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1994 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PIIYSICA VOL. 35, NO. I 

Multiplication Groups of Quasigroups and Loops II. 

ALEŠ DRÁPAL, TOMÁŠ KEPKA and PETR MARŠÁLEK*) 

MFF UK Praha 

Received 10. October 1993 

Basic properties of permutation groups generated by left and right translations of quasigroups and 
loops are collected. 

Základní vlastnosti permutačních grup generovaných levými a pravými translacemi kvazigrup a lup 
jsou sebrány. 

1. Multiplication groups — first observations 

1.1 A groupoid is a non-empty set supplied with a binary operation. This operation 
is usually denoted multiplicatively, i.e. by . or juxtaposition. 

Let G be a groupoid. For each a e Q, we have two transformations S£(G, a) and 
@(G, a) of G defined by S£(G, a) (x) = ax and S/t(G, a) (x) = xa, resp. The 
transformation S£(G, a) (3l(G, a))is called the left (right) translation by a (of G) 
and will be also denoted by S£(a) ($(a)) when G is clear from the context. 

A groupoid is called a quasigroup if all the translations are permutations (i.e. 
bijective transformations). 

A loop is a quasigroup possesing a neutral element. 

1.2 Let Q be a quasigroup. The subgroup J/(Q) = (S£(a);ae Q} generated by 
all the left translations (in the group Sf(Q) of all permutations of Q) is called the 
left multiplication group of Q. Similarly J/,(Q) = (@(a);aeQ} is the right 
multiplication group and J/(Q) = (@(a), S£(d); aeQ} = lj/,(Q) U J/,(Q)} is the 
multiplication group of Q. 

For aeQ, the stabilizer J?(Q, a) = St(J/(Q), Q, a) = {f e J/(Q); f(a) = a} is 
called the left inner permutation group (with respect to a). Similarly^Q, a) = 
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= St(J/,(Q\ Q, a) is the right inner permutation group and J(Q, a) = St(J/(Q), Q, a) 
is the inner permutation group (with respect to a). If Q is a loop, then J(Q) = 
= J(Q, 1) is called the inner permutation group of Q. 

1.3 In the rest of this section, let Q be a quasigroup, S = ^(Q), G, = J/(Q), 
G,. = J/,(Q)9 G = J/(Q), H(a) = S(Q, a), Hr(a) = Jr(Q, a), and H(a) = J(Q, a). 

1.4 Observation, (i) The permutation group G (Gh G,) is transitive on Q and 
consequently the stabilizers H(a) (H(a), H,.(a)), a e Q, are conjugate in G (Gh Gr). 
In particular, the stabilizers are isomorphic. 

(ii) f]H(a)=l (f]H{a)=\, (]H,.(a) = \). 
ueQ aeQ aeQ 

(iii) LC(H(A)) = 1 (LC,(H,(A)) = 1, LC,(//,(A)) = 1) (here, LC(K) denotes the 
core of a subgroup K in G). 

(iv) ({jH(a);a e Q> {<{jH(a); a e Q}. <{jH,(a); « e Q})is normal in G (G„ G,.). 

(v) card(G) = card(Q) • \(Q) (card(G,) = card(Q) • \{Q), card(Gr) = card(o.) • \,.(Q)), 
where \(Q) = card(/7(a)) (i^Q) = card(H,(a)), i,(Q) = card(H,.(«)). 

(vi) \IQ) = i(Q) and \,(Q) = \(Q), moreover, both \,(Q) and \,(Q) divide \(Q), 
provided that \(Q) is finite. 

1.5 Observation, (i) Z(G,) g C,-(G,) = {f e S; f = .<??(/(«)) <#(«)-' for each 
a e Q) £ G,.(here, Z(K) is the centre of K and CS(K) is the centralize/- of K for 
a subgroup K of S). 

(ii) Z(G,) £ CS(G,) = {/ e S; f = JZ\f(a)) l£(ci)'x for each a e Q] £ G,. 

(iii) Z(G) = CS(G) ^G,n G,. 

(iv) Z(G) = Z(G,) n Z(G,.). 

(v) Z(G,) u Z(G,.) <=G,n G,. 
(vi) / / Q is a loop, then Z(G) = {¥(a); aeZ(Q)} = {:$(a); aeZ(Q)); in 

particular, the groups Z(G) and Z(Q) are isomorphic. 

(vii) Every automorphism of Q is contained in each of the normalizers N,S(G), 
NS(G,), N.s(G,j. 

(viii) Suppose that Q is a loop and that the automorphism group ofQ is transitive 
on Q — {I}.Then each of the normalizers NS(G), NS(G/), NS(G,.) is 2-transitive on Q. 

1.6 Observation. Put A = {&(a)\ a e Q) and B = [<%(a)\ a e Q). 

(i) The set A is a transversal to each of the subgroups H,(a) in Gh i.e. A is 
a stable transversal. 

(ii) The set B is a stable transversal to each of the subgroups Hr(a) in G,. 

(iii) Both A and B are stable transversals to each of the subgroups H(a) in G. 
Moreover, A, B are H(a)-semiconnected transversals (see 1.4.1). 

(iv) UQ ls a loop, then A and B are H( 1 )~connectecl, i.e. the mutual commutator 
\_A, B\ is contained in H(\). 



1.7 Observation, (i) The following conditions are equivalent: 

(a) \{Q) = 1 ( i , (Q )= I). 

(b) G, (Gr) is a regular permutation group. 

(c) G, = A (Gr = B). 

(d) Q '•* # left (right) loop isotopic to a group. 

(e) There exist a group Q( + ) (possibly non-commutative) and f e S such that 
f(0) = 0 and xy = f(x) + y (xy = .v + f(y))for all x9 yeQ. 

(ii) The following conditions are equivalent: 

(a) i^e) = i = i,(e). 
(b) Both G, and Gr are regular permutation groups. 

(c) G, = A and Gr = B. 

(d) Q i_v a group. 

In this case, the groups Q, G,, G,. are isomorphic and G is isomorphic to the 
factorgroup (Q x Q)/K, K = {(a,a); aeZQ). Moreover, H(l) is isomorphic to 
G/z(Q). 

(iii) The following conditions are equivalent: 

(a) \(Q) = 1. 

(b) G is regular permutation group. 

(c) Q /s <r//i abelian group. 

In this case, the groups Q and G = G( = Gr are isomorphic. 

1.8 Let /• be a binary relation defined on Q. Then /• is called 
— left (right) stable if (a, b) e r implies (xa9 xb) e r ((ax, bx) e /•) for every x e Q; 
— stable if it is both left and right stable; 
— left (right) cancellative if (ca, cb) e r ((ac, be) e r) implies (a, b) e /•; 
— cancellative if it is both left and right cancellative. 

Clearly, a congruence of Q (i.e. a stable equivalence) is cancellative iff the 
corresponding factorgroupoid is again a quasigroup. 

1.9 Observation (i) Let N be a normal subgroup of G, (G,.). Define a relation 
r on Q by (a, b) e r iff b = f(a)for some f e N. Then r is left (right) cancellative 
left (right) stable equivalence on Q. Moreover, r = idQ iff N = 1 and r = Q x Q 
iffN is transitive on Q. 

(ii) Let r be left (right) cancellative left (right) stable equivalence defined on Q. 
Then N = (f e G, (f e G,.); (.v; f(.v)) e r for each x e Q} is a normal subgroup of 
G, (Gr). Moreover, N = G, (N = G,) iff r = QxQ. 

(iii) The permutation group G, (Gr) is primitive iff \dQ and QxQ are the only 
left (right) cancellative left (right) stable equivalences on Q. 

1.10 Observation. Let Jr denote the lattice of normal subgroup of G and cf> the 
lattice of cancellative congruences of the quasigroup Q. 
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(i) For every IV eJr,r = <P(IV) defined by (a, b) e r iff a, b e Q and b = f(a) 
for some f e N is a cancellative congruence of Q. 

(ii) for every re<£, N = *F(r) = {f e G; (x, f(x)) e r for each xeQ} is 
a normal subgroup of G. 

(iii) O(IV) = idQ iff N = 1 and O(iV) = QxQiffN is transitive on Q. 

(iv) ¥(r) = liffr = \dQ and ¥(r) = Giffr = QxQ. 

(v) IfN,MeJV and N £ M, then <I>(iV) £ (p(M). 

(vi) lfr, setf and r £ s, /Am *F(r) £ ^(s). 

(vii) .Z>t N e JV and geG. Then g e 4'<I>(IV) iff for every xeQ there is f e IV 
with g(x) = f(x)\ in particular, IV £ vFO(IV). 

(viii) Let r e c6 and a,beQ. Then (a, b) e <M'(r) iffb = g(a)for some geG such 
that (x, g(x)) e r for every x e Q; in particular, <M'(r) £ r. 

(ix) IfN, Me^, then <t>(N, M) = O(IV) 0(M) and <D(IV nM)~i <P(IV) n *F(M). 
(x) lfr, s e tf, rAm *F(r) vF(s) £ *F(rs) a/*d ¥(/• n s) = ¥(r) n ¥(s). 

1.11 Proposition. LetNeAr and M = 4'<P(IV). 77ie/i: 

(i) For each aeQ,M = LG(NH(a)) = NK, where K = {fe H(a)\ g~]fge NH(a) 
for each g e G}. 

(ii) M = f]NH(a). 
aeQ 

(iii) *F(P(M) = M. 

Proof. The assertions follow easily from l.lO(vii). 

1.12 Proposition, (i) H'O = id*. 
(ii) The mapping 0: Ar -> (fi is projective. 

(iii) The mapping lP: # -> ./V /.$• injective. 

Proof. Let r e # and s = <!>¥(/•). By LlO(viii), s £ r. Now, let (a, b) e r. Then 
(x,3f(a)~l £f(b)(x))er for every xeQ (since r is cancellative), and hence 
(a, £f(a)~] J?(b)(a))e s by l.lO(viii). However, s is a cancellative congruence of 
Q and consequently (aa, ba) e s and (a, b) e s. We have proved that r = s. 

1.13 Observation. Let re^,P = Q/r (i.e., P is the factorquasigroup ofQ by r) 
and let \//: Q -*> P denote the natural projection. 

(i) Put IV = *I'(r). Then *F<I>(IV) = ¥(!>¥(/•) = ¥(r) = IV. Hence also 
IV = hG(NH(a))for each aeQ and N = f]NH(a) (see 1.11 and 1.12). 

aeQ 

(ii) There exists a projective homomorphism (p: G -• J/(P) such that Ker(<p) = IV 
and cp(^(Q, a)) = <£(P, i//(a)), cp(@(Q, a)) = <%(P, \//(a)) for every AeQ. In par-
ticular, the groups J/(P) and G/N are isomorphic. Moreover, <p(G,) = J/{P) = 
S G,/Gt n IV s G/IV/IV a/.d cp(G) = J/,(P) s G./G,. n IV s GrIV/IV. 
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1.14 Observation. The permutation group G is primitive iff the quasigroup Q is 
c-simple (i.e., id^ and QxQ are the only cancellative congruences of Q). 

1.15 Observation. LetPbeasubquasigroupofQ,Ki = <i?(Q,a); a e P> <= Gh 

Kr = <^?(Q,a); a e P> £ G,. a/zd K = <K,. u K/> g G. 77ze/z lhere e.v/sls a projec
tive homomorphism cp: K -* J/(P) such that (p(f) = f\Pfor each f e K. Moreover, 
cp(Ki) = -^ (P) , <p(K,.) = ^,.(P) a/zd Ker(r/>) = f]H(a) n K. 

ael> 

1.16 Observation. Suppose that Q = YlQh where Qh i e I, is a non-empty system 
of quasigroups. Then there exists an injective homomorphism cp: Y\J/(Q^ -» S such 
that (p(Ylfi) = nf, f e J/(Q). Moreover, G g Im (c/>), G/ £ cp(TlJ/,(Q)) and 
G, s ^n.//,.(Q,)). 

1.17 Observation, (i) The following conditions are equivalent: 

(a) G; /.v abelian. 

(b) Q /s l(:ft permutable (i.e., x • >'z = v ' xz for all .v, }\ z e Qf 

(c) 77z^rc ex/sts ^AI abelian group Q( -h) a/zd f e S sz/c/z t/zat f(0) = 0 and 
xy = f(.v) 4- yfor all .v, y e Q. In this case, i/(Q) = 1 (see I.7(i)). 

(ii) The following conditions are equivalent: 

(a) G, is abelian. 

(b) Q Lv r/£/zt permutable (i.e., x • yz = y • xz for all x, y, z e Q). 

(c) There exists an abelian group Q( + ) and JeS such that f(0) = 0 and 
xy = x + f(y)far all x, y £ Q. In this case, i,.(Q) = 1 (see l.7(i)). 

(iii) The following conditions are equivalent: 

(a) Both G, and G; are abelian. 

(b) G /A- abelian. 

(c) G Lv regular. 

(d) i(6) -= 1-
(e) Q /5 a/z abelian group. 

(0 //(a) Lv normal in G. 

1.18 Proposition. /fQ Lv non-trivial and the multiplication group G is simple, 
then, for each a e Q, H(a) is a maximal subgroup of G. 

Proof. The result follows from 1.6(iii) and 1.3.13. 

2. Inner permutation groups 

2.1 This section is an immediate continuation of the preceding one. 
For a, .v, y e Q, let .5?(x, y, a) = JS?(Q, x, y, a) = . % ) " ' £/\x)~] &(v\ 

v = &(a)-x(x'ya\ 0l(x,y,a) = &(Q,x,y,a) = St(y)-' # ( * ) - ' «(»v), w = jS?(a)-' (a.vx) 
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and ^(x,a) = ^"(<2,x,a) = _,(x)-'.$?(z), z = __>)-'(.va). Clearly, 3>(x,y,a)e H{a), 
<%(x, y, a) e H,.(a), and _T(.v, a) e H(a). If _ is a loop and a = 1, then _%*, y) = 
= _?(„, .v, 1) = _*(>')"' _f(xj-' _*(„>>), _f(.v, 3') = S*(x, y, 1) = _frj- ' &\x)-' .#(*>•), 
and ST(x) - P(x, 1) = _?(*)-' PA(x). 

2.2 Proposition. ([1]) Let AeQ. 
(i) The »J..-T permutation group H(a) is generated by the permutations 

_%*, v, a), &t{x, y, a), ST(x, a), x, y e Q. 
(ii) The left inner permutation group H{ci) is generated by the permutations 

<Z'(x9y9a),x,yeQ. 
(iii) The right inner permutation group H,.(a) is generated by the permutations 

9f{x, y, a), x, y e Q. 
Proof, (i) Let K denote the subgroup of G generated by the permutations in (i). 

Then K c: H(a) and we are going to prove that H(a) J= K. 

Let / e 7/(4 There are n ^ 1, K,,.... Rn e (,_*,_?}, //,,..., //„ e Q and 
/•,,..., rn e [1, — 1} such that / = i\,(M,)'' ... Rn(u,)r". Now, proceeding by induction 
on /i, we prove that / e K. We can assume, without loss of generality, that Rn = &(. 

First, let /. = 1. Then MM, = a and M(u} = .#(//,,//,, a)"1 e K. Consequently, 
/ = /#(//,)" e K. 

Now, let n ^ 2. The rest is divided into several parts. 

(a) LetK„„, = _?andrfI_, = 1 = /•„. Then we have / = g$(un_ ,)^?(M„), where 
g = K^M,)'1 ... Rn ,(//„ :)'"-2, g = \<\Q for // = 2. Further, // = _f(Mfl_,, un,a)e K 
and fh = g'M(\v\ where aw = aun • //„_,. But „/^P(H')(_) = ///(«) = a, and therefore 
g^(w) e H(a) and /// = g^?(u) e K by induction. Since // e K, we have also / e K. 

(b) Let i?„_, = S£ and /•„_, = 1 = /•„. Then / = g^(u„_ ,)_?(//„), // = 
= m(un) ' S£(z) e K, where au„ = za, and fh = gtf(un_,) _?(i;) e H(a). Now, this 
case is dual to the case (a). 

(c) Let /?„_, = m and /•„_, = - 1 , /•„ = 1. Then / = fl^M,..,)"'_*(wM) = 
= ii&(u) //, where _//„ = au • //„_,, // = _»(//)"' £%,_,)"' .#(//„) = _#(M„_ ,, //, a) e K. 
From this, fir1 = g&(u) e 11(a), g&(u) e K by induction and fe K. 

(d) Let _»„_, = Se and /•„_, = - 1 , /•„ = 1. Then / = (jS?(un-\)~
l #(«-„)• /» = 

= ^(M,,) -1 ^ (z )e K, where ZM = aun, fh = g^\un_} S?(v)e H(a) and this case 
is dual to the case (c). 

(e) Finally, let /•„ = - 1 , so that f=g2?(u,)-]. Let w, z e Q be such that 
_/U' = a = _/_• • //„. Then // = ;#(//„, z, a) = @(-)~] <#(u,) -I &(\\) e K and Pl(\\) e K. 
Further, f;#(\v) = c\M(z) h e H(a), so that a.#(z) H(a) and, consequently, g.'#(z) e K 
by induction. Then also / = y3?(z) hSf(w)~x e K. 

2.3 Consider the situation from 1.13. 
(i) It follows easily from 2.2(i) that, for each a e Q, <p(H(a)) = J(P, il>(a)) and 

Kcv((p\H(a)) = 11(a) n AT. Thus we have the isomorphisms J(P,\jj(a)) __ 
2. H(a)/H(a) n TV __ H(a) N/N. 
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(ii) <p(H(a)) = S(P, $(a)\ Ker(r/) | H(a)) = H,(a) n N and J(P, ^(a)) ==. H(a)/H(a) n 
n AT s H;(a) JV/N. 

(iii) <p(tf,.(a)) = ^(i> r̂(fl)), Ker(<p|n,.(a)) = H,.(a)n A/ and J,(P, i/r(fl)) =s n,(a)/n,(fl)n 
n N ^ H,.(a) A7/A7. 

2.4 Consider the situation from 1.15. 
(i) For a e P, let /(a) = (&(x,y, a), @(x, y, a), 2T(x, a); x, y e P> £ K. Then 

<p(I(a)) = y(P, a) and 1(a) £ //(a). 
(ii) For a e P, let /,(a) = (&(x,y, a); x, x e P ) i K,. Then <p(/̂ a)) = ^ P . a) 

and 7,(a) £ H^a). 
(iii) For aeP, let 7,.(a) = (@(x,y, a); x, x e P > £ K,.. Then </>(/,(a)) = A(P, a) 

and L(a) £ H,(a). 
2.5 Consider the situation from 1.16. Then, for a = (a,)e Q, H(a)(H(a), H,.(a)) 

can be embedded into UJ(Qh a) (UJ(Qh a,), U.fr(Qh a,)). 
2.6 Lemma. Let a, b e Q. The following conditions are equivalent: 

(i) H(a) £ 11(b). 
(ii) H(b) £ H(a). 

(iii) 77(a) = H(/J). 

(iv) &(b) <E(a)-x = #(&) *(fl)-' e Z(G). 
(v) ^(a) .^(fc)-1 = .#(a) .#(/;)"' e Z(G). 

Proof. First, observe that &(x, y, a) e H(b) iff .S?(x) (̂Z>) ()•) = 
= .#(/>) ^(a ) - ' ^?(x) «(a) (>•), ^(x, >•, a) e H(b) iff <2?(x) J5?(6) ()•) = 
= ££(b)tf(a)-x m(x)^(a)(y) and ,T(x, a) e H(/>) iff £C(b) ^(a)~x 0>(a) (x) = 
= <#(/>) (x). Consequently .S?(x, y, a) e H(b) for every yeQ iff i?(x) 2̂(/>) PA(a)-' = 
= .^(/j)^(a)-1 <?(x). Similarly ®(x, y, a) e H(b) for every yeQ iff 
.#(x) if(/j) ^f(a)-' = tf(b) <L\a)-' <2?(x). Moreover ^ (x , a) e tf (/>) for every x e Q 
iff J?(b)y(a)~x = ®(a)@(b)-x. Using this, we see easily that (i) implies (iv). 
Conversely, iff (iv) is satisfied, then (i) follows by 2.2(i), and so (i) and (iv) are 
equivalent. Quite similarly, (ii) and (v) are equivalent and, trivially, (iv) and (v) 
are equivalent. 

2.7 Proposition. ([4]) Let a e Q. 
(i) fe NG(H(a)) ifffeG and H(f(a)) = H(a). 

(ii) NG(n(a)) = H(a) Z(G). 
Proof. First, let a e NG(H(a)) and ij e H(a). Then Ii = f-xgfeH(a), gf(a) = 

= fh(a) = f(a) and geH(f(a)). We have proved that H(a) £ H(f(a)), and so 
H(f(a)) = H(a) by 2.6. 

Now, let H(f(a)) = H(a) and let beQ be such that a = ab. By 2.6, 
£f(f(a)) if(fl)-' 6 Z(G). However, Pl(b) e H(a) = H(f(a)), f(a) = /(a) b, 
f" '^(f(a)) 2>(a)-' e n(a) and / e H(a) Z(G) £ NG(n(a)). 

Another proof of (ii) follows from 1.6(iii) and 1.3.18. 
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2.8 Lemma. Let a, b e Q. Tbe following conditions are equivalent: 
(i) H{a) £ H(b) (H,(a) £ //,.(/>)). 

(ii) H{b) £ H{a) (H,(b) £ Hr(a)). 
(iii) H{a) = H f̂e) (H,(«) = H,.(/>)). 
(iv) .#(/>) #(fl)-' eCc(G,) = C^G,) £ G,. (ie(b)<£(ay eQ;(G,.) = C*(G,.) £ G,j. 
(v) ^(/j),^(fl)-' = R(.xfc).#(.\-fl)-|/orcwT.v xeo. (^(/))^(«)-' = ^(/>.Y)^(«.Y)- ' 

/or every .v 6 Q). 

Proof. Similar to that of 2.6 (see 1.5(i), (ii)). 

2.9 Proposition. Le/ « e Q «//d / e G, ( / e G,.). The following conditions are 
equivalent: 

(i) feN(;,(H{a))(feNG,(Hr(a))). 
(ii) //,(/(«)) = II{a) (Hr(f(a)) = //,(«)). 

(iii) fe (CC(G,) //(«)) n G, (j'e (CC(G,.) //(«)) n G,.). 
Proof, (i) implies (ii). Let .« e//,(«). Then flqfell{a) and qeH{f(a)). By 

2.8, //,(«) = //,(/(«)). 
(ii) implies (iii). By 2.8, A = •'#(/(«)) .#(«)""' e CC(G,). Further, if « = />«, then 

/"(«) = />/(«) and /"'A-e //(«). 
(iii) implies (i). Let f = qh, ,«eCc(G,), /. e//(«) and let keH{a). Then 

/-'/../'(«) = /"'/<«(«) = ./-'<//t(fl) = /r'(«) = «, and so f ,kfeH{a). 

2.10 Corollary, (i) NC(H(«)) = H(«) ///'Z(G) = 1. 
(ii) //CC(G,) = 1, »•/.<?/. Nc,(//,(«)) = H,(«). 

(iii) //CC(G,.) = 1, f/je/z NC,(H,.(«)) = H,.(«). 

3. The stability congruence 

3.1 We continue here immediately the preceding two sections. 
Put ,v = s(Q) = <I>(Z(G)) (see 1.10(i)). Then s is a cancellative congruence of Q 

(the stability congruence introduced by Smiih in |4]) and («, /)) e s iff a, b e Q and 
h = /(«) for some/'eZ(G). 

3.2 Lemma. Let a, b e Q. The following conditions are equivalent: 
(i) (a. b) e s. 

(ii) //(«) = H(b) (see 2.6). 
(iii) &{b)&(a)-leZ(G). 
(iv) .#(/;).#(«)-'eZ(G). 

in this case &{b) JZ'(a)~' = :#(b) ^{af' and &(b) il'(a\ ' (a) = /j. 

Proof, (i) implies (ii). This implication is easy. 



(ii) implies (iii) and (iv). See 2.6. 

(iii) implies (i). Let c e Q be such that a = ac. Then S£\ff) S£(d)~x (a) = 

= &(b) £e(a)-' 0t(c)~x (a) = 01(c)-' &(b) S£(c^x (a) = St(c)~x (be) = b. 

(iv) implies (i). We can proceed similarly. 

The rest is clear from 2.6. 

3.3 Corollary, (i) card(Q) = card(Z(G)) • (card(Q/s). 

(ii) s = \dQiffZ(G) = 1. 

(iii) s = QxQ iff Q is an abelian group. 

3.4 For every ordinal number a — 0, define a cancellative congruence 

5(a) = s(Q, a) of Q as follows: s(0) = \dQ; if a = 0 then s(a + 1) is the 
uniquely determined cancellative congruence of Q such that .s(a) <= s(a + 1) and 
s(a + l)/s(a) = s(Q/s((x)); if a > 0 is limit, then 5(a) = [js([i), 0 ^ fi ^ a. 

The quasigroup Q is said to be stably nilpotent of class at most a if s(a) = Q x Q. 
The quasigroup is said to be stably nilpotent if it is stably nilpotent of a finite class. 
Clearly, Q is stably nilpotent of class at most 0 iff it is trivial and Q is stably 

nilpotent of class at most 1 iff it is an abelian group. 

3.5 (i) For every a = 0, let L(a) = vI'(s(a)) (see 1.10(ii)). Then L(a) is a normal 
subgroup of G and Q is stably nilpotent of class at most a iff L(a) = G (this follows 
from 1.12). 

(ii) For a e Q and a = 0, let H(a, a) = L(a) n H(a). 
Let (/>: Q -> Q/s(a) = P denote the natural projection. By 2.3(i), J/(P, \//(a)) ^ 

^ H(a)/H(a, a). 

3.6. Lemma, (i) L(0) = 1. 

(ii) L(\) = LG(H(a)Z(G)),aeQ. 

(iii) F<?r every n = 0, L(n + 1) = LCl(H(a) K„), A e Q, u-'/zere K„ e ,1 Lv .vuC/z 
///E7t L(/i) £ K„ fl/zrf £„/£(") = Z(G/L(/i)). 

Proof, (i) This is obvious. 

(ii) L(l) = %s) = ycD(Z(G)) = LG(H(a)Z(G)) by 1.1 l(i). 

(iii) We shall proceed by induction on n. For n = 0, the result is proved in (ii). 
Now let n = 1, P = Q/s(n), \\i: Q-* P and q:G -» G/L(n) be the natural projection 
and let cp: G-> .//(P) be by 1.13(ii). Now, we are going to show that 
s(/i + 1) = 0(K„). 

First, let JeKin aeQ. We have L(/i) = Ker((/)), so that cp = OQ for an iso
morphism 0-:' G/L(/i) -> .y/(P), and then r/?(F) = r, O(f) G Z(-7/(P)), (\j/(a\ <p(f) (i//(a))) = 
= (\jj(a), il'(f(a)) e s(P) and (a, f(a)) e s(n + 1). We have proved that 0(K„) is 
contained in s(n + 1). 

Now, let (a, b) e s(n + 1), i.e. (\jj(a), \j/(b)) e s(P). Then there is fe K„ such that 
*A(/>) = <p(f)(Wa)) = </'(•/»)• However, then (a, f(a)) e cD(KM) and ( . / » , ft) e s(n). 
Since L(/i) £ K,„ we have s(n) = 0(K„), and hence (a, ft) e 0(K„). 
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We have proved that s(n + 1) = <I>(/C„). Now, by 1.11 (i), L(n + 1) = vI'(.v(/i + 1)) = 
= 4'cT>(K„) = Lc(H(a) K„). 

3.7 Proposition. Let n ^ 1. The following conditions are equivalent: 

(i) Q is stably nilpotent of class at most n. 

(ii) L(n) = G. 

(iii) G' g H(a) Kn_2 (see 3.6; K__, = 1). 

(iv) H(a) K„_2 is normal in G. 

(v) H(a) £ L(/. - 1). 

(vi) H(a) = H(a,n - 1). 

Proof. Easy (combine 3.4, 3.5 and 3.6). 

3.8 Proposition. (|4J) Let n ^ 1. The following conditions are equivalent: 

(i) Q is stably nilpotent of class at most /.. 

(ii) For every a e Q, H(a) is subnormal of depth at most n in G. 

(iii) There exists a e Q such that H(a) is subnormal of depth at most n e G. 

Proof, (i) implies (ii). By induction on n. If//. = 1, then H(a) = 1 is normal in G, 
i.e.. subnormal of depth at most 1. 

Let n ^ 2 and P = Q/s(l). Then P is stably nilpotent of class at most n — 1, 
and so J(P,vV(a)) ^ L(l) H(a)/L(i) is subnormal of depth at most n - 1 in 
//(P) = G/L(l) (here, (//: Q -> P denotes the natural projection). This implies that 

L(l) H(a) is subnormal of depth at most n — 1 in G. However, II(a) £ L(l) II(l) = 
= Z(G) 11(a), so that H(a) is normal in L(l) H(a). 

(ii) implies (iii). This is trivial. 

(iii) implies (i). Again by induction on /.. If n = 1, then the result follows from 
LI7(iii). Let n ^ 2 and P = Q/.v(l). We have ./(P, i//(a)) ^ L(l) II(a)/L(l) = 
= Nc(/I(«))/L(l). However Nc(//(</)) is subnormal of depth at most n - 1 in J/(P\ 
P is stably nilpotent of class at most // — 1 and Q is stably nilpotent of class at most /.. 

3.9 Corollary. If the multiplication group G is nilpotent of class at most n ^ 0, 
then the quasigroup Q is stably nilpotent of class at most /.. 

3.10 Put j(Q) = card(Q/s). By 2.7(i) and 3.2, we have /(Q) = [G: N6(I1(c/))] = 
= [G: 11(a) Z(G)]. By 3.3(i), card(Q) = card(Z(G)) • j(Q). Consequently card(G) = 
= i(Q)-./(Q)-card(Z(G)). 

3.11 Lemma, (i) L(l) can be imbedded into the cartesian product of j(Q) copies 
O/'Z(G); in particular, L(\) is abelian. 

(ii) For every a £ Q, H(a, 1) can be imbedded into the cartesian product of 
j(Q)- 1 copies ofZ(G) (here, j(Q) - 1 = j(Q) for j(Q) infinite). 

Proof, (i) For every a e Q, N(l(H(a)) is the direct product of H(a) and Z(G). 
Hence, let n(l: NG(H(a)) -> Z(G) denote the natural projection. Now, let [a,] be a set 
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of representatives of the blocks of s = s(l). Since L(l) = LG(NG(H(a))) for every 
a e Q, we can define a homomorphism cp: L(l) -* II,Z(G) by cp(f) = (n(li(f)), 
fe L(l). If cp(f) = I, then fe H(a) for every / and then fe C\H(a) = idg. Thus 
cp is injective. " 

(ii) Take a e Q and define i/>: H(a, 1) -> n Z(G) by i/>(f) = (7ra,(f)), a, $ H(a). 
Again, i/> is injective. 

3.12 Corollary. For every n _ 0, L(/i + l)/L(/i) can be imbedded into the 
cartesian product of j(Q/s(n)) copises of Z(G)/L(n)). 

3.13 Corollary. ([4]) If Q is stably nilpotent of class at most n = \ , then the 
multiplication group G is soluble of class at most n. 

3.14 Corollary. If Q is stably nilpotent of class at most 2, then H(a) (for each 
a e Q) can be imbedded into the cartesian product of j(Q) — 1 copies of Z(G). In 
particular, H(a) is an abelian group. 

3.15 Proposition. Sujjpose that Q is finite and of prime-power order. The 
following conditions are equivalent: 

(i) Q is stably nilpotent. 

(ii) G is a p-group. 

(iii) G is nilpotent. 

Proof, (i) implies (ii). For every n — 0, the centre Z(G/L(n)) is isomorphic to 
the centre Z(.//(Q/s(/i)). However, the order of Q/s(n) is a power of a prime /?, and 
hence Z(G/L(/i)) is a p-group (see 3.10). Now, by 3.12, I(n + 1)/L(ri) is a p-group, 
too. 

(ii) implies (iii). This is clear. 

(iii) implies (i). See 3.9. 

3.16 Lemma, (i) If a, b e Q belong to the same block of s, then ab = ba. 

(ii) If Q Is commutative and a, b, c e cj belong to the same block of s, then 
a • be = ab • c. 

Proof, (i) b = f(a) for some fe Z(G), and so ab = cif(a) = f(aa) = f(a) a = 
= ba. 

(ii) b = f(a), c = g(a), f g e Z(G) and a • be = a • f(a) g(a) = g(a • f(a) a) = 
= g(a ' f(aa)) = gf(a • aa) = fcj(a • aa) = fg(aa • a) = ab • c. 

3.17 Proposition. ([4]) //* Q is stably nilpotent, then Q contains a unique 
idempotent element e. The block of s containing e is an abelian subgroup of Q. 

Proof. We shall proceed by induction on the class n of Q. If n = 0, then Q is 
trivial and the result is clear. Let n = 1 and P = Q/s. Then P is stably nilpotent 
of class at most n — 1 and P contains just one idempotent element. The block R of 
s(Q) corresponding to this element is a subquasigroup of Q. By 3.16, R is an abelian 



subgroup of Q, and so the neutral element e of R is an idempotent in Q. On the 
other hand, if e' e Q is idempotent, then e' e R (since P contains just one idempotent) 
and necessarily e' = e. 

3.18 If Q is a loop, then the stability congruence coincides with the congruence 
corresponding to the centre Z(Q) of Q. Thus Q is stably nilpotent (of a class) iff 
Q is (centrally) nilpotent (of the same class) in the usual sense. 

3.19 Lemma. Suppose that Q is a loop but not an abelian group. Thenj(Q) = 3. 

Proof. If j(Q) = 1, then s = Q x Q and Q is an abelian group. Now, let j(Q) = 2. 
Then Q is (stably) nilpotent of class 2, Q = Z(Q) u a Z(Q) for any a e Q - Z(Q). 
If b,c in Z(Q), then be = cb, b - ac = ac • b, ab • ac = (ab • a)c = (orb) c = 
= a2 - be = a2 - cb = ac • ab and we have checked that Q is commutative. Simi
larly, if b, c, d e Z(Q), then (ab) (ac • ad) = (a • a2) (bed) = (a2 • a) (bed) = (ab • ac) (ad) 
and it is clear that Q is an abelian group; then j(Q) = 1, a contradiction. 

4. The loop-kern el 

4.1 Again, this is an immediate continuation of the preceding three sections. 

(i) Let a, b e Q, / = @{a\ g = JZ\b) and x * y = f~ ](x) g~l(y) for all x, y e Q. 
Then Q(*) is a loop, ba is its neutral element and .vj' = f(.v) * g(y) for all .v, y e Q. 
The loop Q(*) is a principal isotope of Q and every principal loop isotope of Q is 
of this form. 

(ii) Let Q(*) be a loop which is principal isotope of the quasigroup Q, i.e., 
there exist fgeS such that xy = f(x) * g( y) for all x, y e Q. Then 
/ ' = ffl(g~](e)\g = £/J(f~l(e)\ where e denotes the neutral element of Q(*), and 

'G, = c4Q(*)i(i\ cr = <J/,(Q(*))-f>< G = <AQ{*)Ha>-
(iii) Let Q(*) and Q(o) be loops which are both principal isotopes of Q. Then 

Q(o) is a principal isotope of Q(*), and so Mj(Q(o)) cz Af^(Q(*)), 
M,.(Q(o)) g M,.(Q(*)), M(Q(°)) £ M(Q(*)). Similarly the converse inequalities and 
thus we have J/(Q(o)) = M{Q(*)\ J/r(Q(o)) = M/(Q(*)) and M(Q(o)) = M(Q(*)). 

The uniquely determined subgroup ,//(Q(*)) of G = -V/(Q) will be called the 
loop-kernel of G in the sequel and will be denoted by G = <//(Q). 

For every a e Q, H(</) n G = ./(Q, «) n G = -/(Q(*), «) = -/(0(°), fl); we put 
/?(«) - . / (g , fl) = H(a) n G. 

4.2 Lemma, (i) ^(c/) ^ ( b ) " 1 e G / b r «// a, b e Q. 

(ii) G = (&(x)j&(a)-\.#(x)&(b)-]\xeQ}foralla,beQ. 

(iii) G - <G, ^ / ) d?(ft)> /Or all O, b e Q. 

Proof. See 4.1. 

4.3 Lemma. G = G • H(a) = H(a) • G for every a e Q. 
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Proof. Let fe G, b,ceQ, a = ba, f(a) = ca. Then f = S£(c) ^(b)'1 • 
• &(b) &(c)-'f, £e(c) S£(b)-X e G and &(b) &(c)-xfe H(a). 

4.4 Lemma, (i) Z(G,) £ G and Z(G,.) £ G. 
(ii) Z(G) £ LC(ZG)). 

Proof, (i) This follows from 1.5(i), (ii) and 4.2(i). 
(ii) By (i) and 1.5(iv), Z(G) £ G. Hence Z(G) £ Z(G) and, moreover, 

Z(G) £ LC(Z(G)). 

4.5 Proposition. The following conditions are equivalent: 
(i) Q is isotopic to abelian group. 

(ii) G is an abelian group. 
(iih B(a) = 1. 
(iv) S(a) is a cyclic group. 

Proof, (i) implies (ii). Let Q(*) be a principal loop isotope of Q. Then Q(*) is 
an abelian group, and so Q(*) ̂  ^(Q(*)) = G. 

(ii) implies (iii). We have R(a) = J^(Q(*), a) = 1. 
(iii) implies (iv). This is trivial. 
(iv) implies (i). Q(*) is a loop whose inner permutation group is cyclic. By [3], 

Q(*) is an abelian group. 

4.6 Corollary. Suppose that H(a) is cyclic. Then Q is isotopic to abelian group. 

4.7 Proposition. Suppose that H(a) is abelian and Q is isotopic to abelian group. 
Then G" = 1. 

Proof. By 4.5, G is abelian. However, G = G • H(a) and we can use the 
well-known Ito theorem. 

4.8 Let Q(*) be a principal loop isotope of Q and let e denote the neutral element 
of Q(*). There are fgeS such that xy = f(x) • g(y) for all x, y e Q. 

(i) Put a = f(e) and f = ^(Q(*), a)~] fe S. Then f(e) = e, so that f e H(e), 
andf(x) = f,(x) * a for every x e Q. Similarly, if b = g(e) and g, = ^?(Q(*), b)~] g, 
then g,(e) = e, g^e H(e) and g(x) = gj(x) * b for every x e Q. Now, xy = 
= (f,(x) * a) * (g,(x) * b) for all x, y e Q. 

(ii) We have Z(G) = {^(Q(*),u); ueZ(Q(*))}. Now, put R = {ueZ(Q(*)); 
if(Q(*), u) e LG(Z(G))}. Then R is a subgroup of Z(Q(*)). 

(iii) Let ueR and heH(e). Then S£(*, u)e LC(Z(<3)), and so h£e(*,u)h~] = 
= ££(*, v) for suitable v e R. Then also h(u) = h(u * e) = v * h(e) = u, so that 
/zj£?(*, M) = «-?(*, h(u)) h and /I(M * x) = h(u) * h(x) for every xeQ. 

(iv) For each he H(e), h\R is an automorphism of the abelian group /?(*). In 
particular, f||i? and g}\R are automorphisms of /?(*). 
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(v) G = <G,f,gx>. Now, define a binary operation A on Q by x A >' = 
= f(x) * g\(y). Then Q(A) is a guasigroup, it is a principal isotope of Q and 
Jf(Q(A)) = G = J/(Q), J/(Q(A)) = G = J/(Q). Moreover, e A e = e. 

(vi) If <jf is abelian and normal in G, then Q{*) is an abelian group andf, g, are 
its automorphisms. In that case, xy = f(x) * g^y) * c, c = a * b, for all x, y e Q. 

5. Quasigroups linear over aliclian groups 

5.1 A quasigroup Q will be called linear (more precisely, linear over abelian 
group) in the sequel if there exists an abelian group Q{ + ), f g e Aut(Q( + )) and 
w e Q such that xy = f(x) + g(y) + w for all x, yeQ. Now, assume that Q is such 
a quasigroup. 

(i) <£(Q,a) = <£(Q( + ),f{a) + w) g and 0l(Q, a) = !£{Q{ + ),g(a) + w)f for 
every a e Q. 

(ii) J/{Q) = <J/(Q( + )),g>, J/(Q( + )) is a normal subgroup of J/{Q), 
^(Q( + )) r^<g>=l and J/(Q) = J/(Q( + )) • <g>. 

(iii) J/,.(Q) = <^(Q(+)),f>, J/(Q( + )) is a normal subgroup of J/r{Q\ 

AQ(+)) ^ <t> = - a n d JikQ) = AQ(+)) • <f>-
(iv) J/(Q) = <J/(Q( + )),f,g>, J/(Q( + )) is a normal subgroup of J/{Q), 

AQ( + )) n <j; a> = 1 and J/(Q) = J/(Q( + )) • <f, g>. 
(v) ^(Q, 0) = <g>, Jr(Q, 0) = <f> and J{Q, 0) = <f g>. 

(vi) ^(e) = ^(e(+)) = e(+). 
(vi) Z(J/(Q)) = (if(G( + ),a); «(a) = a}, Z{J/,(Q)) = {£>{(Q{ + ),a); f{a) = a} 

and Z(J/(Q)) = {^(Q( + ),a);f(a) = g{a) = a}. 

5.2 Proposition. The following conditions are equivalent for a group G: 
(i) G is isomorphic to the multiplication group of a linear quasigroup. 

(ii) G contains subgroups K, H such that G = KH, K is a normal abelian 
subgroup of G, H can be generated by at most two elements and LC(H) = 1. 

Proof, (i) implies (ii). If G = .//(Q),thenK = ,//?(Q)andH = J^(Q, 0) (see 5.1). 
(ii) implies (i). First, define a mapping cp: H -> Aut(K) by cp(a)(x) = axa~] for 

all ae H,xe K. Then cp is a homomorphism and Kzr(cp) = H n CG(K) <= LG(H) = 
= 1, so that cp is injective. Further, denote by P the subgroup of ^(K) generated 
by J/(K) U cp(H) and define a mapping i//: G -• P by i//(xa) = oS?(K, x) cp(a) for 
all x 6 K and a 6 H (we have K n H <~\ LG(H) = 1, and so i/y is well defined). 
Now, for x,yeK and a,beH, we have i/t(xa) (i/t(yb)(z)) = xaybzb~]a~] = 
= xaya-1 • abzb~]a~] = \//(xaya~] • ab) (z) = \\j(xayb) (z). We have checked that 
^ is a homomorphism of G into the permutation group P. Since ij/(K) = J/(K) 
and iA(H) = </>(H), we have i/t(G) = P. Moreover, if \j/(xa) = 1, then xaz = za for 
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every z e K, and hence x = 1 and ae H n CG(K) = 1. Thus t/t is an isomorphism 
of G onto P. Finally, let u, v generate H. Define a binary operation * on K by 
.x * y = (p(u)(x)- cp(v)(y) = uxu~lvyv~] for all x , y e i \ . Then K(*) is a linear 
quasigroup and J/(K(*)) = P (see 5.1). 

5.3 Remark. Let G be a group such that G = KH, where K is a normal abelian 
subgroup of G and H is a subgroup of G. Then LG(H) = 1 iff CG(K) = K and 
KnH = 1. 

5.4 Proposition. ,4 quasigroup Q is linear iff J/(Q) is abelian and normal in 
J/(Q\ 

Proof. Combine 5.1 and 4.8(viii). 

5.5 Proposition. Let Q be a linear quasigroup. Then Q is stably nilpotent of 
class at most 2 iff the multiplication group J/(Q) is nilpotent of class at most 2. 

Proof. Put G = J/(Q), K = J/(Q) and H = J(Q, 0) (see 5.1). If G is nilpotent 
of class at most 2, then Q is stably nilpotent of class at most 2 by 3.9. Now, assume 
that Q is stably nilpotent of class at most 2. Then Z(G) H is normal in G. Since 
Q is linear,, K is normal in G and we ha\ c [K, K\ £ [K, Z(G) H] g K n Z(G) H. 
On the other hand, LG(H) = 1, and so CG(K) = K, Z(G) g K and K n H = 1. 
Consequently, K n Z(G) H = Z(G), [K, H] £ Z(G) and G/Z(G) is abelian (take 
into account H is abelian by 3.14). 

5.6 Consider the situation from 5.1 and put P = {ae Q;f(a) = g(a) = a} (see 
5 A (vii)), so that Pisa subgroup of Q( +). Then Qis stably nilpotent of class at most 2 
iff f(a) — a, g(a) — aeP (or, equivalently, f2(a) — 2f(a) + a = g2(a) — 2g(a) -F a = 
= fg(a) ~ g(a) ~ f(a) + a - gf(a) - f(a) - g(a) + a = 0) for every a e Q. In 
that case, fg = gf and so the quasigroup Q is medial (i.e., it satisfies the identity 
xy - uv = xu - yv). 

6. The centre congruence 

6.1 Throughout this section, we use the same notation as in the first five sections. 
Put t = t(Q) = 0(LG(Z(G))) (see 1.10(i) and 4.1). Then t is a cancellative 

congruence of Q (the centre congruence introduced by Smith in [4]) and (a, b) e t 
iff a, b e Q and b = f(a) for some fe LG(Z(G)). 

By 4.4(H), Z(G) c LC(Z(<3)), and hence s = s(Q) = 0(Z(G)) c 0(LG(Z(G)) = 
= t(Q) = t. Thus, the stability congruence is contained in the centre congruence. 
If Q is a loop, then G = G, Z(G) = LG(Z(G)) and s = t (see also 3.18). 

By l.H(i),T(f) = LG(LG(Z(G))-H(a)). 

6.2 Consider the situation from 4.8. Then, for x, y e Q, (x, y) e t iff y = x * u 
for some ueR. Further, R(A) is a subquasigroup of Q(A) and R(A) is a linear 
quasigroup (see 5.1). Now, define a mapping qr. t -+ R by cp(x, y) = u, where 
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(.x, y)e t, tie R and y = x * u (u is determined uniquely by the pair (x, y)). The 
congruence t (as a subset of Q®) is also a subquasigroup of the cartesian square 
Q(2) of the quasigroup Q and we will show that (p is a homomorphism of this 
quasigroup t onto the linear quasigroup R(A\ Indeed, let y = x*u, z = 
= w*v,x,y, we Q, u, veR. Then (.x,y)(w, z) = (xv,yz),xw = (f(x)*a)*(g,(y)*b), 
yz = (/,(* * u)*)* (g,(w * v) * b) = ((/,(x) * a) * g,(w) * b) * (f(u) * g{(v)) = 
= (xw) * (u A v), and hence cp((x, y) (w, z)) = u A v = cp(x, y) A <p(w, z). 

Clearly, cp(t) = R and the identity congruence idG is just one of the blocks of 
Ker(<p); in fact, idQ = cp~\e), e being the neutral element of Q(*). That means, that 
idG (as a quasigroup) is a normal subquasigroup of f. 

6.3 Proposition. Q is a linear quasigroup iff t(Q) = QxQ. 

Proof. If Q is linear, then G is a normal abelian subgroup of G, and therefore 
LG(Z(G)) = G, ^(t) = LG(GH(a)) = LG(G) = G and t = ¥0 (G) = 0(G) = Q x Q. 
Cor : sely, if t = QxQ, then R = Q (see 6.2), Q(*) is an abelian group and Q is 
linear by 4.8. 

6.4 For every ordinal number a _ 0, define a cancellative congruence 
r(a) = t(Q, a) of Q as follows: t(0) = \dQ; if a _ 0, then t(oc + 1) is the uniquely 
determined cancellative congruence of Q such that t(oc) ~ t(oc -f 1) and 
t(oi + 1)/Y(a) = t(Q/t(a)); if a > 0 is limit, then f(a) = [jt(p), 0 ^ /J < a. The 
quasigroup Q is said to be centrally nilpotent of class at most a if t(cc) = QxQ. 
The quasigroup is said to be centrally nilpotent if it is centrally nilpotent of a finite 
class. 

Q is centrally nilpotent of class at most 0 iff it is trivial and Q is centrally 
nilpotent of class at most 1 iff it is linear (see 6.3). 

From 4.4(iv) it follows easily that s(Q, a) £ t(Q, a) for every a = 0. In particular, 
if Q is stably nilpotent of class at most a, then Q is centrally nilpotent of class at 
most a. If Q is a loop, then s(Q, a) = t(Q, a) for every a _ 0 (see 3.18). 

6.5 Proposition. Suppose that Q is centrally nilpotent of class at most n (n 
finite) and let Q(*) be a loop isotopic to Q. Then Q(*) is nilpotent of class at most n. 

Proof. We shall proceed by induction on n. The result is clear for n ^ 1. 
Generally, t(Q) g t(Q(*)) = s(Q(*)), t(Q) is a congruence of Q(*) and Q/t(Q) is 
isotopic to Q(*)/t(Q) (ve assume that Q(*) is a principal isotope of Q). 

6.6 Proposition. Let Q be centrally nilpotent. If H(a) is soluble, then G is so. 

Proof. By induction on the nilpotence class of Q. We have Jl(Q/i) = G/L, 
where L = LG(LG(Z(G)) • H(a)). If H(a) is soluble, the H(a) • LG(Z(G)) is so and 
conseuqently L is soluble. 
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7. Quasigroups isotopic to abelian groups 

7.1 Let Q be a quasigroup isotopic to abelian group, i.e., there exists an abelian 
group Q( + ) and fge Sf(Q) such that xy = f(x) + g(y) for all x,yeQ. 

(i) J?(Q, a) = S£(Q( +), f(a)) g and ®(Q, a) = «(fi( +), g(a)) f for every aeQ. 
(ii) ^,(Q) = <Ji(Q(+)\ g\ J({Q) = <^/(Q(+)),/> and J/(Q) = <^(Q(+)),/, g>. 
(iii) Jl = Jf(Q( + )) ^ Q( + ). 

(iv) ^T(Q) = J/(Q( + ))' J(Q, a) and Jt(Q( + )) n J(Q, a) = 1 for every aeQ. 
(v) Let /„ 0 ,6/(6,0) be as in 4.8(i). Then J/(Q) = <J/(Q(+)),/, g,> (see 

4.8(v)). 
7.2 Let G be a group such that G = KH, where K is an abelian subgroup and 

FT is a subgroup of G. Suppose further that LG(H) = 1 and that there are u,veH 
with G = (K,u, v}. 

7.2.1 Lemma. H n K = 1. 
Proof. H nK £ LC(H) = 1. 

7.2.2 Lemma. For all ae H and xe K, there are transformations qa of K and 
px of H such that ax = aa(x) px(a). 

Proof. G = KH = M . 

7.2.3 Lemma, (i) qah = qaqhfor all a,beH. 
(ii) px(a/>) = p ^ f l ) px(b)for all a,beH, x e K. 

(iii) pxy = p3px/or all x,yeK. 
(iv) g,.(x>>) = qa(x) qPx{a{y)for all x,yeK,ae H. 

Proof, (i) and (ii). qah(x) px(ab) = abx = aa,,(x) px(b) = q«(a/,(x)) pf//,(.Y)(a) pv(b) 
and the result follows from the fact that H n K = 1. 

(iii) and (iv). Similar. 

7.2.4 Lemma. The mapping a -> qa is an injective homomorphism of the group 
H into the symmetric group ^(K). 

Proof. By 7.2.3(i), qaqa-> = qa->qa = qx = idjc, and so qaeSf(K). By 7.2.3(i) 
again, a —• ^rt is a homomorphism. The kernel of this homomorphism is LC(//) = 1. 

7.2.5 Lemma. The mapping x -> px-\ is a homomorphism of K into Sf[H) and 
its kernel is LG(K). 

Proof. Similar to that of 7.2.4. 

7.2.6 Define a mapping cp: G -» ^(K) by cp(xa) = $£(K, x) qa for all x e K, 
aeH. 

7.2.7 Lemma, (i) cp is an injective homomorphism of G into ^(K). 
(ii) (p(x) = eSf(K, x)for every x e K. 

(iii) cp(a) = qafor every aeH. 
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Proof. Let x9yeK and a9be H. Then xayb = xqa(y) py(a) b and cp(xayb) = 
= <£(K9 xqa(y)) qPy{a)h = <£(K9 x) <?(K9 qa(y)) qpAa)qh = <?(K9 x) qa <?(K9 y) qh = 
= q>(xa) cp(yb) (by 7.2.3(iv), £f(K9 qa(y)) qPy{a) = qa<£(K9 y)). We have checked that 
q> is a homomorphism. 

Finally, let cp(xa) = idK. Then xqa(y) = y for every yeK, x = xqa(l) = 1, 
Qa = id*, a = 1, xa = 1. Thus Ker(cp) = 1 and cp is injective. 

7.2.8 Lemma. The exists a homomorphism \j/: G -> ^(H) such that: 
(i) Ker(^) = LG(K). 

(ii) {//(a) = S£{H9 a) for every ae H. 

Proof. This is dual to 7.2.7. 

7.2.9 Lemma. If H is finite and card(K) > (card(H) - 1)!, then LG(K) 4= 1. 

Proof. This follows immediately from 7.2.8. 

7.2.10 Lemma. Ifn = card(K) is finite, then H is finite and card(H) ^ (n — l)!. 

Proof. This follows immediately from 7.2.7(i). 

7.2.11 Define a binary operation * on K by x * y = qu(x) qv(y) for all x9 y e K. 
Then K(*) is aquasigroup (isotopic to K) and Jt(K(*)) = cp(G) ^ G, Jt(K(*)) Jl(K) ^ 
^K9J(K(*)9l) = cp(H)^H. 

7.3 Proposition. The following conditions are equivalent for a group G: 

(i) G is isomorphic to the multiplication group of a quasigroup isotopic to 
abelian group. 

(ii) G contains subgroups K9 H such that G = KH9 K is abelian, hG(H) = 1 
and there exist u9ve H with G = (K9u9v}. 

Proof. Combine 7.1 and 7.2. 

7.4 Proposition. Let Q be a non-trivial finite quasigroup isotopic to abelian 
group. //card(Q) > (i(Q) - 1)!, then t(Q) * idQ. 

Proof. Put G = J/(Q)9 K = J?(Q)9 H = f(Q9 0) (see 7.1). We must show that 
hc(K) 4= 1. However, card(K) = card(Q), card(H) = i(Q) and the result follows 
from 7.2.9. 

8. Characterizations of the multiplication groups of quasigroups and loops 

8.1 Let H be a subgroup of a group G such that LG(H) = 1 and let Q = G/H = 
= [xH\x e G) denote the set of left cosets modulo H. Then we have an injective 
homomorphism n of G into the symmetric group ^(Q) defined by n(x) (yH) = xyH 
for all x9yeG. Put P = n(G)9 so that Pisa subgroup of £f(Q) and P s G. 
Moreover, n(H) = St(P, Q9 H). Further, let A be a stable transversal to H in G. For 
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every x e G, there is just one f(x) e A such that f(x) H = xH (or, x_ , f(x) e H). 
Now, we shall define a binary operation * on Q by (xH) * (yH) = f(x) yH (clearly, 
this definition is correct). 

(i) oS?(Q(*), xH) = n(f(x)) e P for every x e G. In particular, Q(x) is a left 
quasigroup. 

(ii) 2(*) is a quasigroup. 
It remains to show that Q(*) is a right quasigroup. For, let ( x ^ ) * (yH) = 

= (x2H) * (yH). T h e n / f a ) yH = f(x2)~
]f(x{) e yHy~\f(x2) = f(X]) (since A is 

stable) and XjH = x2H. We have shown that Q(*) is right cancellative. Finally, let 
y,z e H. Since A is stable, A is also a transversal to yHy-1 in G and there is x e G 
such that f(x) ezy'1- yHy']. Then f(x) y e zH, i.e. (xH) * (yH) = zH. 

(iii) Q(*) is a right loop (H is a right neutral element); Q(*) is a loop iff l e / 1 . 

(iv) T T « ^ » = J/(Q(*)) £ P; J/,(Q(*)) = P iff G = <^>. 

(v) Suppose that there is a transversal B to H in G such that [A, B ] g H (i.e., 
A, B are H-conneted). Then, for every x e G, there is uniquely determined g(x) e B 
with xH = g(x) H, i.e. x " ]g(x) e H. Now, (xH) * (yH) = f(x) yH = f(x) g(y) H = 
= g{y)f{*) H = g(y) xH, since g(y)~l f(x)"1 g(y)f(x) e H. From this, 
«(fi(*)), yH) = n(g(y)) e P. Consequently, T T « B » = J/,(Q(*)) £ P and « i 4 , 5 » = 
= Jf(Q(*)) £ P. Clearly, J?,.(Q(*)) = P iff G = (B) and uT(Q(*)) = P iff 
G = <^,B>. 

(vi) Q(*) is commutative iff [A , A] <i / / (i.e., A is fl-selfconnected). In that 
case, Q(*) is a loop and Jt(Q(*)) S P-

(vii) ^ Q ( * ) , H) £ rc(tf); if ^/,(<2(*)) = P, then ^ Q ( * ) , n) = H. 

(viii) Tt(if) n ^/(Q(*)) = S(Q(*), H) n P. If J!(Q(*)) = P, then J(Q(*), H) = 

= ^(H). 
8.2 Corollary. Let H be a subgroup of a group G. The following conditions are 

equivalent: 

(i) LG(H) = 1 and there exists a stable transversal A to H in G such that 
G = {Ay. 

(ii) there exists a quasigroup Q with a right neutral element e and an isomorphism 
cp: J/(Q) - • G such that cp(J{Q, e)) = H. 

(iii) There exist a quasigroup Q and an isomorphism cp: J/{Q) -> G such that 
cp(Ji(Q, a)) = H for some ae Q. 

8.3 Corollary. Let H be a subgroup of a group G. The following conditions are 
equivalent: 

(i) LG(H) = 1 and there exists a stable transversal A to H in G such that 1 e A 
and G = <-4>. 

(ii) There exist a loop Q and an isomorphism cp: J/(Q) - • G such that 
cp(jf{Q, 1)) = H. 
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8.4 Corollary. Let H be a subgroup of a group G. The following conditions are 
equivalent: 

(i) hG(H) = 1 and there exist H-connected transversals A, B to H in G such 
that G = <i4,J3>. 

(ii) There exist a loop A and an isomorphism <p: J/(Q) -> G such that 
<p{J(Q)) = H. 

8.5 Let G be a transitive permutation group on a non-empty set Q. Take ae Q 
and put H = St(G, Q, a) and Q, = G/II (the left cosets - see 8.1). We have 
a bijection cp\ Q-> Q\ such that <p(x) = [If x e Q,fe G, x = f(a). Moreover, since 
G is transitive, LG(H) = 1, n: G -> P £ J\Q\) is an isomorphism (see 8.1) and 
cpf(x) = n(f) cp(x) for all x e Q and G. The permutation groups G (on Q) and P (on 
Q,) are similar. 

Now, suppose that there is defined a binary operation * on Qi such that Q\(*) is 
a quasigroup. Define o on Q by x o y == <p~ l((p(x) * (p(y)). Then c/>: Q(o) -> Q|(*) is 
an isomorphism. Obviously, J/{Q(c)) = G (J/(Q(<>)) = G) iff .//,(Q,(*)) = P 
(J/(Qi*)) = P). 

8.6 Corollary. Let G be a permutation group on a non-empty set Q, a' e Q and 
IT = St(G, Q, a). The following conditions are equivalent: 

(i) G Lv transitive on Q and there exists a stable transversal A to II in G such 
that cj — (A) (and \dQ e A), 

(ii) There exists a quasigroup (loop) Q(*) such that «///(Q(*)) — G, J{Q(*), a) = II 
(and a = I). 

8.7 Corollary. Lel G I>e a permutation group on a non-empty set Q, a e Q, 
H = St(G, Q, a). The following conditions are equivalent: 

(i) G Lv transitive on Q and there exist H-connected transversals A, B to II in 
G such that G = </r,£>. 

(ii) There exists a loop Q(*) such that J/(Q(*)) = G, a = 1 and J(Q(*)) = // . 

8.8 Let //j be a subgroup of a group G such that Lff-(//|) = 1 and let Au B, be 
FIi-semiconnected stable transversals to //, in G. Take ueAu veB} and put 
A = i4|«~ l, B = 2J|t7~!. Then there is xeG such that /l, 13 are H-connected 
transversals to II in G, 77 = 77f. 

Now, let Q, 7i, P, * have the same meaning as in 8.1; Q(*) is a loop and 
J/(Q(*)) S P = G. By 8.1(v), .//(Q(*)) - 7 T « / 1 J 3 » . 

Define permutations a and /i of Q by a(.v77) •= uxH and /i(.v77) = f.\77, resp., 
and put (xH) o (>>77) = a(x77) * /J(y77) = (uxll) * (L^v//) = f(ux) vyll. Then Q(o) 
becomes a quasigroup. 

Clearly, &(Q(o\ xH) = n(f(ux)) TT(I;), and so - ///(()(o)) = TT«/1, I ; » = 
= <J/{Q(*), n(v)y S P . Further, (xH) o (yll) = f(ux) vyll = g(vy)f(ux) II = 
= g(vy)uxH (see 8.1(v)), and hence M(Q( ), >-77) = n(<j(vy))7t(u)9 J/,(Q(°)) = 
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= 7c«.fl,t>» = <J/,(Q(*\ n(u)y g P. Finally, J/(Q(o)) = n«A,B, u, *;» = 
= n((Ah £ , » £ P and <//(Q(o)) = P iff <>!„ B,> = G. 

8.9 Corollary. Let H be a subgroup of a group G. The following conditions are 
equivalent: 

(i) LG(/I) = 1 and there exist H-semiconnected stable transversals A, B to 
II in G such that G = <,4,B>. 

(ii) LG(I/) = 1 and there exist H-ccmnected transversals C, D to II in G and 
elements u, v e G such that G = (C,D, u, i;>. 

(iii) There exist a quasigroup Q and an isomorphism (p\ J/(Q) -> G such that 
cp(J(Q, a)) = Hfor some a e Q. 
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