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Praha*)

Received 16. September 1996

Groups possessing connected transversals to Abelian subgroups are studied in more detail.

Podrobnéji se studuji grupy se spojenymi transversdlami k abelovskym podgrupdm.

1. Preliminaries

1.1 Lemma. Let H be a non-normal finitely generated subgroup of a finitely
generated group G. Then they exists a subgroup N of G maximal with respect to
N=<= Gand NH# G.

Proof. Let 9t be the set of subgroups M such that M = G and MH #4 G. Then
the unit subgroup is in M and M is ordered by inclusion. Moreover, if M;, i€ I,
is a chain of subgroups from 9, then certainly M = | J, M; < G. Now, suppose
for a moment that MH == G. If A and B are finite subsets of G such that H = (A4)
and G = {B), then b~'abe MH for all ae A and be B u B~'. Consequently
there is i € I such that all these elements b~ 'ab are in M,. But then M;H < G,
a contradiction.

We have proved that the ordered set 9t is upwords-inductive.

1.2 Remark. Consider the situation from 1.1 and put G = G/N. Then
H = HN/N is not normal in G and, if M + 1 is normal subgroup of G, then
M.H=G.

1.3 Lemma. Let H be a subgroup of group G such that H is nilpotent and
NGg(K) = H for every subgroup K # 1 of H. Then H~ H* = 1 for every
x e G\H.
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Proof. Suppose that L= H n H*#+ 1 for some xeG. Now, N¢4(L) = Hn
H* = L and since H and H" are nilpotent, we conclude that L = H = H~. Then
X e NG(H) = H.

1.4 Lemma. Let A, B, C be subsets of a group G such that G = BC, C is finite
(card(C) = n = 1) and [a, b] € C for all ae A and b € B. Then [G : Cg(a)] < n?
for every a€ A.

Proof. Let a€ A. For ce C, put B, = {be B, [a, b] = ¢}. Now, B = [ JB, and
ceC

this union is disjoint. If b, b, € B,, then b; 'ab, = b5 'ab, i.e., b,b; ' € C4(a) and

Cc(a)bl = CG(a)bz.

For every c € C such that B, + §, choose b, € B, and put D = {b(.; cE C}. Ten
G = C4(a)DC. Indeed, if x € G, then x = bd for some b € B and d € C. Of course,
b € B, for some c € C and we have x(b.d)™' = bdd~'b. = bb.' € C¢(a). Clearly,
card(DC) < n”.

1.5 Lemma. Let H be a finite subgroup of a group G and let A, B be
H-connected pseudotransversals to H in G such that G = {A, B). Then the index
[G : C4(H)] is finite. Moreover, if Lg(H) = 1, then the index [G: Z(G)] is also
finite.

Proof. Since H is finite, H < {(C) for a finite subset C < 4 U B. Now, put
K = () C4(c). By 1.4, each of the subgroups Cg¢(c) is of finite index in G.
ceC
Consequently, the index [G : K] is also finite. Clearly, K = Cg(H).
Now, assume that [LG(H) = 1. By the preceding observation and [1,3.18],
Ng(H) = HZ(G) is of finite index in G. But H is finite, H n Z(G) = 1 and
[G:Z(G)] = [G:HZ(G)][HZ(G): Z(G)] = [G : Ng(H)] card (H) is finite.

1.6 Remark. Let H be a finite subgroup of a group G such that there exist
H-connected pseudotransversals A, B to H in G.

(i) If G = (A,B), then the index [G : K] is finite, where K/Lg(H) =
Z(G/Lg(H)).

(ii) Put G, = {A,B) and H, = H N G,. Then A, B are H,-connected pseudo-
transversals to H, in G, and by 1.5, the index [Gl : Cc,(Hl)] is finite. On the other
hand, since H is finite also the index [G : G,] is finite. Consequently [G : C¢ (H))]
is finite. In particular, there is a normal subgroup K <0 G such that K < Cg,(H))
and [G : K] is finite.

1.7 Lemma. Let H be an Abelian subgroup of a group G such that N4(H) = H.
If x€ G and N4(T) = H, where T = H n HY, then xe H and T = H.

Proof. We have H U H* = N¢(T) < H. Hence H* < H and T = H*. Further,
H < H* ' is an Abelian group, H*™' < Ng(H) = H and H = H*. Thus H =
H* = T and xe Ng(H) = H.
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1.8 Lemma. Let H < R = G be subgroups of a group G such that H is
Abelian, H# R and R < K, whenever K is a subgroup of G properly containing
H. Then:

(i) Ng(H) = H and Z(R) < H.

(ii) If T is a subgroup of H such that Ng(T) & H, then T < Z(R).

(iii) Lo(H) = Z(R) = Lg(H).

Proof. (i) If Ng(H) #+ H, then H = R = Ng(H) and H = R, a contradiction.

(i) We have H < C4(T) =2 Ng(T). Since Ng(H) = H and Ng(T) + H, H is
not normal in Ng(T), and hence H % C4(T). Consequently R = C4(T) and
T < Z(R).

(iii) By (i) and (ii), Lg(H) < Z(R) < H. Clearly Z(R) = Lg(H). On the other
hand, Ng(Lg(H)) = R & H, and so Lg(H) = Z(R) again by (ii) (where we take
G = R).

2. Connected transversals to cyclic subgroups

2.1 In this section, let H be a cyclic subgroup of a group G and let A, B be
H-connected pseudotransversals to H in G.

2.2 Theorem. Suppose that H is a cyclic p-group for a prime p and that
Le(H) = 1. Then A = B is an Abelian subgroup of G.

Proof. First, A and B are transversals [1, 3.9]. Now, for every a € A4 there exists
a (uniquely determined) f(a)e B with f(a)~'ae H and we have f(a)~'a’H =
fla)"'af(a)H=f(a)""af(a) f(a)~'a~'f(a)aH = aH (since f(a)~'a~'f(a)ae H).

Let de A and ¢ = f(d)"'de H. Further, let be A and let K denote the
subgroup {c,f(b)"'b). Then K = H, K is a cyclic p-group, and hence either
K=<c) or K=f(b)""b). In the latter case, cbH = (f(b)~'b)'bH =
(f(B)~" by~ f(b)~" b°H = (f(b)~' b)""' bH = ... = bH (see the above observa-
tion) for some n > 1 and we have b~ 'cb e H.

Now, assume that K =<c). Then f(b)~'bdH = c"dH = dH = f(d) H. Consequent-
ly, d='f(b)"'bde H and thus b~'d~'bd =b~"f(b).f(b)"'d~"'f(b)d.d~'f(b) 'bde
H. Moreover, f(d)"'f(b)"'bde H, and hence f(b)'f(d)™'bd =
fb)'b.b7"f(d)~" bf(d) f(d)"' f(b) ' bd.d~'b~"f(b)d e H. Finally f(b)~'cb =
f(b)~' f(d)™"db = f(b)"'f(d)"'bd.d"'b"'dbe H, and therefore b~'ch =
b='f(b).f(b)'cbeH.

We have shown that (in both cases) b~'cb € H for every b € A. Since G = AH,
we conclude that ¢ € Lg(H) = 1. Thus ¢ = 1 and f(d) = d. But this means that
A = B. Now A is an H-selfconnected transversal and, in particular, abH = baH
for all a, b € A.

In the remaining part of the proof, we are going to show that A is
a subgroup of G. For every ordered pair (a,b)e Ax A there exists a (unique)
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gla,b)e A such that h(a, b) = g(a,b)"'abe H. Now, g(a, b) = g(b,a) and
h(a,b)b~'a™"'ba = h(b, a). Moreover, h(a,b)aH = g(a,b)~"' abaH = g(a,b)™' a’bH =
gla,b)~" ag(a, b) H = aH (since a'g(a, b)~" ag(a, b) € H) and a~'h(a, b) a € H.

Let a,b,c€ A and R = (h(a,b), h(c, b), h(c, c)). Again, either R = {h(a,b)) or
R = <h(c,b)> or R = (h(c,c)y. In the latter two cases we have ¢ 'h(a, b) c € H,
since ¢ 'h(c, b) ¢, ¢~ 'h(c, c) c € H (see the above observation).

Next assume that R = {h(a, b)>. Then u=a""h(c,b)ae H, v=g(c,b)~" a~'cba=
glc,b)"'a'g(c,b)a.ue H,w=>b""'c"'a 'cha=h(c,b) 'veH,z=c"'b"'a 'cha=
c™'blebwe H, r =c 'b'a"'cg(a,b) = za='b~'g(a, b) = zh(b,a)"' € H, s =
¢ 'h(a, b)~" ¢ =rg(a, b)~"' ¢~ 'g(a, b) ce H and, finally, t = s=' = ¢~ 'h(a, b) ce H.

We have shown that ¢~ 'h(a, b) c € H for every c € 4 and it follows that h(a, b) €
Lg(H) = 1 and g(a, b)~"' ab = h(a, b) = 1, i.e.,, ab = g(a, b) € A. We conclude that
A is a subsemigroup of G. On the other hand, if a € 4, then b='a~' € H for some
be Aand we have abe HN A = 1[1, 3.12())] and a~! = b e 4. This shows that
A is a subgroup of G. Since a'b~'abe H n A for all a, b e A, we get ab = ba.
The proof is complete.

2.3 Corollary. Suppose that H is a cyclic p-group. Then A[LG(H) =
BL4(H) = K is a subgroup of G and K/Li(H) is an Abelian group (and
consequently [ A, B] = Lg(H)).

2.4 Remark. The preceding results remain true for H being the Priifer
quasicyclic p-group (the same proof).

2.5 Lemma. Suppose that L4H) =1, [A,B] =1 and G = {A,B). Then
G = A = B is an Abelian group.

Proof. Clearly, C = {A)n His anormal in G, hence C = 1 and (A) = A is
a normal subgroup of G. Quite similarly, {(B)> = B is normal in G. And we have
G = AB. In particular, H = {ab) for some a€ A, be Band G = AH = A{b).
If ce B, then ¢ = db", d€ A, and since de A n B it follows that d € Z(G). We
conclude that B is a Abelian, H =1and G = 4 = B.

2.6 Colorally. Suppose that [A, B] = Lg(H) and G = {A,B). Then G' = H
and H =2 G.

2.7 Theorem. If G = {(A,B), then G' < H and H = G.

Proof. Clearly, G' = H iff H=1 G. Now assume that H #4 G and let H = {u).
Then G' & H and there are x,ye€ G such that [x,y]¢ H. Further, since
G = (A,B), there is a finite subset E of 4 U B such that x, y,ue G, = (E).
Now, put C = G, n Aand D = G, n B. Then C, D are H-connected transversals
to H in G, and G, = {C,D). Moreover G| &£ H. From now on we assume that
G is finitely generated. With respect to 1.1 and 1.2, we can also assume that
MH = G whenever 1 = M =2 G. The rest of the proof is divided into four parts:
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(i) If Lg(H) # 1, then H = L(H) = G, a contradiction. Thus Lg(H) = 1.

(i1) Next we show that Z(G) = 1. Assume this be not true and put L = n{(H,z),
where z goes trough non-identical elements of Z(G). We have (H,z) = H{z)=2G,
and henceforth L <= G. Putalso V = n{z),so that V=2 G. Since H n Z(G) = 1,
we have L = VH and, since L + H, it follows that V' % 1. We conclude that Z(G)
is either a cyclic p-group or quasicyclic p-group and, anyway, V is a (cyclic) group
of prime order p. Moreover, L = L* = H*V and H*n V =1 for every x€ G.
Now, we see that L = H*x V.

Let T be a left transversal to L in G with 1€ T. Put f = [[f, te T, where
fi:L = H'xV — V is the natural projection, so that f is a homomorphism of
L into the cartesian product W of card(T) = [G: L] copies of V. If v e Ker (f),
then v e H' for every t€ T and thus v € Lg(H) = 1. It follows that f is injective
and then L (and, in particular, H) can be imbedded into L. But W is an Abelian
elementary p-group, the same is true for H and H is a (cyclic) group of order p.
Now, by 2.2, A = B = {(A,B) = G is an Abelian group and G’ = 1 < H, which
is not true. We have proved that Z(G) = 1. By [1, 3.18], Ng(H) = H.

(iii) Let K be a subgroup of H such that K % 1 and H # Ng(K). Let
ae(AnNgK)\H and T = {H,a). We have N(H) = NGg(H) = H, so that
Nr(H) = H. Now, H = C{K)< N(K) + H and consequently H + C(K).
Letbe (A n CH(K)\H and S = {(H,b). By [1, 3.11())], b € L4(S) + 1 and hence
S = L4(S) H= G. Further, C(K) = S, and so K < Z(S). Clearly, Z(S) < H (since
Ng(H) = H) and since S =2 G, we have also Z(S)=2 G. Thus Z(S) < LgH) =1
and K = 1, a contradiction.

We have proved that Ng(K) = H for every non-trivial subgroup K of H.

(iv) By (iii) and 1.3, we have H n H* = 1 for every x e G\H. Now, by
[1,3.20], A = B = (A,B) = G is an Abelian group, and hence G’ = 1, which is
the final contradiction.

2.8 Theorem. Suppose that Ls(H) = 1. Then G" = 1 and A = B is an Abelian
subgroup of G.

Proof. Put K = (4,B) and E = Kn H. Now, A and B are E-connected
transversals to E in K and Lg(E) = 1. By 2.7, K’ < E, and hence K’ = 1. Then
K is an Abelian group, E = 1, 4 = B = K and G” = 1 by [3].

2.9 Corollary. G” < Lg(H), G” = 1, K = ALg(H) = Blg(H) is a subgroup
of G and K' < L4(H) (and consequently [ A, B] = Lg(H)).

3. Products of Abelian groups
3.1 In this section, let G be a group such that G = KH, where both K and H are

Abelian subgroups of G, H + G, K £ 1 and K = G.
The following four lemmas are obvious:
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3.2 Lemma.

(i) HNK = Hn Cg(K) = Hn Z(G) = Ly(H).

(ii) Z(G) = (K n Z(G)) (H n Z(G)).
(iii) If Ug(H) = 1, then HA K = 1 = H n C4(K) and Z(G) < K.
(iv) If Z(G) = 1 then HA K = 1 = H 1 C¢(K).

(v) If HN K =1, then Ls(H) = H n C4(K) = H n Z(G).

3.3 Lemma.
(i) If E is a subgroup of G such that H < E = G, then E = (E n K) H and
EnK=G.
(ii) If no non-trivial proper subgroup of K is normal in G, then H N K =1
and H is maximal in G.

3.4 Lemma. Suppose that H is a maximal subgroup of G.
(i) If L is a subgroup of K and L =2 G, then either L < Hn K or
K =(HnK)L.
(ii) If H N K = 1, then no non-trivial proper subgroup of K is normal in G.
(iii) If H 4 G, then Z(G) < Lg(H).

3.5 Lemma. The following conditions are equivalent:
(i) H is maximal in G and H n K = 1.
(ii) No non-trivial proper subgroup of K is normal in G.

3.6 In the remaining part of this section, we shall assume that the equivalent
conditions of 3.5 are satisfied. Now, by 3.2(v), Lg(H) = H n C4(K) = H n Z(G).

If H# G, then Z(G) < H and L4(H) = Z(G).

If H= G, then G @K x H is Abelian and K is (cyclic) of prime order.

For every u € H, the map g, :a — a* = u~'au is an automorphism of K and we
denote by F the subring generated by all these automorphisms g, in the endomor-
phism ring of K. Moreover, we put g = — 1, € F; then g(a) = a~' for every a € K
and ¢* = 15 (= idy).

3.7 Lemma.

(i) Fisafield and K, as a vector space over F, is of dimension 1. In particular,
the groups K and F(+) are isomorphic.

(ii) If H is finitely generated, then both F and K are finite. If, moreover,
Lg(H) = 1, then H is finite cyclic and G is finite.

Proof. (i) Since H is abelian, F is a commutative ring. If f€ F, f % O, then
both f(K) and Ker(f) are subgroups of K, they are normal in G, and hence
f(K) = K and Ker(f) = 1, i.e., f is an automorphism of K.

Now, let ae K, a + 1. Then F(a) is a subgroup of K (use the fact that g € F)
and F(a) = G. Since a € F(a), we have F(a) = K. If f€ F, f # O, then f ~'(a) =
g(a) for some g € F, a = fy(a) and the equality F(a) = K implies fg = idx = 1.
Consequently, f~! = g€ F.
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We have proved that F is a field.

(i) Any field, finitely generated as a ring, is finite. Now, if L4(H) = 1, then the
mapping u — ¢, ' is an injective homomorphism of H into the multiplicative group
F* of non-zero elements from F; the group F* is cyclic.

3.8 Let A be a left pseudotransversal to H in G such that [4, 4] = 1.

3.9 Lemma.
(i) A < KH_G(H).
(ii) If [LG(H) =1, then A = K.

Proof. There is a uniquely determined subset S of K x H such that 4 =
{au,(a, u) € S}. Now, fix an element re K, r + 1. For every a€ K, there is
a unique p,€ F with a = p,,(r); we have p, + Op iff a &+ 1.

Assume that b+ 1 and u¢ L = Lg(H) for some (b,u)eS and put p =
(g + g, ")pr'eF.Sinceu¢ L = Hn Cy(K), we have u¢ C4(K) and g + ¢, ' +
Or. Thus p + Of and e~' = p~'(r) for some ee K, e + 1. Now, p(r) = e =
(') =p7'(r"") = p~'4q(r), and so p, = p~'qand p;' = q~'p = gp. On the
other hand, G = AH, and hence (e, v)€ S for some ve H. The equality [4, 4] = 1
implies bueu™'uv = buev = evbu = evbv™'uv and bueu~' = evbv~'. From this,
(@+ a7 )psor) =b"'vbv™' = e 'ueu" = (q + q;")p{r) and (g + q;")ps =
(@+49:)po P=(@+a:)ps'=(g+a )p: ' =(a+a7 ") ap, 1r=(q+a:")q=
15 + q.'q and O = g !q, a contradiction.

We have proved that A = H u KL. But, if we A n H and ce K, then cze 4
for some z € H and wez = czw = cwz,we = cwand we L < KL.Thus 4 < KL
and the rest is clear.

3.10 Lemma.
(i) G’ < K.
(ii) If H#A G, then G' = K.
(iii) If Lg(H) =1 % H, then A = G'.

Proof. (i) G/K =~ H.
(i1) Since H & G, we must have G’ + 1. But G' <= G and G’ < K.
(iii) Combine (ii) and 3.9(ii).

4. Connected transversals to Abelian maximal subgroups

4.1 In this part, let H be a (proper) maximal subgroup of a group G such that
H is Abelian and not normal in G. Further, let 4, B be H-connected pseudotrans-
versals to H in G. By 1.8(iii), Z(G) = L4H) = H.

4.2 Theorem. Suppose that (Z(G) =) Lg(H) = 1. Then A = B = G’ is a nor-
mal Abelian subgroup of G.
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Proof. First, let ae A. Then b~'ae H for some he B, and hence b~'ae H N
Hb~'=HnbHb™' = T.If N((T) < H, then be Hby 1.7, and so ae An H = 1,
beBnH=1and a=b=1([l,3.12()]). On the other hand, if N4(T) ¢ H, then
Ng(T) = G (since H is maximal in G), T2 G, T < L¢(H) = 1 and, again, a = b.
We have proved that 4 = B. Quite similarly, B = A, and so 4 = B.

Now, let a,be A. There is ce A such that ¢ 'abe H. We have ¢ 'ba =
¢ 'abb~'a 'bae H and a '¢c“'aba = a~'¢"'ac.c 'bae H. Consequently,
c'labe T = HnaHa™'. Again, if Ng(T) < H, then ae H by 1.7, and hence
a=1and ab=beA If N((T) ¢ H, then T =1 and ab = ce A. We have
proved that AA < A, ie., A is a subsemigroup of G. Further, if a € A, then
b~'a~'e H for some be A, and then abe H N A, and a™' = be A. Thus 4 is
a subgroup of G. Since [4, A] = A n H = 1, A is an Abelian group.

Now, G = AH, and hence G” = 1 by [3]. Since H #& G, we have G’ & H and
then G = HG'. By 3.10(iii)) 4 = G'.

4.3 Corollary. (cf. 2.3 and 2.9.) AZ(G) = BZ(G) = G'Z(G) = K is a normal
subgroup of G, K' < Z(G), K/Z(G) is an Abelian group, K is nilpotent of class at
most 2, {A,By = K * G and [ A, B] = Z(G). Finally, G" = Z(G) and G = 1.

5. Connected transversals to finite Abelian subgroups

5.1 In this section, let H be a finite Abelian subgroup of a group G such that
there exist H-connected pseudotransversals 4, B to H in G.

5.2 Theorem. The group G is soluble.

Proof. (i) First, assume that G is finite and proceed by induction on card(G).

If H = G, then G is Abelian. Hence, let H #+ G and let G, be a subgroup of
G such that H is a (proper) maximal subgroup of G,. It follows from [1, 3.11(1)]
that L¢(G,) # 1 and then G/L4(G)) is soluble by induction. Now it remains to show
that G, is soluble.

If H= G,, then G| < H and G| = 1. If H#A G, then G{"= 1 by 4.3,

(ii) Next, let G = {4, B). Since L;(H) is a normal Abelian subgroup of G, we
may assume that Lg(H) = 1. Now, G = G/Z(G) is a finite group by 1.5 and G is
soluble by (i).

(iii) Finally, consider the general case. Let G, = {A,B) and H, = H n G,.
Then A, B are H,-connected pseudotransversals to H, in G, and the subgroup G, is
soluble by (ii). On the other hand, the index [G:G,] is finite and there is
a subgroup K of G such that K= G and [G: K] is finite. Consequently, K is
soluble (since G, is so) and G/K is soluble (by (i)).

5.3 Remark. Suppose that there exists a subgroup R of G such that H < R
and H 4R and R < K, wherever K is a subgroup of G properly containing H.
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(i) We have R & NG(H), and hence Ng(H) = Ng(H) = H. Consequently,
Z(G) < H and Z(R) = H.

(ii) If T is a subgroup of H such that Ng(T) & H, then T < Z(R).

(iii) Lo(H) < Z(R) = Ly(H).

(iv) Let ac A. Then b='ae T = H n bHb™" for some b € B (see the proof of
4.2) and either NG(T) € H and beBnH < ﬂ_G(H) c Z(R), aeAnHCc
Le(H) = Z(R) (by 1.7 and [1, 3.11(i)]) or Ng(T) & H and b~'a € Z(R) by (ii).

We have proved that A = BZ(R). Quite similarly, B = AZ(R), and hence
AZ(R) = BZ(R) = E. Clearlyy, HN E = Z(R).

(v) Let ac A and be B. Then c 'abe H for some c€ B and we have
¢ 'abe T = HnaHa ' (see the proof of 4.2). If No(T) = H, thenae An H <
Lo(H) < Z(R), b-'abe Le(H) and abe blo(H) < bZ(R) < E. If N¢(T) £ H,
then ¢~ 'ab € Z(R) and, again ab € E.

We have proved that AB < E. Quite similarly, BA < E.

(vi) Let ac A. Then b~'a~'e H for some be H, and so abe ABn H <
En H = Z(R). Now, b~'a~"€ Z(R) and a~' € bZ(R) < E.

We have proved that A~' < E. Quite similarly B~' < E.

(vii) Let ac A and b e B. Then ¢~ 'a~'be H for suitable ce B and c~'a='baH =
c 'a"'abH = ¢ 'aa 'bH = ¢ 'acH = ¢ 'caH = aH (since a~'b~'abe H and
c'alcae H). Now a ‘¢ 'a 'bae H and c 'a 'be T = H naHa™". Procee-
ding similarly as in (v), we check that ab=" € E. Thus A~'B < E and, symetrically,
B 'A c E.

(viii) AE = ABZ(R) < EZ(R) = AZ(R)Z(R) = E. Similary BE<E, A~'E<E
and B~'E < E, and hence SS < E and SE < E where S = Au A" UBuU B~ ..
Further, by induction on n > 1, n — timesSS ... S < E. On the other hand,
(A,BY = U»21SS ... S, so that <A,B) < E.

(ix) Since H 4 R, we have H # Z(R) and we take u€ H\Z(R). If u€ E, then
u = ar for same a€ A, re Z(R), and then ae An H < Z(R), u = are Z(R),
a contradiction. Thus u ¢ E and, in particular, {(A,B) < E *+ G.

5.4 Theorem. If G = {A, B), then H is subnormal in G.

Proof. (i) First, assume that G is finite and proceed by induction on card(G).
Let K be a subgroup of G such that H < K and H + K. Then L = L4K) # 1
and K = HL ([1, 3.11(i)]). Further, by induction, K is subnormal in G and, since
G is finite, also the subgroup R = (K is subnormal in G. If H# R then G =
{A,B) #+ G by 5.3(ix), a contradiction. Thus H <= R and H is subnormal in G.

(ii) Next, let G be (possibly) infinite. We can assume that Ls(H) = 1. Now, by
1.5, the index [G : Z(G)] is finite, and so HZ(G) is subnormal in G by (i). However,
H = HZ(G).

5.5 Corollary. If L4(H) = 1 + G = (A,B), then Z(G) + 1.
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