G(*)) = n* — o(a) and
therefore sdist(G) = n* — n.

1.4 Remark. Let G be a finite groupoid of order » and G(+) be a semi-
group (possible non-commutative) with the same underlying set G. Put M =
={(x,y) € GP; xy # x + y} and m = card(M). Further, let:

K, ={(x52) ¢ G (x,y) e M}, K,={(x52¢ GO (xy2)¢cM,
Ky={(x 52 GO (xyeM, K,={xx2¢ecG(y2)cM,
K=K,vK,vK;uvKk,, k; = card(K;) and k = card(K).

Now, let(x, y,z) ¢ K. Thenxy =x+y, xy-z=(xy) + z, x- yz = x + (y2),
yz=y+z and x-yz=x+(yz)=x+(y+2)=(x+y)+tz=1xy z
We have proved that G® — K S As(G), and hence Ns(G) = G® — As(G) <
€ GY — (G — K) = K. Thus Ns(G) € K, ns(G) = k,ns(G) < k, + k, +
+ k; + k.

Clearly, ki, k,= mn and k, k; = mn’. Hence k =< 2m(m + n*) and
ns(G) = 2m(n + n?), which yields m = ns(G)/2(n + n?).

Finally, let (x,y,2)€ K, — (K, Y K3 VY K,) = L,. Then xy:z # (xy) + z
xy=x+y xyz=x+(yz), yz=y+z and (xy)+z=(x+y)+z=
=x+(y+z2)=x+(yz2) = x*yz so that xy-z # x- yz and we have proved
that L, & Ns(G). Similarly, L; = K; — (K, v K, Y K,) € Ns(G).

1.5 Remark. Let G be a finite antiassociative groupoid of order n and let
m = sdist(G). By 1.4 m > n’/2(n + n®) = n/2 — n*/2(n + n?). If n is even,
n =2t then m >t— £#/(t+ 2t*) >t—1/2 and hence m = ¢. If n is odd,
n=2s+1,thenm2 s+ 1/2— n*/2(n+ n*) > s,and hence m = s + 1. In
both cases, m = n/2.

1.6 Example. Let G be a non-empty set of order n, fe€%(G) and
xy = f(y) for all x, y € G. Further, let G(+) be a semigroup such that m = dist-
(G, G(+)) = sdist(G).

Then ki, k,, ks, k, = mn (see 1.4), so that ns(G) < 4mn and m 2 ns(G)/4n.

Now, suppose that f(x) # x for every x € G. Then G is antiassociative,
ns(G) = n’ and we have m = n*/4.

I1.2 Groupoids with small semigroup distance — introduction

2.1 Let G be a groupoid (the binary operation of which is denoted multiplicat-
ively) and let a, b, c € G. Define a binary operation * on G by x* y = xy if
(x, y) # (a, b) and a * b = c. We obtain a groupoid G(*) = G|a, b, c] such that
dist(G, G(*)) = 1; clearly dist(G, G(*)) = 1 iff ¢ # ab.
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2.2 In the remaining part of this section, let G be a semigroup a, b, c € G,
ab # ¢ and G(*) = Gla, b, c]. Put & = As(G(*)) ={(x, y, 2) € G,
(x*y)*z=x*(y*z)} and # = Ns(G(*)) = GO — .

2.3 Lemma. Let x,y,z€ G.

() If x # aand z # b, then (x, y, z) €H.

(i) If y # b and z # b, then (a, y,z) €/ iff yz # b.
(iii) Ifx # a and 'y # a, then (x, y, b) €7 iff xy # a.
(iv) If z # b and bz # b, then (a, b, z) € %7 iff cz = abz.
(v) If z# b and bz = b, then (a, b, z) € iff cz= c.
(vi) If x # a and xa # a, then (x, a, b) € ¥ iff xc = xab.
(vii) If x # a and xa = a, then (x, a, b) €. iff xc = c.

Proof. (i) (x* y)*z=(xy)*z=xy-z=x yz=x*(yz) = x*(y*2).
(i) (a*y)*z=(ay)*z=ay-z and a*x(y*z) = a*(yz). If yz# b, then
ax*yz=ay-z Ifyz=b, thena*(yz) =c# ab=ay-z
(iii) Dual to (ii).

(iv) and (v). (a*b)*z= c*z=cz anda* (b*z) = a*(bz). If bz # b, then
a* (bz) = abz. If bz = b, then a* (bz) = c.
(vi) and (vii). Dual to (v) and (iv), respectively.
24. Lemma. Let y € G be such that a # y # b.
() If ay # a, then (a, y, b) €57 iff yb # b.
(ii) If ay = a, then (a, y, b) €57 iff yb = b.

Proof. (a* y)* b = (ay)*b and a*(y* b) = a*(yb). If ay # a, yb # b,
then (ay)* b = ayb = a=* (yb). If ay # a, yb = b, then (ay)* b = ayb =
=ab # c=ax*(yb). If ay=a, yb# b, then (ay)* b= c # ab = ayb =
= ax*(yb). If ay = a, yb = b, then (ay)* b = ¢ = a* (yb).

2.5 Lemma. Let a # b.

(i) If a # @’ and b # c, then (a, a, b) €4 iff ac = &’b.

(i) If a= & and b # c, then (a, a, b) €7 iff ac = c.

(iii) If a # @ and b = c, then (a, a, b) € ¥ iff b = a’b.

(iv) If a= & and b = c, then (a, a, b) € A.

(v) If b # b’ and a # c, then (a, b, b) €4 iff cb = ab>.

(vi) If b= b and a # c, then (a, b, b) € iff cb = c.

(vii) If b # b’ and a = c, then (a, b, b) €4 iffa = ab*.

(viii) If b = b and a = c, then (a, b, b) €.

Proof. (a*a)*b=a’+b and a*(a*b)=a+c. If a# @, b # c, then
a*b=ag’handa*c=ac. fa=da b#c thend*b=c a*c=ac If
a# a’, b=c then @?*b=a’c=a’h, a*xc=a*b=0>b. Ifa=d, b=
then a>*b=a*b=c, a*c= a* b= c. The rest is dual.

2.6 Lemma. Let a = b. Then (a, a, a) € iff ac = ca.
Proof. (a*a)*a= (a*b)*a=c*a anda*(a*a)=a*(a*b)=ax*c.
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If a# c then cxa=ca and a*c=ac. If a= ¢, then c*a= a*c and
ac = ca. :

2.7 Define the following sets:

&
I

x; (x, a, b) € D},
E, ={(a,y,b);ye G,a #y # bay=a,yb # b},
E = {y: (3,5, b) € E\,
E,={(a, y,b);ye G,a #y # b,ay # y, yb = b},
E; = {: (a3 b) € E};
Further, let:
={(a,a,b)} ifa# b and either a # a*>, b # ¢, ac= a’bora # a°, b = ¢,
b#abora=d, b#c ac# c and F, = 0 in the opposite case,
= {(a, b, b)} if a # b and either b # b>, a # ¢, cb # ab*or b # b* a = ¢,
a#ab>or b= b a# c c# cb and F, = 0 in the opposite case,
F, ={(a, a,a)} if a= b, ac # ca and F, = 0 in the opposite case.
Let a, B, y1, ¥» 01, 05, &, &, @1, @, and @, designate the cardinalities of the sets
A, B, C, G, D, D, E, E,, F, F and F;, respectively.

2.8. Lemma. The sets A, B, C,, C, D,, D,, E,, E, F, E, E are pair-wise
disjoint and their union is equal to #. Consequently, ns(G(*)) = card(#) =
=a+f+yt+ty+to+tdtetegto+ o+ @,

Proof. See 2.3, 2.4, 2.5, 2.6 and definitions of the sets A4, B, C;, C,, ..., F;

2.9 Proposition. The groupoid G(*) is a semigroup iff the following fivteen
conditions are satisfied:
(1) If b= yz for somey,z€ G, then b€ {y, z}.
(2) If a = xy for somex,y¢€ G, then a € {x, y}.
(3) If ze Gandz # b # bz, then cz = abz.
(4) If ze Gandz # b = bz, then cz = c.
(5) If x€ G and x # a # xa, then xc = xab.
(6) If x€ G and x # a = xa, then xc = c.
(7 If ye Ganda # y # b, ay = a, then yb = b.
@®) If ye Ganda# y # b, yb = b, then ay = a.

A ={ay2;y2€G,y #b#zyz=0>b
A" ={(y2); (a3 2) € A},
B ={x,yb;x,ycG,x #a#yxy=al,
B'={(X,}’) (x y,b)GB}
C,={ab,z);z€ G,z # b, bz # b, cz # abz|,
Ci={z(a b,2)c C,
C,={(ab,z);z¢€ G,z # b,bz=b,cz # ¢},
C; ={z;(a, b,2) € C,,
D, ={(x,a,b);x€ G,x # a,xa # a, xc # xab),
D] = {x;(x,a,b) € D},
D, ={(x,a,b);x€ G,a # x,xa= a,xc # c},

{

{

{

{
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() If a# b, a# a and b # c, then ac = a’b.
(10) Ifa# b, a # a®> and b = c, then b = a’b.
(11) Ifa# b, a= d and b # c, then ¢ = ac.
(12) If a # b, b # b*> and a # c, then cb = ab”.
(13) Ifa # b, b # b’ and a = c, then a = ab™.
(14) Ifa# b, b=V and a # c, then c = cb.
(15) If a = b, then ac = ca.

Proof. G(*)is a semigroup iff # = 0, and hence the result follows from 2.8 and

the definitons of the sets A, B, ..., E.

I1.3 Semigroups of left zeros

3.1 Lemma. Suppose that G is a semigroup of left zeros (i.e. xy = x for all
x,y€ G). Then# = {(a,y, b); y€ G, a# y # b} v K, where K = {(a, a, b)}
ifa#b#c K={(aaa)}ifa=band K=90 ifa# b=rc

Proof. The result follows easily form 2.8 and the definitions of the sets
A, B, ..., F; (take into account that ab # ¢ implies a # c in this case).

3.2 Lemma. Suppose that G is a semigroup of right zeros (i.e. xy =y for all
x,y€ G). Then B =1{(a,y,b);yc G,a# y# b} v L, where L = {(a, b, b)}
ifb#a#c, L={a,aa)}ifa=bandL=0ifb# a=c

Proof. Dual to that of 3.1.

3.3 Lemma. Suppose that G is a finite semigroup of left (rights) zeros with
n 2 2 elements.

() Ifa# b# c(b# a# c),thenns(G(*))=n— 1.
(i) Ifa# b= c (b # a= c), thenns(G(*)) = n — 2.
(iii) If a = b, then ns(G(*)) = n.

Proof. This is an immediate consequence of 3.1 and 3.2.

3.4 Proposition. Let G be a semigroup of left (right) zeros and a, b, c € G. Then
Gla, b, c] is associative iff either a = ¢ (b = ¢) orcard(G) =2 anda # b= c
(b # a= o).

Proof. This is an easy consequence of 3.1 and 3.2.

I1.4 Semigroup with zero multiplication

4.1 Throughout this section let G be a semigroup with zero multiplication (i.e.
G contains a dominant element 0 and xy = O for all x, y € G).

Let a,b,ce G, c#0 (ie. ab# ¢) and let G(*) = G[a, b, c], # =
= Ns(G(*)).
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4.2 Lemma. Let a # 0 # b and a # b.

(i) If a # c, then # = {(a, b, b)}.
@ii) If b = c, then # = {(a, a, b)}.
(i) If a # ¢ # b, then B = 0.

Proof. Use 2.8 and the definitons of the sets A, B, ..., E (see 2.7).

4.3 Lemma. If a= b # 0, then & = 0.

Proof. Use 2.8.

44 Lemma. Let 0 = a # b, then £ ={(x,y, b); x,y€ G, x# 0 # y} v
U {(x,0,b); x€ G, x# 0} v {0,yb); yec G, 0# y#* b} K, where K =
= {(0,0,b)} if b# cand K=0 if b= c.

Proof. Use 2.8.

4.5 Lemma. Let 0 = b # a. Then £ =1{(a,y,2); y,2€G, y#0# z} v
Vv {(a,0,2); z¢€ G, z# 0} Y {(a,10), y¢€G, a#y#0} v L, where L=
= {(a,0,0)} ifa # cand L =0 ifa = c. :

Proof. Use 2.8.

4.6 Lemma. Let a= b =0. Then & ={(0,y,2); yz€G, y#0# z} v
vix»0); xyeG, x#0#y v{00,2); z¢G, z#0}vixD0,0)
x€ G, x # 0.

Proof. Use 2.8

4.7 Lemma. Suppose that G is finite with n 2 2 elements.

(i) Ifa# 0 # b, a# banda # c # b, thenns(G(*)) = 0.
(i) Ifa# 0 # b, a# banda= c (b= c), thenns(G(*)) = 1.
(iii) If a = b # 0, then ns(G(*)) = 0.
(V) If0=a# b # c (0= b # a # c), then ns(G(*)) = n* — 1.
(V) If 0=aand b= c (0 = b and a = c), then ns(G(*)) = i — 2.
(vi) If 0 = a = b, then ns(G(*)) = 2n(n — 1).

Proof. This follows immediately from 2.2, 2.3, 2.4, 2.5 and 2.6.

4.8 Proposition. Let G be a semigroup with zero multiplication and
a, b,c € G. Then G|a, b, c] is associative iff eitherc =0 ora # 0 # b, a #* b,
a#c#*#Fbora=b#0.

Proof. Combine 2.2, 2.3, 2.4, 2.5 and 2.6.

4.9 Let n = 2. Define a binary operation * on the set {0,1,...,n — 1} by
x*y=0if(x, y) # (0,0)and 0 * 0 = 1. Then we obtain an n-element groupoid,
denote it by R,(*), which is not associative and such that ns(R,(*)) = 2n(n — 1)
and sdist(R,(*)) = 1.
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II.5 Cancellation semigroups

5.1 In this section, let G be a cancellation semigroup (i.e. xy # xz and yx # zx
if x, ,z€ G, y # z). G may (but neednot) contain a neutral element which (if it
exists) is unique and is denoted by 1 (thus for x € G, x # 1 means that x is not
a neutral element of G).

Let a, b,c€ G, ab # ¢, G(*) = G|a, b, c] and # = Ns(G(*)).

52 Lemma. If x, y€ G and xy = x (xy = y), then y =1 (x = 1).

Proof. Easy.

53 Lemma. Let a# 1 # b. Then #=1{(a,y2); %z€G, y#b#z
yz=blu{(x,y b); x,yc G, x# a# y xy=a}lV{(ab,z2);zcG,z# bl v
vi{(x,a, b); x€G, x# a} v K, where K ={(a,a,b), (a, b,b,)} if either
a b#c#*aora b=cd#lorb#a=c b #1, K=/{a,ab)if
a=c#b =1, K={(a,bb) if b=c#a &=1, K={a,a,a)} if
a= b, ac # ca and K = 0 in the remaining cases.

Proof. Use 2.8, 3.2 and definitions of the sets A, B, ..., F; (see 2.7).

54 Lemma. Let 1 =a # b. Then #={1,y2); yz€G, y#b#z
yz=blvi{(x,5b); xye€G, x#1#y =xy=1v{{l,bz); z¢€G,
1#z#b}vix1,b); x€G, x# 1} v L, where L ={(1, b, b)} if either
1# corc=1 # b’ and L = @ otherwise.

Proof. Similar to that of 3.3 (notice that ¢ # ab = b).

55 Lemma. Let 1 =0b # a. Then & =1{(a,y,2); y2€G, y#1#z
yz=1lv{xy1); x,yeG x#*a#yxy=alv{alz);zeG, z#1)v
Vi(x,a,1); 1# x# a)v L, where L ={(a,a,1)} if either 1 # c or c =
=1 # a* and L = @ otherwise.

Proof. Dual to that of 5.4.

5.6 Lemma. Let a=b=1. Then Z=1{(1,y2); »z€G, y#1#z
yz=11v{xy1); xye G x#1# yxy=1v{1,1,2);z€ G, z# 1) v
vix,1,1); xe G, x # 1}.

Proof. Similar to that of 5.3 (notice that 1 = ab # c).

5.7 Lemma. Let G be finite with n =2 2 elements (then G is a group).
() Ifa#1# b # a# c# b, thenns(G(*)) = 4n — 4.
(i) Ifa#1# b=c # a, & # 1, then ns(G(*)) = 4n — 4.
(i) Ifa#1# b # a=c, b # 1, thenns(G(*)) = 4n — 4.
(iv) Ifa# 1# b, a# b— c, @ =1, thenns(G(*)) = 4n — 5.
) Ifa#1# b, a=c#b, b =1, then ns(G(*)) = 4n — 5.
(i) If a= b # 1, ac # ca, then ns(G(*)) = 4n — 5.
(vii) Ifa# 1 # banda = b, ac = ca, then ns(G(*)) = 4n — 6.
(viii) If a=1 # b and ¢ # 1, then ns(G(*)) = 4n — 5.
(ix) Ifa=1# bandc=1 # b, then ns(G(*)) = 4n — 5.
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(x) Ifa=1# bandc=1= b? then ns(G(*)) = 4n — 6.
(xi) If b=1# a and ¢ # 1, then ns(G(*)) = 4n — 5.
(xii)) Ifb=1+# aandc=1 # &, then ns(G(*)) = 4n — 5.
(xiii) If b=1# a and c =1 = a?, then ns(G(*)) = 4n — 6.
(xiv) If a =1 = b, then ns(G(*)) = 4n — 4.
Proof. Use 5.3, 5.4, 5.5 and 5.6.
5.8 Proposition. Let G be a cancellation semigroup and a, b, c € G. Then
Gla, b, c] is associative iff ab = c.
Proof. Combine 5.3, 5.4, 5.5 and 5.6.

I1.6 The case of irreducible elements

6.1 In this section, let G be a semigroup and g, b, c€ G be such that
a, bt G>={xy; x,yc€ G} and ab # c. Put G(*) = G[a,b,c] and & =
— Ns(G(*).

6.2 Lemma. (i) If a # b # ¢ # a, then B = {(a, b, 2); z€ G, cz # abz} v
v {(x, a, b); x€ G, xc # xab).
(i) If c=a# b, then # ={(a, b,2); z€ G, cz# ab, z # b} Y {(%, a, b);
x € G, xc # xab} v {(a, b, b)}.
(iii) If c= b # a, then & = {(a, b,2); x€ G, cz # abz} v {x,a,b); x€ G,
x # a, xc # xab} v {(a, a, b)}.
(iv) If a= b and ac # ca, then # = {(a,a,2); z€ G, z # a, ¢z # a’z} UV
U {(x,a,a); x€ G, x # a, xc # xa*} Y {(a, a, a)}.
(V) If a= b and ac = ca, then B = {(a,a,2); z€ G, z# a, cz# @z} v
v {(x, a, a); x€ G, x # a, xc # xa*}.

Proof. Use 2.8 and the definitions of the sets A, B, ..., F (see 2.7).

6.3 Lemma. If G is finite with n Z 2 elements, then ns(G(*)) = 2n.

Proof. This follows immediately from 6.2.

6.4 Proposition. Let G be a semigroup and a, b, c € G such that a, b ¢ G*.
Then G|a, b, c| is associative iff either ab = c ora # b # ¢ # a andcx = abx,
xc = xab for eachx€ G ora= b, ac = ca and yc = ya&, cy = @'y for each
yeG, y#a

Proof. This follows easily from 6.2.

II.7 Auxiliary results

7.1 In this section, let G be a finite semigroup with n = 3 elements and let
a,c€ G be such that a # @’ # ¢ # a. Put G(*) = Gla,a,¢] and F =

~ Ns(G(*)).

74



7.2 We shall use the notation form 2.7 and, moreover, we put R, =
={(c2; 2 Gl S =1{(@,2; z€Cl, R,= (6 0; x¢ D} 8 = (% ad;
xe€Dy}, H= G —{a}, K={(4, v); u,ve H, uv=a}, L = {(4,v); u,ve H,
uv # a} and A = card(L).

7.3 Lemma. (i) card(H) = n — 1.

(i) K= A" = B andcard(K) = a = B.

(i) KNnL=9, KvL=H?”anda+ 1= (n—1)>~
(iv) card(R,) = card(S,) = y, and R, » S, = 0.

(v) card(R,) = card(S,) = 6, and R, n S, = 0.

V) ¢ =@, =0.

Proof. Easy.

74 Lemma. (i) a + y, = (n— 1)’anda + y, = (n — 1)’ iff y, = A and iff
LS R, US,.

(i) a+d,=(n—1’anda+ 6, =(n—1)>iffo,=Aand iff LER, v S,.

Proof. (i) Since ¢ # a # a* and cz # &’z for each z€ C, we have y, <
<card((R, v §) " L)y=< 1 and a + 5 £ a + 4 = (n — 1)° Consequently,
a+ y,=(n—1)iff y =1 and this is clearly equivalent to the fact that
LS R VS,

(ii) This is dual to (i).

7.5 Lemma. 2a + y; + 6, = 2(n — 1)* and the equality holds iff y, = 8, =
= A. If the latter is true, then u, v € {c, @}, ua # a # av, uc # ua®and cv # a*v
for each (u, v) € L.

Proof. This is an easy consequence of 5.4.

76 Put E;={y, y€eH, ay=a=ya}, E,={y; ye€ H, ay# a # ya},
& = card(E;) and ¢, = card(E,).

7.7 Lemma. (i) The sets E,, E;, E, E, are pair-wise disjoint and their union is
equal to H.

Gi) & +5+e+te=n—1

Proof. Easy.

7.8 Lemma. y, + 0, + ¢ + & = 2(n — 1) and the equality holds iff E, = 0,
E. € C,, E, & D,, E; S C; n D,. Moreover, this takes place iff the following
three conditions are satisfied:

(1) If y € H, then either ay = a or ya = a.
(2) If y€ H and ay = a, then cy # c.
(3) If y€ H and ya = a, then yc # c.

Proof. Clearly, C; S E; Y E;and D, & E;, YV E, Put 9; = card(C; n E)),
0, = card(C, n E;), O; = card(D, » E;) and 9, = card(D; » E;). Then
O+ 0,=y9$,0+0=0andwehavey, + 6, + & + &=, + D, + O; +
+ 0, + & e , = 26 + 2¢ + 26 = 2(n — 1). Finally, assume that y, + J, +
+ &+ e =2n—1).Theng = 0,d, = ¢, D, = ¥, = g and ¥; = ¢, The rest
is clear.
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7.9 Lemma. ns(G(*)) < 2n*> — 2n — 1.

Proof. We have ns(G(*)) = card(#) = u + v+ ¢;, where u = 2a + y, + 6,
v=y+06,+ ¢+ gand ¢; =1 if ac # ca, ¢; = 0 if ac = ca (see 2.7, 2.8
and 7.3).

First, assume that *¢ E,, Then @ =a, a*=a*# a, ¢ C, & ¢D,,
(@, )¢ L— (R, Y S,), (¢,a)e L— (R, v §,), and so u < 2(n — 1> — 2
by 74. Now, u+ v+ ¢ =2(n— 1 —-2+2(n—1)+1=2n"-2n—1
(use 7.8).

Next, let & € E,. Theneg, > 1,6 + & + &5 < n— 2and v < 2(n — 2) by the
proof of 78. Now, u + v+ ¢, = 2(n — 1)’ +2(n —2)+ 1 =2n>—2n—1
(use 7.5).

II.8 Auxiliary results

8.1 In this section, let G be a finite semigroup with n = 2 elements and let
a€ G, a# a. Put G(*) = G|a, aa] and # = Ns(G(*)). In the sequel, we shall
use the notation from 2.7, 7.2 and 7.6.

82 Lemma. G, =C,=D,=D;,=0, a=f and y,=0,= ¢, = ¢, =
= @;=0.

Proof. Obvious.

8.3 Lemma. a = (n — 1)? and the equality holds iff uv = a for all u, v € H.

Proof. Obvious.

84 Lemma. y, + 6, + ¢ + & = 2(n — 1) and the equality holds iff the fol-
lowing three conditions are atisfied:

(1) If y € H, then either ay # a or ya # a.
(2) Ifye Hand ay # a, then ay # a’y.
(3) If y€ H and ya # a, then ya # ya’.

Proof. We have C; & E, v Ej;and D; & E, v E|. Similarly as in the proof of
7.8, we show that y, + 0, + & + & = 2¢ + 2¢, + 2¢, = 2(n — 1). The rest is
easy.

8.5 Lemma. ns(G(*)) < 2n®> — 2n — 1.

Proof. By 2.7, 2.8 and 8.2, ns(G(*)) = card(#) = 2a + y, + 6, + & + &,
By83and84,2a+ y+ 6, + &+ & =2(n—17>+2(n—1)=2n(n—1).
Now, suppose that the equality takes place. Then a = (n — 1)* and y, + 6, +
+ & + & =2(n— 1). By 8.3, ¢ = a (since & € H), and so &° = a’. On the
other hand, by 8.4 (1), @ # a, and therefore a® # a. However, @’ € H and
a® = a’- a®> = a by 8.3, a contradiction.
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I1.9 Auxiliary results

9.1 In this section, let G be a finite semigroup with n = 2 elements and let
a,ce G, & =a# c. Put G(*) = G[a, a, c] and # = Ns(G(*)). We shall use
the same notation as in 2.7, 7.2, 7.6 and the proof of 7.8.

9.2 Lemma. (i) K= A" = B andcard(K) = a = .

(i) ¢, = @, =0.

Proof. Obvious.

93 Lemma. (i) a+ ¢ = (n— 1)’anda + ¢, = (n — 1) iff &, = A and iff
u=vandau= a # au for all (u, v) € L.

() a+te=(n—1and a+e=(n—1) iffe,= A and iff u= v and
au # a = au for all (u, v) € L.

Proof. (i) Let y€ E{. If ¥ = a, then y’ = ay = a and ya = y’ = a, a con-
tradiction. Hence y* # a and (y, y) € L. The rest is clear.
(ii) This is dual to (i).

94 Lemma. y, + v, + 0, + 0, < 2(n — 1) and the equality holds iff the
following four conditions are satisfied:
(1) Ifye Hand ay # a, then cy # ay.
(2) Ifye Hand ay = a, thency # c.
(3) If ye H and ya # a, then yc # ya.
(4) If ye H and ya = a, then yc # c.

Proof. We have O, = ¢, 9,5 &, D3¢, O, =6, O, +0,=1y and
93 + O, = O. Further, put 9 = card(C; n E;), 95 = card(C; N E,), O, =
= card(D; n E}) and ¥3 = card(D; » E,). Then O5 = ¢, 05 < &, O, < g,
% =¢ and D5+ =19y, O, +V3=0,. Now, yy+ y,+ 6, + 6, = O, +
+ O+ F 0+ 0+ R+ 0+ 02+ e+ e+ g)=2n—1). The
rest is clear.

9.5 Lemma. If ac # ca, then ns(G(*)) < 2n* — 2n — 1.

Proof. We have m = ns(G(*)) =2a+y,+ y,+ 6, + 0, + & + & + ¢
Since ac # ca, & # a and (c,c)€ L. If A = ¢ = ¢, (see 9.3)), then L = 0,
a contradiction. If A = g and y; + y, + 6, + 6, = 2(n — 1), thenac = a # ca
(by 9.3(i)) and & # c by 9.4(3). On the other hand, cac = ca # a, (ca, c) € L,
ca = c¢ (by 9.3(i)) and & = cac = ca = ¢, a contradiction.

Similarly, if A = g and y, + y, + 0, + 6, = 2(n — 1). Thus we have proved
that either & < Aand v=y + y, + 6, + 0, <2(n—1) or g > A and v <
<2(n—1)or ¢ <41 and & < A. Combining this with 9.3 and 9.4, we get
m < 2n* — 2n — 1.

9.6 Lemma. ns(G(*)) = 2n(n — 1).

Proof. ns(G(*)) =2a+ e, + e+ + v, + 6, + 6, + ¢;. If ¢, =1, then
the result is proved in 9.5. If ¢, = 0, then the result follows from 9.3 and 9.4.
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9.7 Lemma. If ns(G(*)) =2n(n — 1), then ac=ca, A=¢,=¢, and
ntntd+dé=2n-1).

Proof. this is clear from 9.5 and 9.6.

9.8 Lemma. Let ns(G(*)) = 2n(n — 1). Then:

(i) uv=a for all u,v € H.
(ii) xa = ax for each x € G.
(iii) G is commutative.

Proof. By 9.3, L = ), and hence (i) is true. Further, ua = uw? = u’ for each
u€ H.

I1.10 Auxiliary results

10.1 In this section, let G be a finite semigroup with n = 2 elements and let
a,b,ce G, a# b, ab# c. Put G(*) = G[a, b, c] and # = Ns(G(*)).

10.2 Lemma. a + B = n®> — 2.

Proof. Put H, = G —{a}, H,= G — (b}, K={(x,y); x,y€ H 0 H,},
L={(ay); ye )}, I={(xy); x¢ H n Hy}, J={(b,y); y¢ H}and M =
= {(x, b); x € H; n H,}. Then the sets K, L, I, J, M are pair-wise disjoint and
A’ v B is contained in K v L v ] v J v M. However, card(K) = (n — 2),
card(L) = card(J/) = n — 1, card(/) = card(M) = n— 2, and so a+ =
=n—-4n+4+2n—-2+2n—4=n*>-2.

103 Lemma. y, + v, = n—1,6,+6,=n—1lande + & =n—2.

Proof. Obvious.

104 Lemma. ns(G(*)) < 2 + 3n — 4; if n = 5, then ns(G(*)) =
<2n”—2n-—-1.

Proof. We have ¢, = 0 and ns(G(*)) =a+ B+ y + v, + 6, + 6, + ¢ +
++o+e=n—-2+4+2n—-2+n—-2+2=n>+3n—4 by 28,
10.2 and 10.3. If n = 5, then n* + 3n — 4 = 20> — 2n — 1.

10.5 Lemma. Let n = 4. Then ns(G(*)) < 2’ — 2n — 1 = 23.

Proof. Suppose, on the contrary, that ns(G(*)) = 2n(n — 1) = 24. Then
ns(G(*))=24=n2+3n—4by 104,andso a+B=r—2,6+&=n—2
(see the proof of 10.4). Consequently A"V B =KV LUV IvJUuM,
L & A’ and ay = b for aech y € H, (see the proof of 10.2). From this, E, = @
and ¢ = 0. Similarly, M & B’, xb = a for aech x€ H n H,, E, =0, &, = 0.
Thus 0 = ¢ + & = n — 2 and n = 2, a contradiction.

10.6 Lemma. Let n = 3. Thenns(G(*)) < 2n* — 2n — 1 = 11.

Proof. Let G = {a, b, d}. Since G is a finite semigroup, G contains at least one
idempotent element. The rest of the proof is divided into three parts.
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(i) Let 2= a. Then A’ S {(a, d), (d, @), (d, d)}, B’ S{(b,b),(b,d),(d,b),(d,d).
Since A" B =0, a+ 8= 6 and, obviously, a + B+ ¢ + & = 6. Now,
ns(G(*)) =6+, +y+ 6 +06,+ ¢ + ¢ = 12 (see 10.3). Suppose that
a+ B+ e + e =6 Then b> = a = bd, da = b and either d*> = a or d*> = b.
Further, ba = b?’d = ad, ba = da* = da = b, ad = da = b = ba. Similarly,
ab=ada=a*d=ad=>b and db= dab= b = a, then da=d-da =
=db = a # b= ba = d’a, a contradiction. Hence, d> = a and G has the
following multiplication table:

However, in this case, ¢, + @, = 1, and therefore ns(G(*)) = 6 + 4 + 1 = 11.
(ii) Let b = b. This is dual to (i).

(i) Let > =d, @ #a, B # b Then A’ S {(a,a), (ad), (da), B S
S {(b, b), (b,d), (d,b)l anda + S+ ¢ + & = 6. Suppose a + B+ & + & =
=6.Thend =da=b, ¥ =bd=a, ad= bd*=bd=db=d?a=da=
=b b=d&=(adya= a(da)=ab=a’= ba= b(bd)= b’d= ad = a,
a contradiction.

10.7 Lemma. Let n = 2. Thenns(G(*)) < 3 =2n* — 2n — 1.

Proof. We can assume a = c. Then (aq, a, a) € & iff @ =b, (b, b, b) € & iff
b»=a, (a,ba)eR iff ba=b=4d, (bab)eF iff ba=b, a= b,
(a,a,b) R iff & = b, b’ = a, (a, b,b)eF iff & = b, b* = a. However, if
a® = b, then b* = b, since G contains at least one idempotent. The rest is clear.

10.8 Lemma. ns(G(*)) < 2n*> — 2n — 1.

Proof. See 10.4, 10.5, 10.6 and 10.7.

II.11 A construction

11.1 It this section, let I, J and K be three pair-wise disjoint sets such that
ITvJ #0@and K=0if I = 0. Further,leta¢ H=1v Jv K, G= H v {a}
and let f: K — I be a mapping. Now, define a multiplication on G as follows:
(1) xy = a for all x, y € H;

(2) xa = ax = x for each x€ I;

(3) xa = ax = a for each x € J;
(4) xa = ax = f(x) for each x € K;
(5) aa = a.
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Then we obtain a commutative groupoid G.

11.2 Lemma. G is a semigroup iff either I = () = K (and then G is a semi-
group with zero multiplication) or card(I) = 1 and J = 0.

Proof. Let x,y,z€ G. If x-yz=a and xy:-z=a, then x-yz=xy-z If
x =12z then x-yz= xy-z since G is commutative. Hence, assume that
x-yz # a and x # z (the other case being similar). Then we have either x = g,
yz # a or x # a, yz = a. The rest of the proof is divided into several parts.
(i) Let x=a, yz# a. Then y=a, z# a and z€ I U K. If z€ I, then
araz=az=z=a’z If z€K, then a-az= af(2) = f(z) = az= &z
Thus x- yz = xy- z in this case.

(i) Letx # a, yz=a.Thenx€ I v K and eithery # a # zory=a =z or
yeJ,z=aory=a, z€J.

(iia) Let x€ I, y# a # z. Then x-yz= xa = x, xy'z= az, and therefore
x-yz=xy-z iff z€ K and f(z) = x (we have assumed x # z).

(iib) Let xe I, y=a=12z Thenx-yz=xa=x=xa-a=xy-z

(iic) Let xeI, ye€J, z=a. Then x-yz=x-ya=xa=x and xy-z=
= xy-a=aa = a. Thus x- yz # xy- z in this case.

(iid) Let x€ I, y=a, z€J. Then x-yz=x-ya=x and xy-z=xa -z =
= xz-a. Thus x- yz # xy- z in this case.

(iie) Let x€ K, y# a# z Then x-yz= xa= f(x), xy z= az. Hence
x-yz= xy-z iff either z = f(x) or z€ K and f(z) = f(x).

(iif) Let x€ K, y=a =z Then x-yz= xa = f(x) = f(x) a= xy-z. Thus
x+yz= xy-z in this case.

(iig) Let x€ K, ye€ J, z=a. Then x- yz = f(x) and xy'z = aa = a, so that
x-yz # xy- z in this case.

(iih) Let x€ K, y=a, z€J. Then x- yz= f(x) and xy-z = f(x)z = a, so
that x- yz # xy- z in this case.

11.3 For each n = 2, define the following two groupoids on the set
{0,1,-..,n — 1}:

R, 012 ..n—2n-1 S, (012 ...n—-2n-1
0 |00 O0.. 0 0 0 |01 1.. 1 1
1 |00 0 .. 0 0 1 100 .. 0 0
2 |00 0 .. 0 0 2 |1 00. 0 0
n—2(0 0 0. 0 0 n—2|1 00 0 0
n—1/0 0 0 . 0 0 n—1|1 00 0 0

11.4 Lemma. (i) Both R, and S, are semigroups.
(ii) R, is a semigroup with zero multiplication.
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(iii) S, is a two-element group.
(iv) For n 2 3, S, is a subdirect product of S, and R,_;.
Proof. Obvious.

11.5 Lemma. If G is a finite semigroup with n = 2 elements, then G is
isomorphic either to R, or to S,

Proof. This follows from 11.2 and 11.3.

11.6 Lemma. Letn 2 2 and1 = m = n — 1. Then the groupoids R,[0, 0, m]
and R,(*) (see 4.9) are isomorphic (and hence ns(R,[0, 0, m]) = 2n(n — 1)).

Proof. Easy.

11.7 The groupoid R,(*) = R,[0, 0, 1] has the following table:

R*I|0 12 ...rn—-2n-1
0 |[100.. O 0
1 |j000.. O 0
2 |000.. 0 0
n—210 0 0 .. 0 0
n—1(0 0 0. 0 0

11.8 Lemma. Let n 2 2. Then ns(S,,(*)) = 2n(n — 1), where S, ,(*) =
= 5,[0,0,1].

Proof. It follows from 2.7 and 11.3 thata = B=(n— 1, y, =6, = n—1
andy,=d,=¢=¢6=¢ = @ = @ =0.By 29 ns(S,,(*) = 2(n — 1)* +
+2(n—1)=2n(n—1).

11.9 The groupoid S, ,(*) = S,[0, 0, 1] has the following table:

S0 12 ...n—-2n—-1
o (1 11.. 1 1
1 100.. O 0
2 {100 .. 0 0
n—2(1 0 0 .. 0 0
n—1{1 0 0 .. 0 0

11.10 Lemma. Let n = 3. Then ns(S,,(*) = 2n(n — 1), where S,,(*) =
= §,[0,0,2]. Moreover, if 2= m = n— 1, then the groupoids S,,(*) and
S,[0,0, m] are isomorphic.
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Proof. ns(S,,(*)) = 2n(rn — 1) by 2.7, 11.3 and 2.8 and the rest is clear.
11.11 The groupoid S, ,(*) = §,[0, 0, 2] has the following table:

$,20)|0 12 ...n—2n—-1
0 211 .. 1 1
1 1 0 0 .. 0 0
2 10 0 .. 0 0
n—2{1 0 0 .. 0 0
n—1{1 0 0 . 0 0

I1.12 Main results

12.1 Theorem. Let G be a semigroup. Then Gla, b, ] is associative for all
a, b, ce G iff card(G) = 2 and G is a semilattice (i.e. G is commutative and
idempotent).

Proof. (i) Fist, let G[a, b, c] be associative for all a, b,c€ G. If ac # ca
for some a, c € G, then (a, g, a) € Ns(G|a, a, c]), a contradiction. Hence G is
commutative. Similarly, if uv # u, v for some u,ve€ G, then (u, v, uv)e
€ Ns(G[uv, uv, uv)), again a contradiction. Thus uv € {u, v} for all 4, v € G (i.e.
G is quasitrivial). Finally, if card(G) 2 3, then there are three different elements
a,b,c€ G with ca = a, bc = b and ab = b. Then (a, b, b) € Ns(G]a, b, c]),
a contradiction.

(ii) Let G be a two-element semilattice with the following multiplication table:

N
N =N

G
1
2

Then GI1, 1, 2] is a group, G[1,2,2] is a semigroup of left zeros, G[2, 1, 2] is
a semigroup of right zeros and G[2, 2, 1] is a semigroup with zero multiplication.

12.2 Theorem. Let G be a finite groupoid with n elements and such that
sdist(G) = 1. Then 1 = ns(G) = 2n(n—1) and n’> —2n* + 2 = as(G) =
< n® — 1. Moreover, if ns(G) = 2n(n — 1), then G is isomorphic to one of the
groupoids R (*), S,1(*), S,2(*) (to Ry(*) if n = 2).

Proof. Combine 7.9, 8.5, 9.6, 9.8, 10.8, 11.5, 11.6, 11.8 and 11.9.

12.3 Remark. (i) Let n = 3. The groupoids R,(*), S,:(*) and §,,(*) are
pair-wise non-isomorphic and ns(R,(*)) = ns(S, ;(*)) = ns(S,(*)) = 2n(n—1).
(ii) Ry(*) and S, ,(*) are isomorphic and ns(R,(*)) = 4 = 2n(n — 1).
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(iii) Let n =2 3. It follows from 3.12, 4.7 and 5.7 that for each
€e{l,n—2,n—1,4n—6,4n — 5,4n — 4, n* — 2, n* — 1, 2n*> — 2n} there
exists a groupoid G of order n such that sdist(G) = 1 and ns(G) = m.

I1.13 Comments and open problems

13.1 The results of this part seem to be new. Not much is known about the
semigroup distance of (finite) groupoids and this topic would deserve a more
detailed study.

13.2 Let n = 1. We can define a number maxsdist(n) as the maximum of all the
numbers sdist(G), where G runs through all n-element groupoids. Clearly,
maxsdist(1) = 0, maxsdist(2) = 2 and maxsdist(n) < n* — nfor every n = 1. By
1.6, maxsdist(n) = n’/4 for every n = 2.

(i) Find maxsdist(n) for “small” numbers n.
(ii) Improve the above estimates of maxsdist(n).
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