## Acta Universitatis Carolinae. Mathematica et Physica

Aleš Drápal; Tomáš Kepka
Groupoids and the associative law VIII. (Diagonally Non-Associative Groupoids)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 23-37
Persistent URL: http://dml.cz/dmlcz/147832

## Terms of use:

## © Univerzita Karlova v Praze, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# Groupoids and the Associative Law VIII. (Diagonally Non-Associative Groupoids) 

A. DRÁPAL and T. KEPKA

Praha*)
Received 16. September 1996

Groupoids possessing only diagonal non-associative triples are investigated.
Zkoumají se grupoidy mající pouze diagonální neasociativní trojice.
The present paper is a natural continuation of [2] and [3]. Here, we shall investigate in more detail the non-associative groupoids satisfying the implication $a . b c \neq a b . c \Rightarrow a=b=c$.

## VIII. First concepts

1.1 Let $\mathscr{D}$ denote the class of groupoids $G$ such that $N s(G) \subseteq\{(a, a, a) ; a \in G\}$; that is, $G \in \mathscr{D}$ iff $a . b c \neq a b . c$ implies $a=b=c$ for any $a, b, c \in G$.
1.2 Let $G \in \mathscr{D}$. We put $K(G)=\{a \in G ; a . a a \neq a a . a\}, L(G)=G \backslash K(G)$, $\kappa(G)=\operatorname{card}(K(G))$ and $\lambda(G)=\operatorname{card}(L(G))$. Thus $G=K(G) \cup L(G), K(G) \cap L(G)$ $=\emptyset$ and $\kappa(G)+\lambda(G)=\operatorname{card}(G)$.
1.3 Lemma. Let $G \in \mathscr{D}$ and $a, b \in G$. Then exactly one of the following three cases takes place:
(1) $a b \in L(G)$.
(2) $a \neq b$ and $a b=a=b a \in K(G)$.
(3) $a \neq b$ and $a b=b=b a \in K(G)$.

Proof. First, let $a b=c, a \neq c \neq b$. Then $c c . c=(c . a b) c=c a . b c=$ $c(a . b c)=c(a b . c)=c . c c$ and $c \in L(G)$.

Now, let $a b=a \neq b a$. Then $a a \cdot a=(a . a b) a=a a \cdot b a=a(a \cdot b a)=$ $a(a b . a)=a . a a$ and $a \in L(G)$.

Similarly if $a b=b \neq b a$ and the rest is clear.

[^0]1.4 Corollary. Let $G \in \mathscr{D}$. Then:
(i) $a^{2} \in L(G)$ for every $a \in G$.
(ii) If $a \in K(G)$ and $b \in G$, then $a=a b$ iff $a=b a$.
1.5 Lemma. Let $G \in \mathscr{D}$ and $a \in K(G)$. Then the elements $a, a^{2}, a . a^{2}, a^{2} . a$ are pair-wise different and $\left\{a^{2}, a \cdot a^{2}, a^{2} . a\right\} \subseteq L(G)$.

Proof. First, $a \in K(G)$ just means that $a \cdot a^{2} \neq a^{2} . a$, and hence we have also $a \neq a^{2}$. If $a=a \cdot a^{2}$, then $a=a^{2} . a$ by 1.4(ii). Thus $a \neq a \cdot a^{2}$ and, similarly, $a \neq a^{2} \cdot a$. If $a^{2}=a \cdot a^{2}$, then $a^{2}=a \cdot a^{2}=a\left(a \cdot a^{2}\right)=a^{2} \cdot a^{2}=a^{2}\left(a \cdot a^{2}\right)=$ $\left(a^{2} \cdot a\right) a^{2}=\left(\left(a^{2} \cdot a\right) a\right) a=\left(a^{2} \cdot a^{2}\right) a=a^{2} \cdot a$ and this is not possible. Thus $a^{2} \neq a \cdot a^{2}$ and, similarly, $a^{2} \neq a^{2} . a$. The rest is clear from 1.3.
1.6 Proposition. (i) The class of $\mathscr{D}$-groupoids is closed under homomorphic images and subgroupoids.
(ii) If $G \in \mathscr{D}$ is not associative, then $G \times G \notin \mathscr{L}$.
(iii) If $G \in \mathscr{D}$, then $L(G)$ is a subgroupoid of $G$.
(iv) If $G \in \mathscr{D}$ is not associative, then $\operatorname{card}(G) \geq 4$ and $\lambda(G) \geq 3$.

Proof. Use 1.3 and 1.5.
1.7 Lemma. Let $G \in \mathscr{D}$ and $a \in G$. Then:
(i) The set $S(a)=\{b \in G ; a b=a=b a\}$ is either empty or a subgroupoid of $G$.
(ii) If $a \in K(G)$, then the set $T(a)=G S(a)$ is a prime ideal of $G$ and $a \in T(a)$.

Proof. (i) Easy.
(ii) Let $b, c, d \in G$ be such that $b \in S(a)$ and $b=c d$. By $1.5, b \neq a a$, and hence either $c \neq a$ or $d \neq a$. If $d=a$, then $c \neq a, c \cdot a^{2}=c a . a=c d . a=b a=$ $=a \in K(G)$ and we have $c . a^{2} \neq c$. Now, by $1.3, c a^{2}=a^{2}$, and hence $a=a^{2}$, a contradiction. Thus $a \neq d$ and, similarly, $a \neq c$. Finally, $a c . d=a . c d=$ $=a b=a=b a=c d . a=c . d a$ and $a c=a=d a$ by 1.3. Now, by 1.3 again, we have $c, d \in S(a)$.
1.8 Lemma. Let $A$ be a generator set of a groupoid $G \in D$. Then $K(G) \subseteq A$.

Proof. We can assume that $A \neq \emptyset$. Let $W$ be an absolutely free groupoid over $A$ and let $f: W \rightarrow G$ be the (projective) homomorphism such that $f \mid A=i d_{A}$. Now, take $a \in K(G)$ and let $t \in W$ be a term such that the length $l(t)$ of $t$ is minimal with respect to $f(t)=a$. If $l(t)=1$, then $a=t \in A$. If $l(t) \geq 2$, then $t=p q$ for some $p, q \in W$ and $a=f(p) f(q) \notin L(G)$. Now, it follows from 1.3 that either $f(p)=a$ or $f(q)=a$, a contradiction with the minimality of $l(t)$.
1.9 Corollary. Let $G \in \mathscr{D}$ and let $H=\langle A\rangle_{G}$, where $A$ is a non-empty subset of $K(G)$. Then $K(H)=A$.
1.10 A groupoid $G \in \mathscr{D}$ will be called minimal if $G=\langle K(G)\rangle_{G}$.
1.11 Lemma. Let $G \in \mathscr{D}$ be a non-associative groupoid and $H=\langle K(G)\rangle_{G}$. Then $H$ is a minimal $\mathscr{X}$-groupoid, $k(H)=\kappa(G)$ and $\lambda(H) \leq \lambda(G)$.

Proof. See 1.9.
1.12 Lemma. Let $G, H \in \mathscr{D}$ and let $f: G \rightarrow H$ be a homomorphism. If $a, b \in G$ are such that $a \neq b$ and $f(a) \in K(H)$, then $f(a) \neq f(b)$.

Proof. Obvious.
1.13 Let $G \in \mathscr{D}$. Define a relation $\varrho\left(=\varrho_{G}\right)$ on $G$ by $(a, b) \in \varrho$ iff either $a=b$ or $a b=b \in K(G)$.
1.14 Proposition. Let $G \in \mathscr{D}$. Then:
(i) $\varrho$ is an ordering of $G$.
(ii) For any $a \in G$, the set $R(a)=\{b \in G ; b \neq a,(b, a) \in \varrho\}$ is either empty or a subgroupoid of $G$.
(iii) If $A$ is a generator set of $G$ and $a \in G$ is such that $R(a) \neq \emptyset$, then the subgroupoid $R(a)$ is generated by the set $A \cap R(a)$.

Proof. (i) Clearly, $\varrho$ is reflexive and it follows from 1.3 that $\varrho$ is antisymetric. Finally, if $(a, b),(b, c) \in \varrho$ and $a \neq b \neq c$, then $a c=a . b c=a . b c=c$ and $(a, c) \in \varrho$.
(ii) Obvious.
(iii) Use 1.3 and 1.7(i), (ii).
1.15 Lemma. Let $G \in \mathscr{D}$ and let $C=\langle A\rangle_{G}, D=\langle B\rangle_{G}$, where $A, B$ are non-empty subsets of $G$ such that $(b, a) \in \varrho_{G}$ and $a \neq b$ for all $a \in A, b \in B$. Then $c d=c=d c$ for all $c \in C, d \in D$ and $\operatorname{card}(C \cap D) \leq 1$.

Proof. By $1.14(\mathrm{ii}), D \subseteq R(a)$ for every $a \in A$ and the rest is clear.

## VIII. 2 Examples of $\mathscr{L}$-groupoids

### 2.1 Example.

| $D_{1}$ | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 2 | 0 | 0 |
| 2 | 0 | 3 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 |


| $D_{2}$ | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 2 | 3 | 0 |
| 2 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 |

We have $D_{1}, \quad D_{2} \in \mathscr{D}, \quad D_{2}=D_{1}^{o p}, K\left(D_{1}\right)=\{1\}=K\left(D_{2}\right)$ and $D_{1}=\langle 1\rangle_{D_{1}}$, $D_{2}=\langle 1\rangle_{D_{2}}$.
2.2 Remark. If $G \in \mathscr{D}$ i not associative, then $\operatorname{card}(G) \geq 4$ (1.6(iv)). Now, if $\operatorname{card}(G)=4$, then $G$ is isomorphic to one of the groupoids $D_{1}, D_{2}$.

### 2.3 Example.

| $\mathrm{D}_{3}$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 3 | 3 | 4 | 0 |
| 2 | 0 | 0 | 3 | 0 | 0 |
| 3 | 0 | 0 | 4 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 |

We have $D_{3} \in \mathscr{D}, K\left(D_{3}\right)=\{1,2\}$ and $D_{3}=\langle 1,2\rangle_{D_{3}}$. Moreover, the groupoids $D_{3}$ and $D_{3}^{\iota p}$ are isomorphic

### 2.4 Example.

| $\mathrm{D}_{4}$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 2 | 0 | 0 | 1 |
| 2 | 0 | 3 | 0 | 0 | 2 |
| 3 | 0 | 0 | 4 | 0 | 3 |
| 4 | 0 | 1 | 2 | 3 | 4 |

We have $D_{4} \in \mathscr{D}, K\left(D_{4}\right)=\{1\}$ and $D_{4}=\langle 1,4\rangle_{D_{4}}$.
2.5 Example. Let $n \geq 1$ and let $C_{n}=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c, d\right\}$ be a set containing $2 n+2$ elements. Define a multiplication on $C_{n}$ by $a_{i} a_{i}=b_{i}, b_{i} a_{i}=c$, $1 \leq i \leq n$, and $x y=d$ in all the remaining cases. Then $C_{n} \in \mathscr{D}, \kappa\left(C_{n}\right)=n$ and $\lambda\left(C_{n}\right)=n+2$.

## VIII. 3 Primitive $\mathscr{L}$-groupoids

3.1 Let $G \in \mathscr{D}$. We shall say that $G$ is primitive if $G G \subseteq L(G)$ (then $L(G)$ is an ideal of $G$ ).
3.2 (i) The class of primitive $\mathscr{D}$-groupoids is closed under homomorphic images and subgroupoids.
(ii) Every one-generated $\mathscr{D}$-groupoid is primitive.

Proof. (i) Easy.
(ii) If $G=\langle a\rangle_{G} \in \mathscr{D}$ is not associative, then $K(G)=\{a\}$.
3.3 Lemma. Let a groupoid $G \in \mathscr{D}$ be generated by a set $A$ such that $A A \subseteq L(G)$. Then $G$ is primitive.

Proof. Let $a b \in K(G)$ for some $a, b \in G$. With respect to 1.3 , we can assume that $a=a b$. Now, let $W$ be an absolutely free groupoid over $A$ (we have $\emptyset \neq K(G) \subseteq A$ ) and let $f: W \rightarrow G$ be the homomorphism such that $f \mid A=\operatorname{id}_{A}$. Then $f(t)=b$ for some $t \in W$ and we can assume that $b$ is chosen in such a way that the length $l(t)$ is minimal. Since $a \in K(G) \subseteq A$, we have $b \notin A$ and $t \notin A$. Consequently, $t=p q$ and $b=f(p) f(q)$. Now, by $1.7, a=a f(p)$, a contradiction with $l(p)<l(t)$.
3.4 Let $\mathscr{R}$ denote the variety of groupoids determined by the following equations: $(x \cdot y u) v \hat{=} x(y u \cdot v), x y \cdot u v \hat{}$ ( $x y \cdot u) v, x y \cdot u v \hat{=} x(y \cdot u v)$.
3.5 Lemma. Let $W$ be an absolutely free groupoid over a non-empty set $X$ and let $r, s \in W, l(r) \geq 5$. Then the equation $r \hat{=} s$ is satisfied in $\mathscr{R}$ iff it is satisfied in every semigroup.

Proof. See [3, 4.4].
3.6 Remark. (i) Let $F$ with a free generator set $A(\neq \emptyset)$ be a free groupoid from $\mathscr{R}$ and let $s$ denote the smallest congruence of $F$ such that $F_{s}=F / s$ is a semigroup. Then $F_{s}$ is a free semigroup and, if $f: F \rightarrow F_{s}$ denotes the natural projection, then $f \mid A$ is injective and $f(A)$ is a free generator set of $F$.

Now, let $a \in A$ and let $g$ be the endomorphism of $F$ such that $g(A)=\{a\}$. Then $F_{r}=g(F)$ is a free $\mathscr{R}$-groupoid over $\{a\}$ and $r \cap s=\operatorname{id}_{F}$, where $r=\operatorname{ker}(g)$. In particular, $F$ is isomorphic to a subgroupoid of the cartesian product $F_{r} \times F_{s}$.
(ii) Let $F_{s}$ be a free semigroup with a free generator set $A$ and let $F_{s}$ be a free $\mathscr{R}$ groupoid with a one-element free generator set $\{a\}$. Put $b=a^{2}, c=a \cdot a^{2}, d=a^{2} \cdot a$, $e=a^{4}\left(=a^{2} \cdot a^{2}\right)$ and $f=c a=a d=\left(a \cdot a^{2}\right) a=a\left(a^{2} . a\right),\{a, b, c, d, e, f\} \subseteq F_{r}$, and $F=\{(a, x) ; x \in A\} \cup\{(b, x y) ; x, y \in A\} \cup\{(c, x y z),(d, x y z) ; x, y, z \in A\} \cup\{(e, x y u v)\}$, $(f, x y u v) ; x, y, u, v \in A\} \cup\left\{\left(a^{n}, t\right) ; t \in F_{s}, l(t)=n \geq 5\right\}$. Then $F$ is a subgroupoid of $F_{r} \times F_{s}$ and $F$ is a free $\mathscr{R}$-groupoid over $\{a\} \times A$.
(iii)

3.7 Proposition. (i) The variety $\mathscr{R}$ is generated by $\left\{F_{r}\right\} \cup \mathscr{S}\left(F_{r}\right.$ is the free $\mathscr{R}$-groupoid of rank $I$ and $\mathscr{S}$ is the variety of semigroups).
(ii) The variety $\mathscr{R}$ is generated by the class of primitive $\mathscr{D}$-groupoids.
(iii) The classes of one-generated $\mathscr{D}$-groupoids and $\mathscr{R}$-groupoids coincide.
(iv) A groupoid $G \in \mathscr{D}$ is primitive iff $G \in \mathscr{R}$.

Proof. Obviously, every primitive $\mathscr{D}$-groupoid is in $\mathscr{R}$. On the other hand, if $G \in \mathscr{R} \cup \mathscr{D}$ and $a b=a$ for some $a, b \in G$, then $a \cdot a a=a b \cdot a a=(a b . a) a=a a \cdot a$, and hence $a=a b \in L(G)$. Similarly, if $a b=b$, then $a b \in L(G)$. Now, it follows from 1.3 that $G$ is primitive. The rest is clear from 3.2(ii) and 3.6.
3.8 Lemma. Let $G \in \mathscr{D}, a \in K(G)$ and $H=\langle a\rangle_{G}$. Then $H \cap R(a)=\emptyset$.

Proof. If $b \in H \cap R(a)$, then $a=a b=b a \in K(G)$, a contradiction with 3.3.

## VIII. 4 Irreducible terms

4.1 Throughout this section, let $(X, s)$ be a non-empty ordered set. Further, let $W$ be an absolutely free groupoid over $X, S$ a free semigroup over $X$ and let $g: W \rightarrow S$ be the projectve homomorphism such that $g \mid X=\mathrm{id}_{x}$.
4.2 Let $t \in W$ be such that $2 \leq l(t)=n$. For every $1 \leq i \leq n$, we shall define a term $d(t, i)$ by induction on $n$ : Let $t=p q, p, q \in W$. If $i=1$ and $p \in X$, then $d(t, i)=q$. If $1 \leq i \leq l(p)$ and $2 \leq l(p)$, then $d(t, i)=d(p, i) q$. If $l(p)+1 \leq i$ and $2 \leq l(q)$, then $d(t, i)=p d(q, i-l(p))$. If $i=n$ and $q \in X$, then $d(t, i)=p$. Obviously, $l(d(t, i))=l(t)-1$.
4.3 Lemma. Let $t \in W$ be such that $l(t) \geq 3$ and let $1 \leq i<j \leq l(t)$. Then $d(d(t, j), i)=d(d(t, i), j-1)$.

Proof. Easy.
4.4 Let $t \in W$ and let $M$ be a proper subset of the set $\{1,2, \ldots, l(t)\}$. If $M=\emptyset$, then we put $d(t, M)=t$. If $M \neq \emptyset$, then $l(t) \geq 2, M=\left\{i_{1}, \ldots, i_{m}\right\}$, where $m<l(t)$, $i_{1}<i_{2}<\ldots<i_{m}$ and we put $d(t, M)=d\left(\ldots\left(d\left(d\left(t, i_{m}\right), i_{m-1}\right) \ldots\right), i_{1}\right)=$ $d\left(t, i_{m}, i_{m-1}, \ldots, i_{1}\right)$.
4.5 Remark. Let $t \in W$ be such that $l(t) \geq 3$ and let $1 \leq i_{1}<i_{2}<\ldots<$ $i_{m} \leq l(t), \quad 2 \leq m \leq l(t)-1$. Then, by 4.3, $d(t, M)=d\left(t, i_{m}, \ldots, \quad i_{1}\right)=$ $d\left(t, i_{m-1}, i_{m-2}, \ldots, i_{m}-m+1\right)=d\left(t, i_{m-2}, \ldots, i_{1}, i_{m-1}-m+2, i_{m}-m+1\right)=$ $\ldots=d\left(t, \quad i_{1}, \quad i_{2}-1, \quad i_{3}-2, \ldots, \quad i_{m-1}-m+2, \quad i_{m}-m+1\right)$. Of course, $i_{1} \leq i_{2}-1 \leq i_{3}-2 \leq \ldots \leq i_{m}-m+1$.
4.6 Let $t \in W, l(t)=n$, and let $g(t)=x_{1} x_{2} \ldots x_{n}, x_{i} \in X$. We shall define a relation $s_{t}$ on the set $\{1,2, \ldots, n\}$ in the following way: If $1 \leq i \leq n$, then $(i, i) \in s_{t}$. If $1 \leq i<j \leq n$, then $(i, j) \in s_{t}$ iff $\left(x_{i}, x_{j}\right) \in s,\left(x_{i+1}, x_{j}\right) \in s, \ldots,\left(x_{j-1}, x_{j}\right) \in s$ and
$x_{i} \neq x_{j}, x_{i+1} \neq x_{j}, \ldots, x_{j-1} \neq x_{j}$. If $1 \leq i<j \leq n$, then $(j, i) \in s_{t}$ iff $\left(x_{i+1}, x_{i}\right) \in s$, $\left(x_{i+2}, x_{i}\right) \in s, \ldots,\left(x_{j}, x_{i}\right) \in s$ and $x_{i+1} \neq x_{i}, x_{i+2} \neq x_{i}, \ldots, x_{j} \neq x_{i}$.

Now, it is easy to see that $s_{t}$ is an ordering of the set $\{1,2, \ldots, n\}$ and we denote by $M(t)$ the set of all maximal elements of this ordering. Further, we put $N(t)=\{1,2, \ldots, n\} \backslash M(t)$ and we define a relation $r_{t}$ on $\{1,2, \ldots, n)$ by $(i, j) \in r_{t}$ iff $(i, j) \in s_{t}$ and $|i-j| \leq 1$.

The term $t$ will be called $s$-irreducible if the following equivalent conditions are satisfied:
(a) $s_{t}=i d$;
(b) $r_{t}=i d$;
(c) $M(t)=\{1,2, \ldots, n\}$;
(d) $N(t)=\emptyset$.
4.7 We shall define a relation $\alpha$ on $W$ by $(p, q) \in \alpha$ iff $p=d(q, i)$ for some $(i, j) \in r_{\psi}, i \neq j$. Now, let $\beta$ denote the smallest equivalence (on $W$ ) containing $\alpha$. It is easy to see that $\beta$ is a congruence of the absolutely free groupoid $W$.
4.8 Lemma. Let $p, q \in W$ be such that $(p, q) \in \beta$. Then $t=d(p, N(p))=$ $d(q, N(q))$ is an s-irreducible term and $(p, t),(q, t) \in \beta$.

Proof. We can assume without loss of generality that $(p, q) \in \alpha$, i.e., $p=d(q, i)$, $(i, j) \in r_{q}$. Let $g(q)=x_{1} \ldots x_{n}, n=l(q)$. The rest of the proof is divided into two parts.
(i) Let $f:\{1,2, \ldots, i-1, i+1, \ldots, n\} \rightarrow\{1,2, \ldots, n-1\}$ be the bijection defined by $f(k)=k$ for $1 \leq k \leq i-1$ and $f(k)=k-1$ for $i+1 \leq k \leq n$. We claim that $N(p)=f(N(q) \backslash\{i\})$.

Indeed, let $(f(k), f(m)) \in s_{p}$ and $I=\{h ; k \leq h \leq m$ or $m \leq h \leq k\}$. If $i \in I$, then $(k, m) \in s_{q}$. If $i \in I$, then $j \in I$, and hence $(f(j), f(m)) \in s_{p},\left(x_{j}, x_{m}\right) \in s$ and $\left(x_{i}, x_{m}\right) \in s$, $x_{i} \neq x_{m}$. Thus we get $(i, m) \in s_{q}$ and then $(k, m) \in s_{q}$. The other inclusion is immediate.
(ii) From (i) we conclude that $d(p, N(p))=d(q, N(q))=t$ and $h=\operatorname{card}(N(q))=$ $\operatorname{card}\left(N(p)+1\right.$. Now, there is a sequence $q=q_{h}, q_{h-1}, \ldots, q_{1}, q_{0}$ of terms such thhat $\left(q_{h-1}, q_{h}\right) \in \alpha,\left(q_{h-2}, q_{h-1}\right) \in \alpha, \ldots,\left(q_{0}, q_{1}\right) \in \alpha$ and $\operatorname{card}\left(N\left(q_{k}\right)\right)=k$ for any $0 \leq k \leq h$. It follows that $t=q_{0}=d(q, N(q))$ is $s$-irreducible and $(q, t) \in \beta$.
4.9 Lemma. Every block of $\beta$ contains just one s-irreducible term.

Proof. If $p, q \in W$ are $s$-irreducible terms such that $(p, q) \in \beta$, then $p=$ $d(p, N(p))=d(q, N(q))=q$ by 4.2.
4.10 Let $F(X, s)$ denote the set of $s$-irreducible terms. Now, in view of 4.3, we can define a binary operation on $F(X, s)$ such that the corresponding groupoid will be isomorphic (in a natural way) to the factorgroupoid $W / \beta$.

Finally, define an equivalence $\gamma$ on $F(X, s)$ by $(x x, x x, x(x, x x)) \in \gamma$, $(x x . x x,(x x . x) x) \in \gamma,(x(x x . x),(x . x x) x) \in \gamma$ for every $x \in X$ and $(p, q) \in \gamma$
whenever $p, q \in F(X, s), g(p)=g(q)$ and either $l(p) \geq 5$ or $p$ contains at least two (different) variables. Then $\gamma$ is a congruence of the groupoid $F(X, s)$ and we denote by $E(X, s)$ the corresponding factorgroupoid. (We shall identify the sets $X$ and $X / \gamma$ ).
4.11 Proposition. Let $E=E(X, s)$ (see 4.10.) Then:
(i) $E \in \mathscr{D}$ and $K(E)=X$.
(ii) If $x, y \in X$, then $x y=y$ iff $x \neq y$ and $(x, y) \in s$.
(iii) $s=\varrho_{E} \mid X$.

Proof. Easy.

## VIII.5 Auxiliary results

5.1 In this section, let $W$ be an absolutely free groupoid over a non-empty set $X, S$ a free semigroup over $X$ and let $g: W \rightarrow S$ be the (projective) homomorphism such that $g \mid X=i d_{X}$. Further, let $f$ be a homomorphism of $W$ into a groupoid $G \in \mathscr{D}$.
5.2 Lemma. Let $t \in W, g(t)=x_{1} \ldots x_{n}$.
(i) $f(t) \in K(G)$ iff there is $1 \leq k \leq n$ such that $f\left(x_{i}\right) \neq f\left(x_{k}\right)$ and $\left(f\left(x_{i}\right)\right.$, $\left.f\left(x_{k}\right)\right) \in \varrho_{G}$ for any $i, 1 \leq i \leq n, i \neq k$.
(ii) If $f(t) \in K(G)$, then $f(t)=f\left(x_{k}\right)$.

Proof. The case $n=1$ is trivial and, if $n \geq 2$, then the result follows from 1.3 and 1.7.
5.3 Lemma. Let $t \in W, g(t)=x_{1} \ldots x_{n}, n \geq 2$ and $1 \leq i, j \leq n$ be such that $j=i+1($ or $j=i-1)$ and $f\left(x_{i}\right) f\left(x_{j}\right)=f\left(x_{i}\right)\left(\right.$ or $\left.f\left(x_{j}\right) f\left(x_{i}\right)=f\left(x_{i}\right)\right)$. Then $f(t)=f(d(t, j))($ see 4.2).

Proof. Assume $j=i+1$, the other case being similar. We shall proceed by induction on $n \geq 3$ (there is nothing to prove for $n=2$ ). If $t=p q$ and $l(p) \neq i$, then the induction hypothesis can be used for $p$ or $q$. Hence, suppose $g(p)=x_{1} \ldots x_{i}$ and $g(p)=x_{i+1} \ldots x_{n}$. Then either $i>1$ or $i+1<n$ and we shall restrict ourselves to the case $i>1$ (again, the case $n>i+1$ is similar).

Let $p=u v$ and $a=f(d(q, 1))$. If $f(u) f(v) \cdot f(q)=f(u) \cdot f(v) f(q)$, then $f(v q)=f(d(v q, l(v)+1))=f(v) a$ (by induction) and we see that $f(t)=$ $f(u) \cdot f(v) a=f(u) f(v) \cdot a=f(d(t, j))$ in each of the following cases: $a \in L(G)$; $a=f(q) ; a \neq f(v)$. However, if $f(q) \neq a=f(v) \in K(G)$, then $\left(f\left(x_{i}\right), a\right) \in \varrho_{G}$ by 5.2 and $f\left(x_{i}\right) f\left(x_{j}\right)=f\left(x_{i}\right)$ yields $\left(f\left(x_{j}\right), a\right) \in \varrho$, and so $a=f(q)$ by 5.2, a contradiction. On the other hand, if $f(u) f(v) \cdot f(q) \neq f(u) \cdot f(v) f(q)$, then $f(u)=$ $f(v)=f(q)=b \in K(G)$ and $\left(f\left(x_{i}\right), \quad b\right) \in \varrho, \quad\left(f\left(x_{j}\right), b\right) \in \varrho$ by 5.2. Since $f\left(x_{i}\right) f\left(x_{j}\right)=f\left(x_{i}\right)$, we get $f\left(x_{j}\right) \neq b$, and therefore $f(q)=a$ by 5.2.
5.4 Lemma. Let $p, q \in W, g(p)=x_{1} \ldots x_{n}=g(q)$, be such that $f(p) \neq f(q)$. Then:
(i) There is $1 \leq k \leq n$ such that $\left(f\left(x_{i}\right), f\left(x_{k}\right)\right) \in \varrho_{G}$ for any $1 \leq i \leq n$.
(ii) $\operatorname{card}(N) \in\{3,4\}$, where $N=\left\{1 \leq i \leq n ; f\left(x_{i}\right)=f\left(x_{k}\right)\right\}$.
(iii) $f(p)=f(d(p, M))$ and $f(q)=f(d(q, M)), M=\{1,2, \ldots, n\} \backslash N$.

Proof. Everything is clear for $n \leq 2$ and, now, we shall use induction on $n \geq 3$.
(i) Suppose there are $1 \leq i, j \leq n$ satisfying the properties formulated in 5.3. Then the induction hypothesis works for the terms $d(p, j), d(q, j)$ and, since $\left(f\left(x_{i}\right)\right.$, $\left.f\left(x_{k}\right)\right) \in \varrho_{G}$ implies $\left.\left(f x_{j}\right), f\left(x_{k}\right)\right) \in \varrho_{G}$ and $f\left(x_{j}\right) \neq f\left(x_{k}\right)$ for any $1 \leq k \leq n, k \neq j$, we get our result by induction and 5.3.
(ii) With regard to (i), we can assume that $f\left(x_{i}\right) \neq f\left(x_{i}\right) f\left(x_{j}\right) \neq f\left(x_{j}\right)$ whenever $1 \leq i, j \leq n,|i-1|=1$. If $f\left(x_{i}\right)=f\left(x_{j}\right)$ for all $1 \leq i, j \leq n$, then the situation is clear from 3.7(iii) and 3.5. Consequently, suppose that $f\left(x_{i}\right) \neq f\left(x_{1}\right)$ for some $1 \leq i \leq n$ and put $t_{2}=x_{2}\left(x_{3}\left(\ldots\left(x_{n-1} x_{n}\right)\right)\right)$ and $t_{1}=x_{1} t_{2}$.

If $p=p_{1} p_{2} \cdot p_{3}$, then, by 5.2 , we have $f(p)=f\left(p_{1} \cdot p_{2} p_{3}\right)$, and hence there is $u \in W$ with $f(p)=f\left(x_{1} u\right), g(u)=x_{2} \ldots x_{n}$. If $x_{j} \neq x_{2}$ for some $3 \leq j \leq n$, then $f(u)=f\left(t_{2}\right)$ by induction, and so $f(p)=f\left(t_{1}\right)$. Hence, assume that $x_{j}=x_{2}$ for every $2 \leq j \leq n$ and denote $a=f\left(x_{1}\right), b=f\left(x_{2}\right)$. Since $a \neq a b \neq b$, we have $\mathrm{ab} \in L(G)$ and the subgroupoid $\langle a, b\rangle_{G}$ is primitive (by 3.3). Now, $f(p)=f\left(t_{1}\right)$ in the case $n \geq 5$ (by 3.5 and 3.7 (iii)). If $3 \leq n \leq 4$, then either $u=t_{2}$ or $u=x_{2} x_{2} \cdot x_{2}$. In the latter case, $f(p)=a(b b . b)=(a . b b) b=(a b . b) b=$ $a b . b b=a(b . b b)=f\left(t_{1}\right)$. Consequently, $f(p)=f\left(t_{1}\right)$ in all cases and, since $f(q)=f\left(t_{1}\right)$ is also true, we have $f(p)=f(q)$.

## VIII. 6 Almost free groupoids

6.1 Let $\left(A, r_{1}\right)$ and $\left(B, r_{2}\right)$ be ordered sets. A mapping $f: A \rightarrow B$ will be called an immersion if $f$ is injective and, for all $a, b \in A$, we have $(a, b) \in r_{1}$ iff $(f(a)$, $f(b)) \in r_{2}$.
6.2 Proposition. Let $G, H \in \mathscr{D}$ and let $f: G \rightarrow H$ be a homomorphism. Put $A=f^{-1}(K(H)), r_{1}=\varrho_{G} \mid A$ and $r_{2}=\varrho_{H} \mid K(H)$. If $A \neq \emptyset$, then $A \subseteq K(G)$ and $f \mid A$ is an immersion of $\left(A, r_{1}\right)$ into $\left(K(H), r_{2}\right)$.

Proof. Obviously, $f(L(G)) \subseteq L(H)$, and so $A \subseteq K(G)$. Now, suppose that $A \neq \emptyset$; then $f \mid A$ is injective by 1.12. If $a, b \in A$ and $a b=b$, then $f(a) f(b)=f(b)$, and hence $f \mid A$ is a homomorphism of $\left(A, r_{1}\right)$ into $\left(K(H), r_{2}\right)$. On the other hand, if $a, b \in A$ and $(a, b) \notin \varrho_{G}$, then $a b \in L(G), f(a) f(b) \in L(H)$ and $(f(a) f(b)) \notin \varrho_{H}$. The rest is now clear.
6.3 Corollary. Let $G, H \in \mathscr{D}$ and let $f: G \rightarrow H$ be a projective homomorphism. Put $r_{1}=\varrho_{G} \mid K(G)$ and $r_{2}=\varrho_{H} \mid K(H)$. Then there exists an immersion of the ordered set $\left(K(H), r_{2}\right)$ into $\left(K(G), r_{1}\right)$.
6.4 Corollary. Let $G$ be a minimal non-associative $\mathscr{D}$-groupoid and $r=$ $\varrho_{G} \mid K(G)$. Let $(X, s)$ be a non-empty ordered set and let $f: E(X, s) \rightarrow G$ be a homomorphism with $f(X)=K(G)$. Then $f$ is projective and the ordered sets $(X, s)$ and $(K(G), r)$ are isomorphic.
6.5 Proposition. Let $(X, s)$ be a non-empty ordered set and let $h: X \rightarrow G \in \mathscr{D}$ be a mapping. Then $h$ can be extended to a homomorphism $f: E(X, s) \rightarrow G$ (which is then unique) if and only if the following two conditions are satisfied:
(a) If $x, y \in X$ are such that $x \neq y$ and $(x, y) \in s$, then $h(x) h(y)=h(y)=$ $h(y) h(x)$.
(b) If $x, y \in X$ are such that $x \neq y$ and $(x, y) \in s$ and $h(y) \in K(G)$, then $h(x) h(y) \neq h(y) \neq h(x)$.

Proof. If it easy to see that the conditions (a), (b) are necessary (1.3(i), 1.12, 4.11) and, now, we are going to show that they are also sufficient.

Let, as usual, $W$ denote an absolutely free groupoid over $X, S$ a free semigroup over $X$ and let $k: W \rightarrow E(X, s), j: W \rightarrow G$ and $g: W \rightarrow S$ be such that $k(x)=g(x)=x$ and $j(x)=h(x)$ for every $x \in X$.
(i) If $p, q \in W$ and $(p, q) \in \alpha$ (see 4.7), then $p=d(q, i), g(q)=x_{1} \ldots x_{n}$, $1 \leq i \leq n$, and $\left(x_{i}, y\right) \in s$, where either $y=x_{i+1}$ and $i<n$ or $y=x_{i-1}$ and $1<i$. By (a), $h\left(x_{i}\right) h(y)=h(y)=h(y) h\left(x_{i}\right)$, and hence $j(p)=j(q)$ by 5.3. Now, it follows easily that $j(p)=j(q)$ whenever $p, q \in W$ and $(p, q) \in \beta$.
(ii) Let $p, q \in F(X, s)$ be such that $(p, q) \in \gamma$ (4.10). Then $g(p)=x_{1} \ldots x_{n}=$ $g(q)$ and we put $Y=\left\{x_{1}, \ldots, x_{n}\right\}$. If $\operatorname{card}(Y)=1$, then $j(p)=j(q)$ by 3.7 (iii) and 3.5. If $x, y \in Y$ are such that $x \neq y$ and $(x, y) \in s$, then (using 5.4) we can assume that $j(y)=h(y) \in K(G)$ and $(j(x), j(y)) \in \varrho_{G}$. But this is a contradiction with (b). We have thus proved that $j(p)=j(q)$.
(iii) Combining (i) and (ii), we conclude that $\operatorname{ker}(k) \subseteq \operatorname{jer}(j)$, and hence we can put $f(k(p))=j(p)$ for every $p \in W$.
6.6 Corollary. Let $G \in \mathscr{D}$ be a groupoid generated by a non-empty set $A$ and let $s=\varrho_{G} \mid A$. Then there exists a unique projective homomorphism $f: E(A, s) \rightarrow G$ such that $f \mid A=\mathrm{id}_{A}$.
6.7 Proposition. Let $(X, s)$ be a non-empty ordered set, $G \in \mathscr{D}$ and let $f: G \rightarrow E(X, s)$ be a homomorphism such that $f(K(G))=X$. Then $f$ is an isomorphism if and only if $G$ is minimal.

Proof. Suppose that $G=\langle K(G)\rangle_{G}$, the other implication being obvious. By 6.2, $f \mid K(G): K(G) \rightarrow X$ is a bijection and, by 6.5 , there is a homomorpism $h: E(X, s) \rightarrow G$ such that $h(f(a))=a$ for every $a \in K(G)$. Then $f(h(x))=x$ for every $x \in X$ and $f h=\operatorname{id}_{E}$ by 6.6. Since $h(X)=K(G)$ generates $G, h$ is projective and $f=h^{-1}$.

7．1 In this section，let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable infinite set and let $W$ an absolutely free groupoid over $X$ ．Define an endomorphism $e$ of $W$ by $e\left(x_{i}\right)=x_{1}$ for every $i \geq 1$ ．

Let $t \in W, g(t)=y_{1} \ldots y_{n}, n \geq 1, y_{i} \in X$ ．Then $\operatorname{var}(t)=\left\{y_{1}, \ldots, y_{n}\right\}$ and，for every proper subset $V$ of $\operatorname{var}(t)$ ，we put $\check{\zeta}(V)=\left\{i ; 1 \leq i \leq n, y_{i} \in V\right\}$ ．Moreover， $e_{V}(t)=e(d(t, \xi(V)))$（see 4．4）．

7．2 Define sets $\mathscr{E}$ and $\mathscr{F}$ of identities in the following way：The identities $t 气 t$ ， $(x x . x) x \hat{=} x x . x x, x(x . x x) 气 x x . x x$ and $(x . x x) x \hat{=} x(x x . x)$ ，where $t \in W$ and $x=x_{1}$ ，belong to $\mathscr{E}$ ．If $p, q \in W$ are such that $g(p)=g(q)$ and $l(p) \geq 5$ ，then
 $g(u)=g(v)$（i．e．，$u \hat{=} v$ follows from the associate law）and $e_{V}(u) \hat{=} e_{V}(v)$ belongs to $\mathscr{E}$ for every proper subset $V$ of $\operatorname{var}(u)$ ．

7．3 Lemma．Let $G \in \mathscr{D}$ and let $p, q \in W$ be such that $p \hat{=} q$ belongs to $\mathscr{F}$ ． Then $G$ satisfies $p \hat{=} q$ ．

Proof．Let $f: W \rightarrow G$ be a homomorphism such that $f(p) \neq f(q)$ ．We have $g(p)=g(q)$ and，by 5.4 ，there is a proper subset $V$ of $\operatorname{var}(p)=\operatorname{var}(q)$ such that $f(p)=f(d(p, \xi(V))), f(q)=f(d(q, \xi(V)))$ and $f(x)=f(y)$ for all $x, y \in \operatorname{var}(p) \backslash V$ ． Now，$e_{V}(p)=e_{V}(q)$ implies $f(p)=f(q)$（by 3．7（iii）and 3．5），a contradiction．

7．4 Lemma．Let $A=\{a, b\}$ be a two－element set ordered by $s,(a, b) \in s$ ．Let $h: W \rightarrow E(A, s)$ be a homomorphism such that $h(X) \subseteq A$ and $h\left(x_{1}\right)=b$ ．Then，for every $t \in W$ ，either $V=\operatorname{var}(t)$ or $V \neq \operatorname{var}(t)$ and $h(t)=h\left(e_{V}(t)\right)$ ，where $V=\{x \in \operatorname{var}(t) ; h(x)=a\}$ ．

Proof．If $x \in V$ and $y \in \operatorname{var}(t) \backslash V$ ，then $h(x) h(y)=a b=b=h(y)$ ．Now，we can （repeatedly）use 5．3．

7．5 Lemma．Let $p, q \in W$ be such that every groupoid from $\mathscr{D}$ satisfies $p \hat{=} q$ ．

 that $x_{1} \notin \operatorname{var}(p)$ ．Now，every semigroup satisfies $p \hat{=} q$ ，and hence $g(p)=g(q)$ and the identity $e_{V}(p) 气 e_{V}(q)$ does not belong to $\mathscr{E}$ for a proper subset $V$ of $\operatorname{var}(p)=\operatorname{var}(q)$ ．Let $h: W \rightarrow E(A, s)$（see 7．4）be the（projective）homomor－ phism such that $h(V)=\{a\}$ and $h(X \backslash V)=\{b\}$ ．Then $h(p) \neq h(q)$ by 7．4，a con－ tradiction．

7．6 Corollary．（i）The variety $\mathscr{T}$ generated by $\mathscr{D}$ is just the variety of groupoids satisfying the identities from $\mathscr{F}$ ．
（ii）The variety $\mathscr{T}$ is generated by the groupoid $E(A, s)($ see 7．4）．

## VIII. $8 \mathscr{K}$-unipotent $\mathscr{C}$-groupoids

8.1 A groupoid $G \in \mathscr{D}$ will be called $\mathscr{K}$-unipotent if $a^{2}=b^{2}$ for all $a, b \in K(G)$; is $G$ is non-associative, then the (uniquely determined) element $a^{2}(a \in K(G))$ will be denoted by $w\left(=w_{G}\right)$. By 1.4(i), $w \in L(G)$ and we also put ( $\left.o_{G}=\right) o=w^{2}$; again, $o \in L(G)$.
8.2 Proposition. The class of $\mathscr{K}$-unipotent $\mathscr{D}$-groupoids is closed under subgroupoid and homomorphic images.

Proof. Obvious.
8.3 Lemma. Let $G \in \mathscr{D}$ be $\mathscr{K}$-unipotent.
(i) If $a, b, c \in K(G)$ are such that $b \neq a \neq c$, then $a b \neq c a$.
(ii) If $a, b \in K(G)$, then $a b \in L(G)$.
(iii) If $a \in K(G)$, then $a w \neq w a$.

Proof. (i) Assume, on the contrary, that $a b \neq c a$. Then $a \cdot a a=a w=a \cdot b b=$ $a b . b=c a . b=c \cdot c a=c c \cdot a=w a=a a \cdot a$, a contradiction.
(ii) If $a b \neq L(G)$, then we can assume that $a=a b$ (see 1.3). Now, $a=b a$ by 1.3 and so $a b=b a$, a contradiction with (i).
(iii) We have $a w=a \cdot a^{2} \neq a^{2} . a=w a$.
8.4 Remark. Let $G \in \mathscr{D}$ be a groupoid such that $\kappa(G) \leq 1$. Then, evidently, $G$ is $\mathscr{K}$-unipotent. In particular, this takes place, when $G \in \mathscr{D}$ is a groupoid that can be generated by at most one element (see 1.8).

The groupoid $D_{4}$ from 2.4 is $\mathscr{K}$-unipotent (since $\mathscr{K}\left(D_{4}\right)=\{1\}$ is a one-element set), but $D_{4}$ is not primitive (since $1 \in D_{4} D_{4}$ ); notice that $D_{4}$ is generated by a two-element set.
8.5 Let $G \in \mathscr{D}$. We put $I(G)=\{a b ; a, b \in K(G), a \neq b\}$ and $t(G)=\operatorname{card}(I(G))$. Of course, $I(G) \neq \emptyset$ (equivalently, $\iota(G) \geq 1$ ) iff $\kappa(G) \geq 2$.
8.6 Lemma. Let $G \in \mathscr{D}$ be a finite $\mathscr{K}$-unipotent groupoid such that $\kappa(G) \geq 2$. Then there exists a subgroupoid $H$ of $G$ such that $2 \kappa(H) \geq \kappa(G)$ and $l(G) \geq$ $\imath(H)+1$.

Proof. Choose $x \in I(G)$ and put $A=\{a \in K(G) ; a b=x$ for some $b \in K(G)$, $a \neq b\}$ and $B=\{b \in K(G) ; a b=x$ for some $a \in K(G), a \neq b\}$. By 8.3(i), we have $A \cap B=\emptyset$, and hence we can assume without loss of generality that $\operatorname{card}(B) \leq \kappa(G) / 2$. Now, put $H=\langle K \backslash B\rangle_{G}$. Then $K(H)=K \backslash B$ by 1.9 and $x \notin I(H)$.
8.7 Lemma. Let $G \in \mathscr{D}$ be a finite $\mathscr{K}$-unipotent groupoid such that $\kappa(G) \geq 2^{m}$ for some $m \geq 0$. Then $l(G) \geq m$.

Proof. The result follows easily from 8.6 by induction on $m$.
8.8 Proposition. Let $G \in \mathscr{D}$ be a finite non-associative $\mathscr{K}$-unipotent groupoid. Then $\lambda(G)>\log _{2}(\kappa(G))-1$.

Proof. We have $\lambda(G) \geq \imath(G)$ and the result now follows from 8.7.
8.9 A groupoid $G \in \mathscr{D}$ will be called $\mathscr{K}$-zeropotent if it is $\mathscr{K}$-unipotent and (in the non-associative case) the element $o_{G}=w_{G}^{2}$ is an absorbing element of $\langle K(G)\rangle_{G}$.
8.10 Proposition. The class of $\mathscr{K}$-zeropotent $\mathscr{D}$-groupoids is closed under subgroupoids and homomorphic images.

Proof. Obvious.

## VIII. 9 Primary $\mathscr{L}$-groupoids

9.1 A groupoid $G \in \mathscr{D}$ will be called (strongly) primary if it is minimal and $\mathscr{K}$-unipotent ( $\mathscr{K}$-zeropotent) (then it is primitive).
9.2 Lemma. Let $G \in \mathscr{D}$ be a non-associative primary groupoid and let $K=K(G)$. Further, let $W$ be an absolutely free groupoid over $K, S$ a free semigroup over $K$ and let $f: W \rightarrow G$ and $g: W \rightarrow S$ be the homomorphisms such that $f\left|K=\mathrm{id}_{K}=g\right| K$. If $r, s \in W$ are such that $g(r)=g(s)$ and $f(r) \neq f(s)$, then there is $a \in K$ such that at least one of the following cases takes place:
(1) $f(r)=w a$ and $f(s)=a w$.
(2) $f(r)=a w$ and $f(s)=w a$.
(3) $f(r)=o$ and $f(s)=a w a$.
(4) $f(r)=a w a$ and $f(s)=o$.

Proof. Easy (use 3.5).
9.3 Lemma. Let $G \in \mathscr{D}$ be a non-associative primary groupoid. Then:
(i) $a w \neq$ wa for every $a \in K(G)$.
(ii) $b w=w b$ for every $b \in L(G)$.
(iii) $o c=c o$ for every $c \in G$.

Proof. (i) See 8.3(iii).
(ii) Let $f: W \rightarrow G$ and $g: W \rightarrow S$ mean the same as in 9.2. There is $t \in W$ such that $b=f(t)$ and we have $l(t) \geq 2$ (since $b \in L(G))$. Now, for every $a \in K(G)$, we have $b w=f\left(t a^{2}\right)$ and $w b=f\left(a^{2} t\right)$. Let $g(t)=a_{1} \ldots a_{n}$ and $n \geq 3$. Using repeatedly 3.5 and the fact that $G$ is $\mathscr{K}$-unipotent, we have the following equalities (in $G$ ):
$b w=a_{1} \ldots a_{n} a_{n}^{2}=a_{1} \ldots a_{n-1} a_{n}^{2} a_{n}=a_{1} \ldots a_{n-1} a_{n-1}^{2} a_{n}=\ldots=a_{1} a_{1}^{2} a_{2} \ldots a_{n}=$ $a_{1}^{2} a_{1} \ldots a_{n}=w b$.

If $l(t)=2$ and $t=a_{1} a_{2}$, where $a_{1} \neq a_{2}$, then (again in $G$ ) $b w=a_{1} a_{2} \cdot a_{2}^{2}=$ $\left(a_{1} a_{2} \cdot a_{2}\right) a_{2}=a_{1} a_{2}^{2} \cdot a_{2}=a_{1} a_{1}^{2} \cdot a_{2}=a_{1} \cdot a_{1}^{2} a_{2}=a_{1}\left(a_{1} \cdot a_{1} a_{2}\right)=a_{1}^{2} \cdot a_{1} a_{2}=w b$.

If $l(t)=2$ and $t=a a$ then $b=w$ annd $b w=w b$ trivially.
(iii) We have (by (ii)) $o c=w^{2} c=w \cdot w c=w c \cdot w=w \cdot c w=c w \cdot w=$ $c . w^{2}=c o$.
9.4 Let $G \in \mathscr{D}$ be $\mathscr{K}$-unipotent. We put $J(G)=o G \cup G o \cup\{o\}$.
9.5 Proposition. Let $G \in \mathscr{D}$ be a non-associative primary groupoid. Then:
(i) $J(G)$ is an ideal of $G$ and $J(G)=G o \cup\{o\}=o G \cup\{o\}$.
(ii) If $a \in K(G)$ is such that $a w \in J(G)$ (resp. wa $\in J(G)$ ), then wa $\notin J(G)$ (resp. $a w \notin J(G))$.
(iii) $w \notin J(G)$ and $w \notin w G \cup G w$.

Proof. (i) We have $o^{2} \in J(G)$ and it is now clear from 9.3(iii) that $J(G)$ is an ideal.
(ii) Assume, on the contrary, that $\{a w, w a\} \subseteq J(G)$. First, we show that $w a=o b$ and $a w=c o$ for some $b, c \in G$.

Indeed, if $w a=o$, then $w a=w w=w \cdot a a=w a \cdot a=o a$. If $w a \neq o$, then $w a \in o G$ trivially. Similarly for $a w$.

Now, we have $w a=o b=b w^{2}=b w a a=b o b a=b^{2} o a=w b^{2} w a=w b^{2} o b=w^{3} b^{3}$ and, quite similarly, $a w=c^{3} w^{3}$. But then $w^{3} b=w \cdot w^{2} b=w . w a=o a=a o=$ $a w . w=c o . w=c w^{3}$ and $w a=w^{3} b^{3}=w^{3} b \cdot b^{2}=c w^{3} b^{2}=c^{2} w^{3} b=c^{3} w^{3}=a w$, a contradiction.
(iii) If $w \in J(G)$ and $a \in K(G)$, then $a w, w a \in J(G)$, since $J(G)$ is an ideal, a contradiction with (ii). Finally, if $w=w d$, then $w=w . w d=w^{2} d=o d$ and $w \in J(G)$, again a contradiction. Thus $w \notin w G$ and, similarly, $w \notin G w$.
9.6 Proposition. Let $G \in \mathscr{D}$ be a non-associative primary groupoid, $H=G / J(G)$ and let $f: G \rightarrow H$ denote the natural projection. Then:
(i) $H \in \mathscr{D}$ and $H$ is a non-associative and strongly primary.
(ii) $f(K(G))=K(H)$ and $f \mid K(G)$ is injective (in fact, $K(G) \subseteq G \backslash J(G)$ and $f \mid(G \backslash(G))$ is injective.
(iii) If $G$ is finite, then $\kappa(H)=\kappa(G)$ and $\lambda(H)=\lambda(G)+1-\operatorname{card}(J(G)) \leq \lambda(G)$.

Proof. The assertions follow easily from 9.5 .
9.7 Remark. Let $G_{1} \in \mathscr{D}$ be finite, non-associative and $\mathscr{K}$-unipotent. Then $G_{2}=\left\langle K\left(G_{1}\right)\right\rangle_{G_{1}}$ is (non-associative) primary, $\kappa\left(G_{2}\right)=\kappa\left(G_{1}\right)$ and $\lambda\left(G_{2}\right) \leq \lambda\left(G_{1}\right)$. Further, $G_{3}=G_{2} / J\left(G_{2}\right)$ is strongly primary and, again, $\kappa\left(G_{3}\right)=\kappa\left(G_{1}\right)$ and $\lambda\left(G_{3}\right) \leq \lambda\left(G_{1}\right)$.

## VIII.10 The numbers $i(n)$

10.1 Remark. Let $n, k$ be positive integers such that $n \geq 2$ and $n \geq k$. We have $n=2^{r} k$, where $r=m+s$ is a real number, $m$ a non-negative integer and $0 \leq s<1$. Put $l=\max (k, m)$. We claim that $l \geq \log _{2}(n)-\log _{2}\left(\log _{2}(n)\right)-1$.

First, the inequality is equivalent to $2^{1+1} \log _{2}(n) \geq 2^{m} 2^{s} k$, and hence it is enough to show that $2^{\prime}\left(m+s+\log _{2}(k)\right) \geq k, t=l-m$. If $m=0$, then $r=0, s=0$, $k=l=t=n \geq 2,2^{k} \geq k, k^{2^{k}} \geq 2^{k}$ and $2^{k} \log _{2}(k) \geq k$. Now, assume that $m \geq 1$. We show that $2^{t} m \geq k=t+m$. This is certainly true for $k \leq m$, and hence we restrict ourselves to the case $1 \leq m<k$. Then $t \geq 1,2^{t}-1 \geq t$, $\left(2^{t}-1\right) m \geq t$ and, finally, $2^{t} m \geq t+m$.
10.2 Let $G \in \mathscr{D}$ be a non-associative groupoid. We shall define an equivalence $\tau_{G}$ on $K(G)$ by $(a, b) \in \tau_{G}$ iff $a^{2}=b^{2}$. Further, we denote $\tau(G)=\operatorname{card}\left(K(G) / \tau_{G}\right)$.
10.3 Lemma. Let $G \in \mathscr{D}$ be a finite non-associative groupoid and let $m$ be a non-negative integer such that $\kappa(G) \geq \tau(G) 2^{\prime \prime \prime}$. Then $\lambda(G) \geq \max (\tau(G), m)$.

Proof. Let $A$ be a block of $\tau_{G}$ with maximal number of elements (see 6.2), and let $H=\langle A\rangle_{G}$. Then $K(H)=A, \quad H$ is primary and $\kappa(H)=\operatorname{card}(A) \geq$ $\kappa(G) / \tau(G) \geq 2^{\prime \prime \prime}$. By 8.7 , we have $\lambda(G) \geq \lambda(H) \geq ı(H) \geq m$. On the other hand, $\lambda(G) \geq \tau(G)$ by 1.4(i).
10.4 Proposition. Let $G \in \mathscr{D}$ be a finite groupoid such that $\kappa(G) \geq 2$. Then $\lambda(G) \geq \log _{2}(\kappa(G))-\log _{2}\left(\log _{2}(\kappa(G))-1\right.$.

Proof. Combine 10.3 and 10.1.
10.5 For a non-negative integer $n$, let $\lambda(n)$ denote the number $\min (\lambda(G))$, where $G$ runs through all (finite) groupoids from $\mathscr{D}$ such that $\kappa(G)=n$.

We have $\lambda(0)=1, \lambda(1)=3$ and $\lambda(2)=3$ (by 2.1 and 2.3 ). Further, by 2.5 and 10.4 we have $\log _{2}(n)-\log _{2}\left(\log _{2}(n)\right)-1 \leq \lambda(n) \leq n+2$ and $3 \leq \lambda(n)$ for every $n \geq 2$. In particular, the numbers $\lambda(n)$ are not bounded.

## VIII. 11 Comments and open problems

11.1 This part is natural continuation of [3] and it is based mainly on [1].
11.2 Describe the structure of the $\mathscr{D}$-groupoids $G$ such that $a^{2} \neq b^{2}$ for all $a, b \in K(G), a \neq b$.
11.3 Find better estimates for the numbers $\lambda(n)$.

## Rerefences

[1] Drápal, A., Groupoids with non-associative triples on the diagonal, Czech Math. J. 35 (1985), 555-564.
[2] Kepka, T. and Trch M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. Math. Phys. 33/1 (1992), 69-86.
[3] Kepka, T. and Trch, M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36/1 (1995), 17-30.


[^0]:    *) Department of Mathematics, Charles University, 18600 Praha 8, Sokolovská 83, Czech Republic

