Aleš Drápal; Tomáš Kepka Groupoids and the associative law VIII. (Diagonally Non-Associative Groupoids)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 23-37

Persistent URL: http://dml.cz/dmlcz/147832

Terms of use:

© Univerzita Karlova v Praze, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Groupoids and the Associative Law VIII. (Diagonally Non-Associative Groupoids)

A. DRÁPAL and T. KEPKA

Praha*)

Received 16. September 1996

Groupoids possessing only diagonal non-associative triples are investigated.

Zkoumají se grupoidy mající pouze diagonální neasociativní trojice.

The present paper is a natural continuation of [2] and [3]. Here, we shall investigate in more detail the non-associative groupoids satisfying the implication $a \cdot bc \neq ab \cdot c \Rightarrow a = b = c$.

VIII.1 First concepts

1.1 Let \mathscr{D} denote the class of groupoids G such that $Ns(G) \subseteq \{(a, a, a); a \in G\}$; that is, $G \in \mathscr{D}$ iff $a \cdot bc \neq ab \cdot c$ implies a = b = c for any $a, b, c \in G$.

1.2 Let $G \in \mathcal{D}$. We put $K(G) = \{a \in G; a \cdot aa \neq aa \cdot a\}, L(G) = G \setminus K(G), \\ \kappa(G) = \operatorname{card}(K(G)) \text{ and } \lambda(G) = \operatorname{card}(L(G)).$ Thus $G = K(G) \cup L(G), K(G) \cap L(G)$ = \emptyset and $\kappa(G) + \lambda(G) = \operatorname{card}(G).$

1.3 Lemma. Let $G \in \mathcal{D}$ and $a, b \in G$. Then exactly one of the following three cases takes place:

(1) $ab \in L(G)$. (2) $a \neq b$ and $ab = a = ba \in K(G)$.

(3) $a \neq b$ and $ab = b = ba \in K(G)$.

Proof. First, let ab = c, $a \neq c \neq b$. Then $cc \cdot c = (c \cdot ab)c = ca \cdot bc = c(a \cdot bc) = c(ab \cdot c) = c \cdot cc$ and $c \in L(G)$.

Now, let $ab = a \neq ba$. Then $aa \cdot a = (a \cdot ab)a = aa \cdot ba = a(a \cdot ba) = a(ab \cdot a) = a \cdot aa$ and $a \in L(G)$.

Similarly if ab = b + ba and the rest is clear.

^{*)} Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic

1.4 Corollary. Let $G \in \mathcal{D}$. Then:

(i) $a^2 \in L(G)$ for every $a \in G$.

(ii) If $a \in K(G)$ and $b \in G$, then a = ab iff a = ba.

1.5 Lemma. Let $G \in \mathcal{D}$ and $a \in K(G)$. Then the elements $a, a^2, a \cdot a^2, a^2 \cdot a$ are pair-wise different and $\{a^2, a \cdot a^2, a^2 \cdot a\} \subseteq L(G)$.

Proof. First, $a \in K(G)$ just means that $a \cdot a^2 \neq a^2 \cdot a$, and hence we have also $a \neq a^2$. If $a = a \cdot a^2$, then $a = a^2 \cdot a$ by 1.4(ii). Thus $a \neq a \cdot a^2$ and, similarly, $a \neq a^2 \cdot a$. If $a^2 = a \cdot a^2$, then $a^2 = a \cdot a^2 = a(a \cdot a^2) = a^2 \cdot a^2 = a^2(a \cdot a^2) = (a^2 \cdot a) a^2 = ((a^2 \cdot a) a) a = (a^2 \cdot a^2) a = a^2 \cdot a$ and this is not possible. Thus $a^2 \neq a \cdot a^2$ and, similarly, $a^2 \neq a^2 \cdot a$. The rest is clear from 1.3.

1.6 Proposition. (i) The class of \mathcal{D} -groupoids is closed under homomorphic images and subgroupoids.

(ii) If $G \in \mathscr{D}$ is not associative, then $G \times G \notin \mathscr{D}$.

(iii) If $G \in \mathcal{D}$, then L(G) is a subgroupoid of G.

(iv) If $G \in \mathcal{D}$ is not associative, then $\operatorname{card}(G) \ge 4$ and $\lambda(G) \ge 3$.

Proof. Use 1.3 and 1.5.

1.7 Lemma. Let $G \in \mathcal{D}$ and $a \in G$. Then:

(i) The set $S(a) = \{b \in G; ab = a = ba\}$ is either empty or a subgroupoid of G.

(ii) If $a \in K(G)$, then the set $T(a) = G \setminus S(a)$ is a prime ideal of G and $a \in T(a)$.

Proof. (i) Easy.

(ii) Let $b, c, d \in G$ be such that $b \in S(a)$ and b = cd. By 1.5, $b \neq aa$, and hence either $c \neq a$ or $d \neq a$. If d = a, then $c \neq a$, $c \cdot a^2 = ca \cdot a = cd \cdot a = ba =$ $= a \in K(G)$ and we have $c \cdot a^2 \neq c$. Now, by 1.3, $ca^2 = a^2$, and hence $a = a^2$, a contradiction. Thus $a \neq d$ and, similarly, $a \neq c$. Finally, $ac \cdot d = a \cdot cd =$ $= ab = a = ba = cd \cdot a = c \cdot da$ and ac = a = da by 1.3. Now, by 1.3 again, we have $c, d \in S(a)$.

1.8 Lemma. Let A be a generator set of a groupoid $G \in D$. Then $K(G) \subseteq A$.

Proof. We can assume that $A \neq \emptyset$. Let W be an absolutely free groupoid over A and let $f: W \to G$ be the (projective) homomorphism such that $f|A = id_A$. Now, take $a \in K(G)$ and let $t \in W$ be a term such that the length l(t) of t is minimal with respect to f(t) = a. If l(t) = 1, then $a = t \in A$. If $l(t) \ge 2$, then t = pq for some $p, q \in W$ and $a = f(p)f(q) \notin L(G)$. Now, it follows from 1.3 that either f(p) = a or f(q) = a, a contradiction with the minimality of l(t).

1.9 Corollary. Let $G \in \mathcal{D}$ and let $H = \langle A \rangle_G$, where A is a non-empty subset of K(G). Then K(H) = A.

1.10 A groupoid $G \in \mathscr{D}$ will be called minimal if $G = \langle K(G) \rangle_G$.

1.11 Lemma. Let $G \in \mathscr{D}$ be a non-associative groupoid and $H = \langle K(G) \rangle_G$. Then H is a minimal \mathscr{D} -groupoid, $\kappa(H) = \kappa(G)$ and $\lambda(H) \leq \lambda(G)$.

Proof. See 1.9.

1.12 Lemma. Let G, $H \in \mathcal{D}$ and let $f : G \to H$ be a homomorphism. If $a, b \in G$ are such that $a \neq b$ and $f(a) \in K(H)$, then $f(a) \neq f(b)$.

Proof. Obvious.

1.13 Let $G \in \mathcal{D}$. Define a relation $\varrho (= \varrho_G)$ on G by $(a, b) \in \varrho$ iff either a = b or $ab = b \in K(G)$.

1.14 Proposition. Let $G \in \mathcal{D}$. Then:

(i) ϱ is an ordering of G.

(ii) For any $a \in G$, the set $R(a) = \{b \in G; b \neq a, (b, a) \in \varrho\}$ is either empty or a subgroupoid of G.

(iii) If A is a generator set of G and $a \in G$ is such that $R(a) \neq \emptyset$, then the subgroupoid R(a) is generated by the set $A \cap R(a)$.

Proof. (i) Clearly, ρ is reflexive and it follows from 1.3 that ρ is antisymetric. Finally, if (a, b), $(b, c) \in \rho$ and $a \neq b \neq c$, then $ac = a \cdot bc = a \cdot bc = c$ and $(a, c) \in \rho$.

(ii) Obvious.

(iii) Use 1.3 and 1.7(i), (ii).

1.15 Lemma. Let $G \in \mathcal{D}$ and let $C = \langle A \rangle_G$, $D = \langle B \rangle_G$, where A, B are non-empty subsets of G such that $(b, a) \in \varrho_G$ and $a \neq b$ for all $a \in A$, $b \in B$. Then cd = c = dc for all $c \in C$, $d \in D$ and $card(C \cap D) \leq 1$.

Proof. By 1.14(ii), $D \subseteq R(a)$ for every $a \in A$ and the rest is clear.

VIII.2 Examples of *G*-groupoids

2.1 Example.

D_1	0	1	2	3		D_2	0	1	2	3
0	0	0	0	0	_	0	0	0	0	0
1	0	2	0	0		1	0	2	3	0
2	0	3	0	0		2	0	0	0	0
3	0	0	0	0		3	0	0	0	0

We have D_1 , $D_2 \in \mathcal{D}$, $D_2 = D_1^{op}$, $K(D_1) = \{1\} = K(D_2)$ and $D_1 = \langle 1 \rangle_{D_1}$, $D_2 = \langle 1 \rangle_{D_2}$.

2.2 Remark. If $G \in \mathcal{D}$ i not associative, then $\operatorname{card}(G) \ge 4$ (1.6(iv)). Now, if $\operatorname{card}(G) = 4$, then G is isomorphic to one of the groupoids D_1, D_2 .

2.3 Example.

D ₃	0	1	2	3	4
0	0	0	0	0	0
1	0	3	3	4	0
2	0	0	3	0	0
3	0	0	4	0	0
4	0	0	0	0	0

We have $D_3 \in \mathcal{D}$, $K(D_3) = \{1, 2\}$ and $D_3 = \langle 1, 2 \rangle_{D_3}$. Moreover, the groupoids D_3 and D_3^{op} are isomorphic

2.4 Example.

D ₄	0	1	2	3	4
0	0	0	0	0	0
1	0	2	0	0	1
2	0	3	0	0	2
3	0	0	4	0	3
4	0	1	2	3	4

We have $D_4 \in \mathcal{D}$, $K(D_4) = \{1\}$ and $D_4 = \langle 1, 4 \rangle_{D_4}$.

2.5 Example. Let $n \ge 1$ and let $C_n = \{a_1, ..., a_n, b_1, ..., b_n, c, d\}$ be a set containing 2n + 2 elements. Define a multiplication on C_n by $a_i a_i = b_i$, $b_i a_i = c$, $1 \le i \le n$, and xy = d in all the remaining cases. Then $C_n \in \mathcal{D}$, $\kappa(C_n) = n$ and $\lambda(C_n) = n + 2$.

VIII.3 Primitive &-groupoids

3.1 Let $G \in \mathcal{D}$. We shall say that G is primitive if $GG \subseteq L(G)$ (then L(G) is an ideal of G).

3.2 (i) The class of primitive \mathscr{D} -groupoids is closed under homomorphic images and subgroupoids.

(ii) Every one-generated \mathcal{D} -groupoid is primitive.

Proof. (i) Easy.

(ii) If $G = \langle a \rangle_G \in \mathcal{D}$ is not associative, then $K(G) = \{a\}$.

3.3 Lemma. Let a groupoid $G \in \mathcal{D}$ be generated by a set A such that $AA \subseteq L(G)$. Then G is primitive.

Proof. Let $ab \in K(G)$ for some $a, b \in G$. With respect to 1.3, we can assume that a = ab. Now, let W be an absolutely free groupoid over A (we have $\emptyset \neq K(G) \subseteq A$) and let $f: W \to G$ be the homomorphism such that $f|A = id_A$. Then f(t) = b for some $t \in W$ and we can assume that b is chosen in such a way that the length l(t) is minimal. Since $a \in K(G) \subseteq A$, we have $b \notin A$ and $t \notin A$. Consequently, t = pq and b = f(p)f(q). Now, by 1.7, a = af(p), a contradiction with l(p) < l(t).

3.4 Let \mathscr{R} denote the variety of groupoids determined by the following equations: $(x \cdot yu)v \triangleq x(yu \cdot v), xy \cdot uv \triangleq (xy \cdot u)v, xy \cdot uv \triangleq x(y \cdot uv).$

3.5 Lemma. Let W be an absolutely free groupoid over a non-empty set X and let $r, s \in W$, $l(r) \ge 5$. Then the equation $r \triangleq s$ is satisfied in \mathcal{R} iff it is satisfied in every semigroup.

Proof. See [3, 4.4].

3.6 Remark. (i) Let F with a free generator set $A(\neq \emptyset)$ be a free groupoid from \mathscr{R} and let s denote the smallest congruence of F such that $F_s = F/s$ is a semigroup. Then F_s is a free semigroup and, if $f: F \to F_s$ denotes the natural projection, then f|A is injective and f(A) is a free generator set of F.

Now, let $a \in A$ and let g be the endomorphism of F such that $g(A) = \{a\}$. Then $F_r = g(F)$ is a free \mathscr{R} -groupoid over $\{a\}$ and $r \cap s = \mathrm{id}_F$, where $r = \mathrm{ker}(g)$. In particular, F is isomorphic to a subgroupoid of the cartesian product $F_r \times F_s$.

(ii) Let F_s be a free semigroup with a free generator set A and let F_s be a free \mathscr{R} -groupoid with a one-element free generator set $\{a\}$. Put $b = a^2$, $c = a \cdot a^2$, $d = a^2 \cdot a$, $e = a^4(=a^2 \cdot a^2)$ and $f = ca = ad = (a \cdot a^2)a = a(a^2 \cdot a)$, $\{a,b,c,d,e,f\} \subseteq F_r$, and $F = \{(a,x); x \in A\} \cup \{(b,xy); x, y \in A\} \cup \{(c,xyz), (d,xyz); x, y, z \in A\} \cup \{(e,xyuv)\}, (f, xyuv); x, y, u, v \in A\} \cup \{(a^n, t); t \in F_s, l(t) = n \ge 5\}$. Then F is a subgroupoid of $F_r \times F_s$ and F is a free \mathscr{R} -groupoid over $\{a\} \times A$.

(iii)

F _r	а	b	с	d	e	f	g 5	g ₆	•	•	•
a	b	с	e	f	g 5	g 5	g ₆	g ₇			
b	d	e	g 5	g 5	g ₆	g_6	g7	g ₈			
с	f	g 5	g_6	g_6	g7	g7	g ₈	g9	•	•	•
d	e	g 5	g_6	g_6	g 7	g7	g_8	g ₉	•	•	•
e	g5	g_6	g7	g 7	g ₈	g_8	g,	g_{10}	•	•	•
f	g 5	g_6	g7	g7	g ₈	g ₈	g,	g_{10}	•	•	•
g5	g 6	g 7	g ₈	g_8	g,	g,	g_{10}	g_{11}	•	•	•
g ₆	g7	g ₈	g9	g9	g_{10}	g_{10}	g11	g_{12}	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•

3.7 Proposition. (i) The variety \mathscr{R} is generated by $\{F_r\} \cup \mathscr{S}$ (F_r is the free \mathscr{R} -groupoid of rank 1 and \mathscr{S} is the variety of semigroups).

(ii) The variety \mathcal{R} is generated by the class of primitive \mathcal{D} -groupoids.

(iii) The classes of one-generated \mathcal{D} -groupoids and \mathcal{R} -groupoids coincide.

(iv) A groupoid $G \in \mathcal{D}$ is primitive iff $G \in \mathcal{R}$.

Proof. Obviously, every primitive \mathcal{D} -groupoid is in \mathcal{R} . On the other hand, if $G \in \mathcal{R} \cup \mathcal{D}$ and ab = a for some $a, b \in G$, then $a \cdot aa = ab \cdot aa = (ab \cdot a)a = aa \cdot a$, and hence $a = ab \in L(G)$. Similarly, if ab = b, then $ab \in L(G)$. Now, it follows from 1.3 that G is primitive. The rest is clear from 3.2(ii) and 3.6.

3.8 Lemma. Let $G \in \mathcal{D}$, $a \in K(G)$ and $H = \langle a \rangle_G$. Then $H \cap R(a) = \emptyset$. **Proof.** If $b \in H \cap R(a)$, then $a = ab = ba \in K(G)$, a contradiction with 3.3.

VIII.4 Irreducible terms

4.1 Throughout this section, let (X, s) be a non-empty ordered set. Further, let W be an absolutely free groupoid over X, S a free semigroup over X and let $g: W \to S$ be the projective homomorphism such that $g \mid X = id_X$.

4.2 Let $t \in W$ be such that $2 \leq l(t) = n$. For every $1 \leq i \leq n$, we shall define a term d(t, i) by induction on n: Let t = pq, $p, q \in W$. If i = 1 and $p \in X$, then d(t, i) = q. If $1 \leq i \leq l(p)$ and $2 \leq l(p)$, then d(t, i) = d(p, i)q. If $l(p) + 1 \leq i$ and $2 \leq l(q)$, then d(t, i) = pd(q, i - l(p)). If i = n and $q \in X$, then d(t, i) = p. Obviously, l(d(t, i)) = l(t) - 1.

4.3 Lemma. Let $t \in W$ be such that $l(t) \ge 3$ and let $1 \le i < j \le l(t)$. Then d(d(t, j), i) = d(d(t, i), j - 1).

Proof. Easy.

4.4 Let $t \in W$ and let M be a proper subset of the set $\{1, 2, ..., l(t)\}$. If $M = \emptyset$, then we put d(t, M) = t. If $M \neq \emptyset$, then $l(t) \ge 2$, $M = \{i_1, ..., i_m\}$, where m < l(t), $i_1 < i_2 < ... < i_m$ and we put $d(t, M) = d(...(d(d(t, i_m), i_{m-1})...), i_1) = d(t, i_m, i_{m-1}, ..., i_1)$.

4.5 Remark. Let $t \in W$ be such that $l(t) \ge 3$ and let $1 \le i_1 < i_2 < ... < i_m \le l(t)$, $2 \le m \le l(t) - 1$. Then, by 4.3, $d(t, M) = d(t, i_m, ..., i_1) = d(t, i_{m-1}, i_{m-2}, ..., i_m - m + 1) = d(t, i_{m-2}, ..., i_1, i_{m-1} - m + 2, i_m - m + 1) = ... = d(t, i_1, i_2 - 1, i_3 - 2, ..., i_{m-1} - m + 2, i_m - m + 1)$. Of course, $i_1 \le i_2 - 1 \le i_3 - 2 \le ... \le i_m - m + 1$.

4.6 Let $t \in W$, l(t) = n, and let $g(t) = x_1 x_2 \dots x_n$, $x_i \in X$. We shall define a relation s_t on the set $\{1, 2, \dots, n\}$ in the following way: If $1 \le i \le n$, then $(i, i) \in s_t$. If $1 \le i < j \le n$, then $(i, j) \in s_t$ iff $(x_i, x_j) \in s$, $(x_{i+1}, x_j) \in s$, \dots , $(x_{j-1}, x_j) \in s$ and

 $x_i \neq x_j, x_{i+1} \neq x_j, ..., x_{j-1} \neq x_j$. If $1 \le i < j \le n$, then $(j, i) \in s_i$ iff $(x_{i+1}, x_i) \in s$, $(x_{i+2}, x_i) \in s, ..., (x_j, x_i) \in s$ and $x_{i+1} \neq x_i, x_{i+2} \neq x_i, ..., x_j \neq x_i$.

Now, it is easy to see that s_t is an ordering of the set $\{1, 2, ..., n\}$ and we denote by M(t) the set of all maximal elements of this ordering. Further, we put $N(t) = \{1, 2, ..., n\} \setminus M(t)$ and we define a relation r_t on $\{1, 2, ..., n\}$ by $(i, j) \in r_t$ iff $(i, j) \in s_t$ and $|i - j| \le 1$.

The term *t* will be called *s*-irreducible if the following equivalent conditions are satisfied:

(a) $s_t = id;$

- (b) $r_t = id;$
- (c) $M(t) = \{1, 2, ..., n\};$
- (d) $N(t) = \emptyset$.

4.7 We shall define a relation α on W by $(p, q) \in \alpha$ iff p = d(q, i) for some $(i, j) \in r_q$, $i \neq j$. Now, let β denote the smallest equivalence (on W) containing α . It is easy to see that β is a congruence of the absolutely free groupoid W.

4.8 Lemma. Let $p, q \in W$ be such that $(p, q) \in \beta$. Then t = d(p, N(p)) = d(q, N(q)) is an s-irreducible term and $(p, t), (q, t) \in \beta$.

Proof. We can assume without loss of generality that $(p, q) \in \alpha$, i.e., p = d(q, i), $(i, j) \in r_q$. Let $g(q) = x_1 \dots x_n$, n = l(q). The rest of the proof is divided into two parts.

(i) Let $f: \{1, 2, ..., i - 1, i + 1, ..., n\} \rightarrow \{1, 2, ..., n - 1\}$ be the bijection defined by f(k) = k for $1 \le k \le i - 1$ and f(k) = k - 1 for $i + 1 \le k \le n$. We claim that $N(p) = f(N(q) \setminus \{i\})$.

Indeed, let $(f(k), f(m)) \in s_p$ and $I = \{h; k \le h \le m \text{ or } m \le h \le k\}$. If $i \in I$, then $(k, m) \in s_q$. If $i \in I$, then $j \in I$, and hence $(f(j), f(m)) \in s_p, (x_j, x_m) \in s$ and $(x_i, x_m) \in s$, $x_i \neq x_m$. Thus we get $(i, m) \in s_q$ and then $(k, m) \in s_q$. The other inclusion is immediate.

(ii) From (i) we conclude that d(p, N(p)) = d(q, N(q)) = t and $h = \operatorname{card}(N(q)) = \operatorname{card}(N(p) + 1)$. Now, there is a sequence $q = q_h, q_{h-1}, \dots, q_1, q_0$ of terms such that $(q_{h-1}, q_h) \in \alpha, (q_{h-2}, q_{h-1}) \in \alpha, \dots, (q_0, q_1) \in \alpha$ and $\operatorname{card}(N(q_k)) = k$ for any $0 \le k \le h$. It follows that $t = q_0 = d(q, N(q))$ is s-irreducible and $(q, t) \in \beta$.

4.9 Lemma. Every block of β contains just one s-irreducible term.

Proof. If $p, q \in W$ are s-irreducible terms such that $(p, q) \in \beta$, then p = d(p, N(p)) = d(q, N(q)) = q by 4.2.

4.10 Let F(X, s) denote the set of s-irreducible terms. Now, in view of 4.3, we can define a binary operation on F(X, s) such that the corresponding groupoid will be isomorphic (in a natural way) to the factorgroupoid W/β .

Finally, define an equivalence γ on F(X, s) by $(xx \cdot xx, x(x \cdot xx)) \in \gamma$, $(xx \cdot xx, (xx \cdot x)x) \in \gamma$, $(x(xx \cdot x), (x \cdot xx)x) \in \gamma$ for every $x \in X$ and $(p, q) \in \gamma$

whenever $p, q \in F(X, s), g(p) = g(q)$ and either $l(p) \ge 5$ or p contains at least two (different) variables. Then γ is a congruence of the groupoid F(X, s) and we denote by E(X, s) the corresponding factorgroupoid. (We shall identify the sets X and X/γ).

4.11 Proposition. Let E = E(X, s) (see 4.10.) Then: (i) $E \in \mathcal{D}$ and K(E) = X. (ii) If $x, y \in X$, then xy = y iff $x \neq y$ and $(x, y) \in s$. (iii) $s = \varrho_E | X$.

Proof. Easy.

VIII.5 Auxiliary results

5.1 In this section, let W be an absolutely free groupoid over a non-empty set X, S a free semigroup over X and let $g: W \to S$ be the (projective) homomorphism such that $g | X = id_X$. Further, let f be a homomorphism of W into a groupoid $G \in \mathcal{D}$.

5.2 Lemma. Let $t \in W$, $g(t) = x_1 \dots x_n$.

(i) $f(t) \in K(G)$ iff there is $1 \le k \le n$ such that $f(x_i) \ne f(x_k)$ and $(f(x_i), f(x_k)) \in \varrho_G$ for any $i, 1 \le i \le n, i \ne k$. (ii) If $f(t) \in K(G)$, then $f(t) = f(x_k)$.

Proof. The case n = 1 is trivial and, if $n \ge 2$, then the result follows from 1.3 and 1.7.

5.3 Lemma. Let $t \in W$, $g(t) = x_1 \dots x_n$, $n \ge 2$ and $1 \le i, j \le n$ be such that j = i + 1 (or j = i - 1) and $f(x_i)f(x_j) = f(x_i)(or f(x_j)f(x_i) = f(x_i))$. Then f(t) = f(d(t, j)) (see 4.2).

Proof. Assume j = i + 1, the other case being similar. We shall proceed by induction on $n \ge 3$ (there is nothing to prove for n = 2). If t = pq and $l(p) \neq i$, then the induction hypothesis can be used for p or q. Hence, suppose $g(p) = x_1 \dots x_i$ and $g(p) = x_{i+1} \dots x_n$. Then either i > 1 or i + 1 < n and we shall restrict ourselves to the case i > 1 (again, the case n > i + 1 is similar).

Let p = uv and a = f(d(q, 1)). If $f(u)f(v) \cdot f(q) = f(u) \cdot f(v)f(q)$, then f(vq) = f(d(vq, l(v) + 1)) = f(v)a (by induction) and we see that $f(t) = f(u) \cdot f(v)a = f(u)f(v) \cdot a = f(d(t, j))$ in each of the following cases: $a \in L(G)$; a = f(q); $a \neq f(v)$. However, if $f(q) \neq a = f(v) \in K(G)$, then $(f(x_i), a) \in \varrho_G$ by 5.2 and $f(x_i)f(x_j) = f(x_i)$ yields $(f(x_j), a) \in \varrho$, and so a = f(q) by 5.2, a contradiction. On the other hand, if $f(u)f(v) \cdot f(q) \neq f(u) \cdot f(v)f(q)$, then $f(u) = f(v) = f(q) = b \in K(G)$ and $(f(x_i), b) \in \varrho$, $(f(x_j), b) \in \varrho$ by 5.2. Since $f(x_i)f(x_j) = f(x_i)$, we get $f(x_j) \neq b$, and therefore f(q) = a by 5.2. **5.4 Lemma.** Let $p, q \in W, g(p) = x_1 \dots x_n = g(q)$, be such that $f(p) \neq f(q)$. Then: (i) There is $1 \le k \le n$ such that $(f(x_i), f(x_k)) \in \varrho_G$ for any $1 \le i \le n$.

(ii) $card(N) \in \{3,4\}$, where $N = \{1 \le i \le n; f(x_i) = f(x_k)\}$.

(iii) f(p) = f(d(p, M)) and $f(q) = f(d(q, M)), M = \{1, 2, ..., n\} \setminus N$.

Proof. Everything is clear for $n \le 2$ and, now, we shall use induction on $n \ge 3$. (i) Suppose there are $1 \le i, j \le n$ satisfying the properties formulated in 5.3. Then the induction hypothesis works for the terms d(p, j), d(q, j) and, since $(f(x_i), f(x_k)) \in \varrho_G$ implies $(f x_j), f(x_k)) \in \varrho_G$ and $f(x_j) \ne f(x_k)$ for any $1 \le k \le n, k \ne j$, we get our result by induction and 5.3.

(ii) With regard to (i), we can assume that $f(x_i) \neq f(x_i)f(x_j) \neq f(x_j)$ whenever $1 \le i, j \le n, |i - 1| = 1$. If $f(x_i) = f(x_j)$ for all $1 \le i, j \le n$, then the situation is clear from 3.7(iii) and 3.5. Consequently, suppose that $f(x_i) \neq f(x_1)$ for some $1 \le i \le n$ and put $t_2 = x_2(x_3(\dots(x_{n-1}x_n)))$ and $t_1 = x_1t_2$.

If $p = p_1p_2 \cdot p_3$, then, by 5.2, we have $f(p) = f(p_1 \cdot p_2p_3)$, and hence there is $u \in W$ with $f(p) = f(x_1u)$, $g(u) = x_2 \dots x_n$. If $x_j \neq x_2$ for some $3 \le j \le n$, then $f(u) = f(t_2)$ by induction, and so $f(p) = f(t_1)$. Hence, assume that $x_j = x_2$ for every $2 \le j \le n$ and denote $a = f(x_1)$, $b = f(x_2)$. Since $a \neq ab \neq b$, we have $ab \in L(G)$ and the subgroupoid $\langle a, b \rangle_G$ is primitive (by 3.3). Now, $f(p) = f(t_1)$ in the case $n \ge 5$ (by 3.5 and 3.7(iii)). If $3 \le n \le 4$, then either $u = t_2$ or $u = x_2x_2 \cdot x_2$. In the latter case, $f(p) = a(bb \cdot b) = (a \cdot bb)b = (ab \cdot b)b = ab \cdot bb = a(b \cdot bb) = f(t_1)$. Consequently, $f(p) = f(t_1)$ in all cases and, since $f(q) = f(t_1)$ is also true, we have f(p) = f(q).

VIII.6 Almost free groupoids

6.1 Let (A, r_1) and (B, r_2) be ordered sets. A mapping $f : A \to B$ will be called an immersion if f is injective and, for all $a, b \in A$, we have $(a, b) \in r_1$ iff $(f(a), f(b)) \in r_2$.

6.2 Proposition. Let G, $H \in \mathcal{D}$ and let $f : G \to H$ be a homomorphism. Put $A = f^{-1}(K(H)), r_1 = \varrho_G | A$ and $r_2 = \varrho_H | K(H)$. If $A \neq \emptyset$, then $A \subseteq K(G)$ and f | A is an immersion of (A, r_1) into $(K(H), r_2)$.

Proof. Obviously, $f(L(G)) \subseteq L(H)$, and so $A \subseteq K(G)$. Now, suppose that $A \neq \emptyset$; then $f \mid A$ is injective by 1.12. If $a, b \in A$ and ab = b, then f(a)f(b) = f(b), and hence $f \mid A$ is a homomorphism of (A, r_1) into $(K(H), r_2)$. On the other hand, if $a, b \in A$ and $(a, b) \notin \varrho_G$, then $ab \in L(G)$, $f(a)f(b) \in L(H)$ and $(f(a)f(b)) \notin \varrho_H$. The rest is now clear.

6.3 Corollary. Let G, $H \in \mathcal{D}$ and let $f: G \to H$ be a projective homomorphism. Put $r_1 = \varrho_G | K(G)$ and $r_2 = \varrho_H | K(H)$. Then there exists an immersion of the ordered set $(K(H), r_2)$ into $(K(G), r_1)$. **6.4 Corollary.** Let G be a minimal non-associative \mathcal{D} -groupoid and $r = \varrho_G | K(G)$. Let (X, s) be a non-empty ordered set and let $f : E(X, s) \to G$ be a homomorphism with f(X) = K(G). Then f is projective and the ordered sets (X, s) and (K(G), r) are isomorphic.

6.5 Proposition. Let (X, s) be a non-empty ordered set and let $h: X \to G \in \mathscr{D}$ be a mapping. Then h can be extended to a homomorphism $f: E(X, s) \to G$ (which is then unique) if and only if the following two conditions are satisfied:

- (a) If x, $y \in X$ are such that $x \neq y$ and $(x, y) \in s$, then h(x)h(y) = h(y) = h(y)h(x).
- (b) If x, $y \in X$ are such that $x \neq y$ and $(x, y) \in s$ and $h(y) \in K(G)$, then $h(x)h(y) \neq h(y) \neq h(x)$.

Proof. If it easy to see that the conditions (a), (b) are necessary (1.3(i), 1.12, 4.11) and, now, we are going to show that they are also sufficient.

Let, as usual, W denote an absolutely free groupoid over X, S a free semigroup over X and let $k: W \to E(X, s)$, $j: W \to G$ and $g: W \to S$ be such that k(x) = g(x) = x and j(x) = h(x) for every $x \in X$.

(i) If $p, q \in W$ and $(p, q) \in \alpha$ (see 4.7), then p = d(q, i), $g(q) = x_1 \dots x_n$, $1 \le i \le n$, and $(x_i, y) \in s$, where either $y = x_{i+1}$ and i < n or $y = x_{i-1}$ and 1 < i. By (a), $h(x_i)h(y) = h(y) = h(y)h(x_i)$, and hence j(p) = j(q) by 5.3. Now, it follows easily that j(p) = j(q) whenever $p, q \in W$ and $(p, q) \in \beta$.

(ii) Let $p, q \in F(X, s)$ be such that $(p, q) \in \gamma$ (4.10). Then $g(p) = x_1 \dots x_n = g(q)$ and we put $Y = \{x_1, \dots, x_n\}$. If card(Y) = 1, then j(p) = j(q) by 3.7(iii) and 3.5. If $x, y \in Y$ are such that $x \neq y$ and $(x, y) \in s$, then (using 5.4) we can assume that $j(y) = h(y) \in K(G)$ and $(j(x), j(y)) \in \varrho_G$. But this is a contradiction with (b). We have thus proved that j(p) = j(q).

(iii) Combining (i) and (ii), we conclude that $\ker(k) \subseteq \operatorname{jer}(j)$, and hence we can put f(k(p)) = j(p) for every $p \in W$.

6.6 Corollary. Let $G \in \mathcal{D}$ be a groupoid generated by a non-empty set A and let $s = \varrho_G | A$. Then there exists a unique projective homomorphism $f : E(A, s) \to G$ such that $f | A = id_A$.

6.7 Proposition. Let (X, s) be a non-empty ordered set, $G \in \mathcal{D}$ and let $f: G \to E(X, s)$ be a homomorphism such that f(K(G)) = X. Then f is an isomorphism if and only if G is minimal.

Proof. Suppose that $G = \langle K(G) \rangle_G$, the other implication being obvious. By 6.2, $f | K(G) : K(G) \to X$ is a bijection and, by 6.5, there is a homomorpism $h : E(X, s) \to G$ such that h(f(a)) = a for every $a \in K(G)$. Then f(h(x)) = x for every $x \in X$ and $fh = id_E$ by 6.6. Since h(X) = K(G) generates G, h is projective and $f = h^{-1}$.

VIII.7 Equations in *G*-groupoids

7.1 In this section, let $X = \{x_1, x_2, ...\}$ be a countable infinite set and let W an absolutely free groupoid over X. Define an endomorphism e of W by $e(x_i) = x_1$ for every $i \ge 1$.

Let $t \in W$, $g(t) = y_1 \dots y_n$, $n \ge 1$, $y_i \in X$. Then $var(t) = \{y_1, \dots, y_n\}$ and, for every proper subset V of var(t), we put $\xi(V) = \{i; 1 \le i \le n, y_i \in V\}$. Moreover, $e_V(t) = e(d(t, \xi(V)))$ (see 4.4).

7.2 Define sets \mathscr{E} and \mathscr{F} of identities in the following way: The identities $t \triangleq t$, $(xx \cdot x)x \triangleq xx \cdot xx$, $x(x \cdot xx) \triangleq xx \cdot xx$ and $(x \cdot xx)x \triangleq x(xx \cdot x)$, where $t \in W$ and $x = x_1$, belong to \mathscr{E} . If $p, q \in W$ are such that g(p) = g(q) and $l(p) \ge 5$, then the identity $p \triangleq q$ belongs to \mathscr{E} . Finally, if $u, v \in W$, then $u \triangleq v$ belongs to \mathscr{F} iff g(u) = g(v) (i.e., $u \triangleq v$ follows from the associate law) and $e_V(u) \triangleq e_V(v)$ belongs to \mathscr{E} for every proper subset V of var(u).

7.3 Lemma. Let $G \in \mathcal{D}$ and let $p, q \in W$ be such that $p \triangleq q$ belongs to \mathcal{F} . Then G satisfies $p \triangleq q$.

Proof. Let $f: W \to G$ be a homomorphism such that $f(p) \neq f(q)$. We have g(p) = g(q) and, by 5.4, there is a proper subset V of $\operatorname{var}(p) = \operatorname{var}(q)$ such that $f(p) = f(d(p, \xi(V))), f(q) = f(d(q, \xi(V)))$ and f(x) = f(y) for all $x, y \in \operatorname{var}(p) \setminus V$. Now, $e_V(p) = e_V(q)$ implies f(p) = f(q) (by 3.7(iii) and 3.5), a contradiction.

7.4 Lemma. Let $A = \{a, b\}$ be a two-element set ordered by s, $(a, b) \in s$. Let $h: W \to E(A, s)$ be a homomorphism such that $h(X) \subseteq A$ and $h(x_1) = b$. Then, for every $t \in W$, either V = var(t) or $V \neq var(t)$ and $h(t) = h(e_V(t))$, where $V = \{x \in var(t); h(x) = a\}$.

Proof. If $x \in V$ and $y \in var(t) \setminus V$, then h(x)h(y) = ab = b = h(y). Now, we can (repeatedly) use 5.3.

7.5 Lemma. Let $p, q \in W$ be such that every groupoid from \mathcal{D} satisfies $p \triangleq q$. Then the identity $p \triangleq q$ belongs to \mathcal{F} .

Proof. Suppose, on the contrary, that $p \triangleq q$ is not in \mathscr{F} ; we can assume that $x_1 \notin \operatorname{var}(p)$. Now, every semigroup satisfies $p \triangleq q$, and hence g(p) = g(q) and the identity $e_V(p) \triangleq e_V(q)$ does not belong to \mathscr{E} for a proper subset V of $\operatorname{var}(p) = \operatorname{var}(q)$. Let $h: W \to E(A, s)$ (see 7.4) be the (projective) homomorphism such that $h(V) = \{a\}$ and $h(X \setminus V) = \{b\}$. Then $h(p) \neq h(q)$ by 7.4, a contradiction.

7.6 Corollary. (i) The variety \mathcal{F} generated by \mathcal{D} is just the variety of groupoids satisfying the identities from \mathcal{F} .

(ii) The variety \mathcal{T} is generated by the groupoid E(A, s) (see 7.4).

VIII.8 *#*-unipotent *G*-groupoids

8.1 A groupoid $G \in \mathcal{D}$ will be called \mathscr{K} -unipotent if $a^2 = b^2$ for all $a, b \in K(G)$; is G is non-associative, then the (uniquely determined) element $a^2(a \in K(G))$ will be denoted by $w(=w_G)$. By 1.4(i), $w \in L(G)$ and we also put $(o_G =)o = w^2$; again, $o \in L(G)$.

8.2 Proposition. The class of \mathcal{K} -unipotent \mathcal{D} -groupoids is closed under subgroupoid and homomorphic images.

Proof. Obvious.

8.3 Lemma. Let $G \in \mathcal{D}$ be \mathcal{K} -unipotent.

(i) If $a, b, c \in K(G)$ are such that $b \neq a \neq c$, then $ab \neq ca$.

(ii) If $a, b \in K(G)$, then $ab \in L(G)$.

(iii) If $a \in K(G)$, then $aw \neq wa$.

Proof. (i) Assume, on the contrary, that $ab \neq ca$. Then $a \cdot aa = aw = a \cdot bb = ab \cdot b = ca \cdot b = c \cdot ca = cc \cdot a = wa = aa \cdot a$, a contradiction.

(ii) If $ab \neq L(G)$, then we can assume that a = ab (see 1.3). Now, a = ba by 1.3 and so ab = ba, a contradiction with (i).

(iii) We have $aw = a \cdot a^2 + a^2 \cdot a = wa$.

8.4 Remark. Let $G \in \mathscr{D}$ be a groupoid such that $\kappa(G) \leq 1$. Then, evidently, G is \mathscr{K} -unipotent. In particular, this takes place, when $G \in \mathscr{D}$ is a groupoid that can be generated by at most one element (see 1.8).

The groupoid D_4 from 2.4 is \mathscr{K} -unipotent (since $\mathscr{K}(D_4) = \{1\}$ is a one-element set), but D_4 is not primitive (since $1 \in D_4D_4$); notice that D_4 is generated by a two-element set.

8.5 Let $G \in \mathcal{D}$. We put $I(G) = \{ab; a, b \in K(G), a \neq b\}$ and $\iota(G) = \operatorname{card}(I(G))$. Of course, $I(G) \neq \emptyset$ (equivalently, $\iota(G) \ge 1$) iff $\kappa(G) \ge 2$.

8.6 Lemma. Let $G \in \mathcal{D}$ be a finite \mathcal{K} -unipotent groupoid such that $\kappa(G) \geq 2$. Then there exists a subgroupoid H of G such that $2\kappa(H) \geq \kappa(G)$ and $\iota(G) \geq \iota(H) + 1$.

Proof. Choose $x \in I(G)$ and put $A = \{a \in K(G); ab = x \text{ for some } b \in K(G), a \neq b\}$ and $B = \{b \in K(G); ab = x \text{ for some } a \in K(G), a \neq b\}$. By 8.3(i), we have $A \cap B = \emptyset$, and hence we can assume without loss of generality that $\operatorname{card}(B) \leq \kappa(G)/2$. Now, put $H = \langle K \setminus B \rangle_G$. Then $K(H) = K \setminus B$ by 1.9 and $x \notin I(H)$.

8.7 Lemma. Let $G \in \mathcal{D}$ be a finite \mathscr{K} -unipotent groupoid such that $\kappa(G) \geq 2^m$ for some $m \geq 0$. Then $\iota(G) \geq m$.

Proof. The result follows easily from 8.6 by induction on *m*.

8.8 Proposition. Let $G \in \mathscr{D}$ be a finite non-associative \mathscr{K} -unipotent groupoid. Then $\lambda(G) > \log_2(\kappa(G)) - 1$. **Proof.** We have $\lambda(G) \geq \iota(G)$ and the result now follows from 8.7.

8.9 A groupoid $G \in \mathcal{D}$ will be called \mathcal{K} -zeropotent if it is \mathcal{K} -unipotent and (in the non-associative case) the element $o_G = w_G^2$ is an absorbing element of $\langle K(G) \rangle_G$.

8.10 Proposition. The class of \mathcal{K} -zeropotent \mathcal{D} -groupoids is closed under subgroupoids and homomorphic images.

Proof. Obvious.

VIII.9 Primary &-groupoids

9.1 A groupoid $G \in \mathcal{D}$ will be called (strongly) primary if it is minimal and \mathcal{K} -unipotent (\mathcal{K} -zeropotent) (then it is primitive).

9.2 Lemma. Let $G \in \mathcal{D}$ be a non-associative primary groupoid and let K = K(G). Further, let W be an absolutely free groupoid over K, S a free semigroup over K and let $f: W \to G$ and $g: W \to S$ be the homomorphisms such that $f | K = id_K = g | K$. If r, $s \in W$ are such that g(r) = g(s) and $f(r) \neq f(s)$, then there is $a \in K$ such that at least one of the following cases takes place:

(1) f(r) = wa and f(s) = aw.(2) f(r) = aw and f(s) = wa.(3) f(r) = o and f(s) = awa.(4) f(r) = awa and f(s) = o.

Proof. Easy (use 3.5).

9.3 Lemma. Let $G \in \mathcal{D}$ be a non-associative primary groupoid. Then:

(i) $aw \neq wa$ for every $a \in K(G)$.

(ii) bw = wb for every $b \in L(G)$.

(iii) oc = co for every $c \in G$.

Proof. (i) See 8.3(iii).

(ii) Let $f: W \to G$ and $g: W \to S$ mean the same as in 9.2. There is $t \in W$ such that b = f(t) and we have $l(t) \ge 2$ (since $b \in L(G)$). Now, for every $a \in K(G)$, we have $bw = f(ta^2)$ and $wb = f(a^2t)$. Let $g(t) = a_1 \dots a_n$ and $n \ge 3$. Using repeatedly 3.5 and the fact that G is \mathscr{K} -unipotent, we have the following equalities (in G):

 $bw = a_1 \dots a_n a_n^2 = a_1 \dots a_{n-1} a_n^2 a_n = a_1 \dots a_{n-1} a_{n-1}^2 a_n = \dots = a_1 a_1^2 a_2 \dots a_n = a_1^2 a_1 \dots a_n = wb.$

If l(t) = 2 and $t = a_1a_2$, where $a_1 \neq a_2$, then (again in G) $bw = a_1a_2 \cdot a_2^2 = (a_1a_2 \cdot a_2)a_2 = a_1a_2^2 \cdot a_2 = a_1a_1^2 \cdot a_2 = a_1 \cdot a_1^2a_2 = a_1(a_1 \cdot a_1a_2) = a_1^2 \cdot a_1a_2 = wb$. If l(t) = 2 and t = aa then b = w and bw = wb trivially.

35

(iii) We have (by (ii)) $oc = w^2 c = w \cdot wc = wc \cdot w = w \cdot cw = cw \cdot w = c \cdot w^2 = co.$

9.4 Let $G \in \mathcal{D}$ be \mathcal{H} -unipotent. We put $J(G) = oG \cup Go \cup \{o\}$.

9.5 Proposition. Let $G \in \mathcal{D}$ be a non-associative primary groupoid. Then: (i) J(G) is an ideal of G and $J(G) = Go \cup \{o\} = oG \cup \{o\}$.

- (ii) If $a \in K(G)$ is such that $aw \in J(G)$ (resp. $wa \in J(G)$), then $wa \notin J(G)$ (resp. $aw \notin J(G)$).
- (iii) $w \notin J(G)$ and $w \notin wG \cup Gw$.

Proof. (i) We have $o^2 \in J(G)$ and it is now clear from 9.3(iii) that J(G) is an ideal.

(ii) Assume, on the contrary, that $\{aw, wa\} \subseteq J(G)$. First, we show that wa = ob and aw = co for some $b, c \in G$.

Indeed, if wa = o, then $wa = ww = w \cdot aa = wa \cdot a = oa$. If $wa \neq o$, then $wa \in oG$ trivially. Similarly for aw.

Now, we have $wa = ob = bw^2 = bwaa = boba = b^2oa = wb^2wa = wb^2ob = w^3b^3$ and, quite similarly, $aw = c^3w^3$. But then $w^3b = w \cdot w^2b = w \cdot wa = oa = ao = aw \cdot w = co \cdot w = cw^3$ and $wa = w^3b^3 = w^3b \cdot b^2 = cw^3b^2 = c^2w^3b = c^3w^3 = aw$, a contradiction.

(iii) If $w \in J(G)$ and $a \in K(G)$, then aw, $wa \in J(G)$, since J(G) is an ideal, a contradiction with (ii). Finally, if w = wd, then $w = w \cdot wd = w^2d = od$ and $w \in J(G)$, again a contradiction. Thus $w \notin wG$ and, similarly, $w \notin Gw$.

9.6 Proposition. Let $G \in \mathcal{D}$ be a non-associative primary groupoid, H = G/J(G) and let $f: G \to H$ denote the natural projection. Then:

- (i) $H \in \mathcal{D}$ and H is a non-associative and strongly primary.
- (ii) f(K(G)) = K(H) and f | K(G) is injective (in fact, $K(G) \subseteq G \setminus J(G)$ and $f | (G \setminus J(G))$ is injective.

(iii) If G is finite, then $\kappa(H) = \kappa(G)$ and $\lambda(H) = \lambda(G) + 1 - \operatorname{card}(J(G)) \le \lambda(G)$.

Proof. The assertions follow easily from 9.5.

9.7 Remark. Let $G_1 \in \mathscr{D}$ be finite, non-associative and \mathscr{K} -unipotent. Then $G_2 = \langle K(G_1) \rangle_{G_1}$ is (non-associative) primary, $\kappa(G_2) = \kappa(G_1)$ and $\lambda(G_2) \leq \lambda(G_1)$. Further, $G_3 = G_2/J(G_2)$ is strongly primary and, again, $\kappa(G_3) = \kappa(G_1)$ and $\lambda(G_3) \leq \lambda(G_1)$.

VIII.10 The numbers $\lambda(n)$

10.1 Remark. Let n, k be positive integers such that $n \ge 2$ and $n \ge k$. We have $n = 2^r k$, where r = m + s is a real number, m a non-negative integer and $0 \le s < 1$. Put $l = \max(k, m)$. We claim that $l \ge \log_2(n) - \log_2(\log_2(n)) - 1$.

First, the inequality is equivalent to $2^{l+1} \log_2(n) \ge 2^m 2^s k$, and hence it is enough to show that $2^{\prime}(m + s + \log_2(k)) \ge k$, t = l - m. If m = 0, then r = 0, s = 0, $k = l = t = n \ge 2$, $2^k \ge k$, $k^{2^k} \ge 2^k$ and $2^k \log_2(k) \ge k$. Now, assume that $m \ge 1$. We show that $2^{\prime}m \ge k = t + m$. This is certainly true for $k \le m$, and hence we restrict ourselves to the case $1 \le m < k$. Then $t \ge 1$, $2^{\prime} - 1 \ge t$, $(2^{\prime} - 1)m \ge t$ and, finally, $2^{\prime}m \ge t + m$.

10.2 Let $G \in \mathscr{D}$ be a non-associative groupoid. We shall define an equivalence τ_G on K(G) by $(a, b) \in \tau_G$ iff $a^2 = b^2$. Further, we denote $\tau(G) = \operatorname{card} (K(G)/\tau_G)$.

10.3 Lemma. Let $G \in \mathscr{D}$ be a finite non-associative groupoid and let m be a non-negative integer such that $\kappa(G) \geq \tau(G)2^m$. Then $\lambda(G) \geq \max(\tau(G), m)$.

Proof. Let A be a block of τ_G with maximal number of elements (see 6.2), and let $H = \langle A \rangle_G$. Then K(H) = A, H is primary and $\kappa(H) = \text{card}(A) \ge \kappa(G)/\tau(G) \ge 2^m$. By 8.7, we have $\lambda(G) \ge \lambda(H) \ge \iota(H) \ge m$. On the other hand, $\lambda(G) \ge \tau(G)$ by 1.4(i).

10.4 Proposition. Let $G \in \mathscr{D}$ be a finite groupoid such that $\kappa(G) \ge 2$. Then $\lambda(G) \ge \log_2(\kappa(G)) - \log_2(\log_2(\kappa(G)) - 1$.

Proof. Combine 10.3 and 10.1.

10.5 For a non-negative integer *n*, let $\lambda(n)$ denote the number min $(\lambda(G))$, where *G* runs through all (finite) groupoids from \mathcal{D} such that $\kappa(G) = n$.

We have $\lambda(0) = 1$, $\lambda(1) = 3$ and $\lambda(2) = 3$ (by 2.1 and 2.3). Further, by 2.5 and 10.4 we have $\log_2(n) - \log_2(\log_2(n)) - 1 \le \lambda(n) \le n + 2$ and $3 \le \lambda(n)$ for every $n \ge 2$. In particular, the numbers $\lambda(n)$ are not bounded.

VIII.11 Comments and open problems

11.1 This part is natural continuation of [3] and it is based mainly on [1].

11.2 Describe the structure of the \mathscr{D} -groupoids G such that $a^2 \neq b^2$ for all $a, b \in K(G), a \neq b$.

11.3 Find better estimates for the numbers $\lambda(n)$.

Rerefences

- [1] DRÁPAL, A., Groupoids with non-associative triples on the diagonal, Czech Math. J. 35 (1985), 555-564.
- [2] KEPKA, T. and TRCH M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. Math. Phys. 33/1 (1992), 69-86.
- [3] KEPKA, T. and TRCH, M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36/1 (1995), 17-30.