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1997 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 38, NO. I 

Multiplication Groups of Quasigroups and Loops III 

T. KEPKA AND A. JANCARIK 

Praha*) 

Received 16. September 1996 

Groups possessing connected transversals to Abelian subgroups are studied in more detail. 

Podrobneji se studujf grupy se spojenymi transversalami k abelovskym podgruparn. 

1. Preliminaries 

1.1 Lemma. Let H be a non-normal finitely generated subgroup of a finitely 
generated group G. Then they exists a subgroup N of G maximal with respect to 
TV <? G and NH ^ G. 

Proof. Let TO be the set of subgroups M such that M ^ G and MH ^ G. Then 
the unit subgroup is in TO and TO is ordered by inclusion. Moreover, if M„ / e I, 
is a chain of subgroups from TO, then certainly M = (J7 M, ^ G. Now, suppose 
for a moment that MH ^ G. If A and B are finite subsets of G such that H = (A} 
and G = <£>, then b~lab e MH for all aeA and b e B u B~l. Consequently 
there is iel such that all these elements b~~[ab are in M,. But then M , H ^ G, 
a contradiction. 

We have proved that the ordered set TO is upwords-inductive. 

1.2 Remark. Consider the situation from 1.1 and put G = G/N. Then 
H = HN/N is not normal in G and, if M =# 1 is normal subgroup of G, then 
M .H<g G. 

1.3 Lemma. Let H be a subgroup of group G such that H is nilpotent and 
f^G(^) = H for every subgroup K =\= 1 of H. Then H n Hx = 1 for every 
xeG\H. 

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic 
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Proof. Suppose that L = H n Hx * 1 for some xeG. Now, NG(L) c II n 

IF = L and since H and Hx are nilpotent, we conclude that L = II = IF. Then 
xeNG(1Y) = H. 

1.4 Lemma. Let A, B, C be subsets of a group G such that G = BC, C is finite 
(card(C) = n = 1) and [a, b] e C for all aeA and b e B. Then [G : CG(aj] = n2 

for every aeA. 

Proof. Let aeA. For ce C, put Bc = {be B, [a, b] = c}. Now, B = \JBC and 
ceC 

this union is disjoint. If bb b2 e Bc, then b^lab{ = b2
lab2 i.e., b2b^~l e CG(a) and 

CG(a)b{ = CG(a)b2. 
For every ce C such that Bc -# 0, choose bce Bc and put D = {bc.; c e C). Ten 

G = CG(a)DC. Indeed, if x e G, then x = bd for some b e B and d e C. Of course, 
b e Bt. for some ce C and we have x(b t.d)-1 = bdd~lbc = bb"1 e CG(a). Clearly, 
card(DC) ^ n2. 

1.5 Lemma. Let H be a finite subgroup of a group G and let A, B be 
H-connected pseudotransversals to H in G such that G = (A, B}. Then the index 
[G : CG(II)] is finite. Moreover, if LG(II) = 1, then the index [G : Z(G)] is also 
finite. 

Proof. Since H is finite, If ^ <C> for a finite subset C c A u B. Now, put 
K = f] CG(c). By 1.4, each of the subgroups CG(C) is of finite index in G. 

ceC 

Consequently, the index [G: K] is also finite. Clearly, K ^ CG(II). 
Now, assume that LG(H) = 1. By the preceding observation and [1,3.18], 

NG(H) = IIZ(G) is of finite index in G. But II is finite, II n Z(G) = 1 and 
[G : Z(G)] = [G : IIZ(G)] [IIZ(G): Z(G)] = [G : r>JG(H)]card(II) is finite. 

1.6 Remark. Let II be a finite subgroup of a group G such that there exist 
H-connected pseudotransversals A, B to II in G. 

(i) If G = (A,By, then the index [G: K] is finite, where K/lG(H) = 
Z(G/1G(II)). 

{it) Put Gx = <-4,B> and Hx = II n Gx. Then A, B are Hrconnected pseudo­
transversals to II! in G{ and by 1.5, the index [G{ : CGl(II!)] is finite. On the other 
hand, since II is finite also the index [G : G j is finite. Consequently [G : CG.(II!)] 
is finite. In particular, there is a normal subgroup K ^ G such that K c= CGl(II!) 
and [G : K] is finite. 

1.7 Lemma. Let II be an Abelian subgroup of a group G such that NG(H) = II. 
Ifx e G and NG(T) c II, where T = II n H\ then xeH and T = II. 

Proof. We have II u IIV = NG(T) c II. Hence IF c II and T = H\ Further, 
II c Hx~l is an Abelian group, IIX_1 c NG(II) = II and II c II\ Thus II = 
IIX = Tand xeNG(H) = II. 
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1.8 Lemma. Let H £ R £ G be subgroups of a group G such that H is 
Abelian, H ^ R and R £ K, whenever K is a subgroup of G properly containing 
H. Then: 

(i) NC(H) = H and Z(R) £ H. 
(ii) If T is a subgroup of H such that NG(T) £ H, then T £ Z(R). 

(Hi) lG(H) £ Z(R) £ lR(H). 

Proof, (i) If NG(H) * H, then H £ R £ NG(H) and H ?3 R, a contradiction. 
(ii) We have H £ C G (T)^ NG(T). Since NC(H) = H and NC(T) * Jf, H is 

not normal in MG(T), and hence H 4= CC(T). Consequently R £ CC(T) and 
T £ Z(R). 

(iii) By (i) and (ii), lG(H) £ Z(K) £ H. Clearly Z(i?) £ LR(H). On the other 
hand, f̂ R(LR(H)) = R £ H, and so H_R(tf) £ Z(R) again by (ii) (where we take 
G = R). 

2. Connected transversals to cyclic subgroups 

2.1 In this section, let H be a cyclic subgroup of a group G and let X, B be 
H-connected pseudotransversals to H in G. 

2.2 Theorem. Suppose that H is a cyclic p-group for a prime p and that 
LG(H) = 1. Then A = B is an Abelian subgroup of G. 

Proof. First, A and B are transversals [1, 3.9]. Now, for every a e A there exists 
a (uniquely determined) f(a) e B with f(a)~x ae H and we have f(a)~x a2H = 
f(a)~1 af(a)H =f(a)~l af(a)f(a)~l a~xf(a) aH = aH (since f(a)~x a~ xf(a) ae H). 

Let deA and c = f(d)~x de H. Further, let be A and let K denote the 
subgroup <c,f(b)_1 b>. Then K ~l H, K is a cyclic p-group, and hence either 
K = <c> or K = (f(b)-x by. In the latter case, cbH = (f(b)~x b)n bH = 
(f(b)~x b)n~xf(b)-x b2H = (f(b)~x b)n~x bH = ... = bH (see the above observa­
tion) for some n > 1 and we have b~xcb e H. 

Now, assume that K = <c>. Then f(b)~x bdH = cndH = dH = f(d) H. Consequent­
ly, d-xf(b)~xbdeH and thus b~xd~xbd = b~xf(b).f(b)~x d~xf(b)d.d~xf(b)-x bde 
H. Moreover, f(d)-xf(b)-xbdeH, and hence f(b)-xf(d)-xbd = 
f(b)-xb.b-xf(d)-x bf(d)f(d)-xf(b)-x bd.d~xb-xf(b)deH. Finally f(b)"1 cb = 
f(b)-xf(d)-xdb = f(b)-xf(d)~x bd . d~xb~xdb e H, and therefore b~xcb = 
b~xf(b).f(b)-xcbeH. 

We have shown that (in both cases) b~xcb e H for every b e A. Since G = AH, 
we conclude that c e LG(H) = 1. Thus c = 1 and f(d) = d. But this means that 
A = B. Now A is an H-selfconnected transversal and, in particular, abH = baH 
for all a,beA. 

In the remaining part of the proof, we are going to show that A is 
a subgroup of G. For every ordered pair (a, b) e A x A there exists a (unique) 
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g(a, b)e A such that h(a, b) = g(a, b)~x ab e II. Now, g(a, b) = g(b, a) and 
h(a,b)b~xa~xba = h(b,a). Moreover, h(a,b)aH = g(a,b)~x abaH = g(a,b)~x a~bH = 
g(a,b)~x a g(a, b) H = aH (since a~xg(a, b)~x ag(a, b) e II) and a~xh(a, b) a e II. 

Let a,b,ce A and R = (h(a,b), h(c, b), h(c, c)>. Again, either R = (h(a,b)} or 
R = (h(c,b)} or R = </z(c,c)>. In the latter two cases we have c~[h(a, b) ce H, 
since c~xh(c, b) c, c~xh(c, c) c e H (see the above observation). 

Next assume that R = (Ii(a, b)}. Then u = a~xh(c, b)aeH,v = g(c, b)~x a~xcba = 
g(c,b)~x a~xg(c,b)a.ueH, vv = b~xc~xa~xcba = h(c,b)~x veH, z = c~xb~xa~xcba = 
c~xb~xcbw e H, r = c~~xb~xa~xcg(a,b) = za~xb~xg(a,b) = zh(b,a)~x e H, s = 
c~xh(a, b)~x c = rg(a, b)~x c~xg(a, b)ceH and, finally, t = s~x = c~xh(a, b) ceH. 

We have shown that c~xh(a, b)ce H for every ce A and it follows that h(a, b) e 
LG(H) = 1 and g(a, b)~x ab = h(a, b) = 1, i.e., ab = g(a, b) e A. We conclude that 
A is a subsemigroup of G. On the other hand, if ae A, then b~xa~x e H for some 
b e A and we have ab e H n A = 1 [1, 3.12(i)] and a~x = b e A. This shows that 
A is a subgroup of G. Since a~xb~xab e H n A for all a,be A, we get ab = ba. 
The proof is complete. 

2.3 Corollary. Suppose that H is a cyclic p-group. Then 4̂0_G(II) = 
BLG(H) = K is a subgroup of G and K/LG(H) is an Abelian group (and 
consequently [A, B] ~~ LG(II)| 

2.4 Remark. The preceding results remain true for H being the Priifer 
quasicyclic p-group (the same proof). 

2.5 Lemma. Suppose that Q_G(II) = 1, [A, B~\ = 1 and G = (A,B}. Then 
G = A = B is an Abelian group. 

Proof. Clearly, C = (A} n H is a normal in G, hence C = 1 and (A} = A is 
a normal subgroup of G. Quite similarly, <J3> = B is normal in G. And we have 
G = AB. In particular, II = {ab} for some ae A, b e B and G = ,4II = ^l<b>. 
If ce B, then c = db'\ de A, and since de A n B it follows that d e 1(G). We 
conclude that B is a Abelian, II = 1 and G = A = B. 

2.6 Colorally. Suppose that [A, B] ~l lG(H) and G = <^,B>. Then G' <~\ H 
and II <3 G. 

2.7 Theorem. If G = <A,B}, then G' <~\ II and II <3 G. 

Proof. Clearly, G' ~\ II iff II ^ G. Now assume that II ^ G and let II = <u>. 
Then G' $ II and there are x, y e G such that [x, y] $ II. Further, since 
G = (A, B}, there is a finite subset E of A\J B such that x, y, ueGx = <£>. 
Now, put C = Gj n ,4 and D = Gt n B. Then C, D are II-connected transversals 
to II in Gj and G{ = <C,D>. Moreover G\ $ II. From now on we assume that 
G is finitely generated. With respect to 1.1 and 1.2, we can also assume that 
MII ^ G whenever 1 4= M ^ G. The rest of the proof is divided into four parts: 
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(i) If LG(H) =# 1, then H = lG(H)m G, a contradiction. Thus \LG(H) = 1. 
(ii) Next we show that Z(G) = 1. Assume this be not true and put L = n(H,z}, 

where z goes trough non-identical elements of Z(G). We have <II,z> = H(z}^G, 
and henceforth L ^ G. Put also V = n(z), so that V^ G. Since H n Z(G) = 1, 
we have L = VH and, since L 4 II, it follows that V 4 1. We conclude that Z(G) 
is either a cyclic p-group or quasicyclic p-group and, anyway, V is a (cyclic) group 
of prime order p. Moreover, L = Lx = HXV and Hx n V = 1 for every xe G. 
Now, we see that L = LP x V. 

Let T be a left transversal to L in G with \ eT. Put / = J | / f , £ e T, where 
f: L = IF x V -• V is the natural projection, so that f is a homomorphism of 
L into the cartesian product W of card(T) = [G : L] copies of V. If v e Ker (f), 
then v e IF for every t e T and thus v e tG(H) = 1. It follows that f is injective 
and then L (and, in particular, H) can be imbedded into L. But W is an Abelian 
elementary p-group, the same is true for H and H is a (cyclic) group of order p. 
Now, by 2.2, A = B = (A,B} = G is an Abelian group and G' = 1 = H, which 
is not true. We have proved that Z(G) = 1. By [1, 3.18], NG(H) = H. 

(iii) Let K be a subgroup of H such that K 4 1 and FT 4= NG(I0- L e t 

!jG(in MG(.K))\H and T = <II,a>. We have Nr(H) £ NG(II) = II, so that 
MT^H) = IF Now, H = C T (K )^ NT(£) * H and consequently II 4 CT(K). 
Let /3e(An Cr(K))\II and S = <II,fc>. By [1, 3.1 l(i)], b e LG(S) 4= 1 and hence 
S = LG(5) H^G. Further, CS(K) = S, and s o K g Z(S). Clearly, Z(5) = H (since 
NG(H) = H) and since S_<3 G, we have also Z(S)<g G. Thus Z(S) = LG(H) = 1 
and K = 1, a contradiction. 

We have proved that NG(K) = iL for every non-trivial subgroup K of H. 
(iv) By (iii) and 1.3, we have H n Hx = 1 for every xeG\H. Now, by 

[1, 3.20], A = B = <-4,-B> = G is an Abelian group, and hence G' = 1, which is 
the final contradiction. 

2.8 Theorem. Suppose that tG(H) = 1. Then G" = 1 and A = B is an Abelian 
subgroup of G. 

Proof. Put K = <-4,B> and E = K n H. Now, A and B are £-connected 
transversals to E in K and lK(E) = 1. By 2.7, K' = E, and hence K' = 1. Then 
K is an Abelian group, E = 1, A = B = K and G" = 1 by [3]. 

2.9 Corollary. G" = ILG(H), G"7 = 1, K = AlG(H) = BLG(H) is a subgroup 
of G and K' = lG(H) (and consequently [A, B] = lG(H)). 

3. Products of Abelian groups 

3.1 In this section, let G be a group such that G = KH, where both K and H are 
Abelian subgroups of G, H 4 G, K 4= 1 and K ^ G. 

The following four lemmas are obvious: 
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3.2 Lemma. 
(i) H n K <~\H n CG(K) = H n Z(G) ~\ LG(II). 

(ii) Z(G) = (K n Z(G)j (II n Z(G)). 
(Hi) If LG(II) = 1, then HnK = 1 = Hn CG(K) and Z(G) <= K. 
(iv) If Z(G) = 1 then HnK = 1 = Hn CG(K). 
(v) If HnK = 1, then LG(II) = II n CG(K) = II n Z(G). 

3.3 Lemma. 
(i) If E is a subgroup of G such that II _=_• E <~\ G, then E = (E n K) II and 

EnK^G. 
(ii) If no non-trivial proper subgroup of K is normal in G, then II n K = 1 

and II is maximal in G. 

3.4 Lemma. Suppose that II is a maximal subgroup of G. 
(i) If L is a subgroup of K and L^ G, then either L ~\ H n K or 

K = (II nK)L. 
(ii) If II n K = 1, then no non-trivial proper subgroup of K is normal in G. 

(Hi) If H£G, then Z(G) <= LG(II). 

3.5 Lemma. The following conditions are equivalent: 
(i) II is maximal in G and HnK = 1. 

(ii) No non-trivial proper subgroup of K is normal in G. 

3.6 In the remaining part of this section, we shall assume that the equivalent 
conditions of 3.5 are satisfied. Now, by 3.2(v), LG(II) = II n CG(K) = II n Z(G). 

If II ^ G, then Z(G) c II and LG(II) = Z(G). 
If II ^ G, then G = K x II is Abelian and K is (cyclic) of prime order. 
For every ueH, the map qu: a -> au = u~lau is an automorphism of K and we 

denote by F the subring generated by all these automorphisms qu in the endomor-
phism ring of K. Moreover, we put q = —lFeF; then q(a) = a~l for every a e K 
and q2 = lF (= idK). 

3.7 Lemma. 
(i) F is afield and K, as a vector space over F, is of dimension I. In particular, 

the groups K and F( + ) are isomorphic. 
(ii) If II is finitely generated, then both F and K are finite. If, moreover, 

LG(II) = 1, then H is finite cyclic and G is finite. 

Proof, (i) Since II is abelian, F is a commutative ring. If fe F, f =t= 0F, then 
both f(K) and Ker(f) are subgroups of K, they are normal in G, and hence 
f(K) = K and Ker(f) = 1, i.e., f is an automorphism of K. 

Now, let a e K, a + 1. Then F(a) is a subgroup of K (use the fact that q e F) 
and F(a) ^ G. Since a e F(a), we have F(a) = K. If f e F, f + 0F, then f ~ l(a) = 
g(a) for some g e F, a = fg(a) and the equality F(a) = K implies fg = idK = 1. 
Consequently, f _ 1 = g e F. 
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We have proved that F is a field. 
(ii) Any field, finitely generated as a ring, is finite. Now, if Q_G(H) = 1, then the 

mapping u -> q~l is an injective homomorphism of H into the multiplicative group 
F* of non-zero elements from F; the group F* is cyclic. 

3.8 Let A be a left pseudotransversal to H in G such that ~A, A~ = 1. 

3.9 Lemma. 
(i) A c KlG(H). 

(ii) If LG(H) = 1, then A = K. 

Proof. There is a uniquely determined subset S of K x H such that A = 
{au,(a,u)eS}. Now, fix an element r e K, r + 1. For every aeK, there is 
a unique pa e F with a = pa(r); we have pa + 0F iff a + 1. 

Assume that b + 1 and u£L = tG(H) for some (b, w) e 5 and put p = 
(q + q~l) P~l ' F- s1nce u£L = H n CG(K), we have u £ CG(K) and q + q~l + 
0F. Thus p + 0F and e~l = p~l(r) for some ee K, e + 1. Now, pe(r) = e = 
(p_1(r))_1 = p~l(r~l) = p~xq(r\ anQl s ° Pe = p~lq an(i P71 = q~xp = ^p- o ° the 
other hand, G = AH, and hence (e, v)e5 for some veH. The equality [̂ 4, A] = 1 
implies bueu~xuv = buev = evbu = evbv~luv and bueu~l = evbv~l. From this, 
(« + q~l)Pb(r) = b~xvbv-{ = e~xueu~x = (q + q~x)pe(r) and (q + q~x)pb = 
(q + q~l)Pe, p = (q + q~l)p~l = (q + q~l)p~l = (q + q~)qp, iF = (q + q~l)q = 
IE + q~lq an(3 0F = q~lq, a contradiction. 

We have proved that A ~\ H u KL. But, if w e A n H and c e K, then cZ e A 
for some Z e H and wcz = czw = cwz, wc = cw and w e L ~l KL. Thus A ~l KL 
and the rest is clear. 

3.10 Lemma. 
(i) G -\ K. 

(ii) If H^ G,then G = K. 
(Hi) If lG(H) = 1 * H, then A = G. 

Proof, (i) G/K £ H. 
(ii) Since H^ G, we must have G + 1. But G <3 G and G' c K. 

(iii) Combine (ii) and 3.9(ii). 

4. Connected transversals to Abelian maximal subgroups 

4.1 In this part, let H be a (proper) maximal subgroup of a group G such that 
H is Abelian and not normal in G. Further, let A, B be H-connected pseudotrans-
versals to H in G. By 1.8(iii), Z(G) = LG(H) c IF 

4.2 Theorem. Suppose that (Z(G) =) LG(H) = 1. 77ze,n _4 = B = G is a nor­
mal Abelian subgroup of G. 
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Proof. First, let ae A. Then b la e H for some b e B, and hence b xae H n 
Hb~x = HnbHb~x = T. If NG(T) ~\ H, then beH by 1.7, and so a e 4 n i / = 1, 
b E 5 n H = 1 and a = b = 1 ([1, 3.12(i)]). On the other hand, if NG(T) $ H, then 
NG(T) = G (since H is maximal in G), T ^ G, T ~\ LG(H) = 1 and, again, a = b. 
We have proved that ,4 c J5. Quite similarly, B ~\ A, and so A = B. 

Now, let a, be A. There is c e >1 such that c~labeH. We have c_ 1ba = 
C~labb~la~xba e H and a~xc~xaba = a~xc~xac . c~xbae H. Consequently, 
c~xab e T = H n aHa~x. Again, if NG(T) ~\ H, then ae H by 1.7, and hence 
a = 1 and ab = b e A. If NG(T) $ H, then T = 1 and ab = c e A. We have 
proved that AA ~\ A, i.e., A is a subsemigroup of G. Further, if a e A, then 
b~xa~l e H for some b e A, and then ab e H n A, and a-1 = b e A Thus A is 
a subgroup of G. Since [̂ 4, ,4] ~\ A n H = 1, 4̂ is an Abelian group. 

Now, G = AH, and hence G" = 1 by [3]. Since H £ G, we have G' $ H and 
then G = HG'. By 3.10(iii) A = G'. 

4.3 Corollary, (cf. 2.3 and 2.9.) ylZ(G) = BZ(G) = G'Z(G) = K is a normal 
subgroup of G, K' ~\ Z(G), K/Z(G) is an Abelian group, K is nilpotent of class at 
most 2, <.4,-5> ~\ K + G and [A, B] ~\ Z(G). Finally, G" ~\ Z(G) and G'" = 1. 

5. Connected transversals to finite Abelian subgroups 

5.1 In this section, let H be a finite Abelian subgroup of a group G such that 
there exist H-connected pseudotransversals A, B to H in G. 

5.2 Theorem. The group G is soluble. 

Proof, (i) First, assume that G is finite and proceed by induction on card(G). 
If H = G, then G is Abelian. Hence, let H + G and let Gx be a subgroup of 

G such that H is a (proper) maximal subgroup of G{. It follows from [1, 3.1 l(i)] 
that L^Gj) =(= 1 and then G/LG(Gi) is soluble by induction. Now it remains to show 
that Gj is soluble. 

If H^ G b then G\ <~\ H and G\ = 1. If H^ G, then G'['= 1 by 4.3. 
(ii) Next, let G = (A,B}. Since 0_G(H) is a normal Abelian subgroup of G, we 

may assume that tG(H) = 1. Now, G = G/Z(G) is a finite group by 1.5 and G is 
soluble by (i). 

(iii) Finally, consider the general case. Let Gx = <-4,B) and H{ = H n G{. 
Then A, B are Hrconnected pseudotransversals to Hx in Gx and the subgroup Gx is 
soluble by (ii). On the other hand, the index [G: Gx~\ is finite and there is 
a subgroup K of G such that K ^ G and [G : K] is finite. Consequently, K is 
soluble (since Gx is so) and G/K is soluble (by (i)). 

5.3 Remark. Suppose that there exists a subgroup R of G such that H ~\ R 
and H ^R and R ~\ K, wherever K is a subgroup of G properly containing H. 
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(i) We have R $ NG(H), and hence NR(H) = NG(H) = H. Consequently, 
1(G) ~\ H and Z(R) c H. 

(ii) If T is a subgroup of H such that NG(T) $ H, then T ~\ Z(R). 
(Hi) LG(H) c Z(R) = lR(H). 
(iv) Let ae A. Then b~lae T = H n bHb~{ for some b e B (see the proof of 

4.2) and either NG(T) <~\ H and b e B n H <~\ (LG(II) <~\ Z(R\ aeAnH <~\ 
lG(H) ~\ Z(R) (by 1.7 and [1, 3.1 l(i)I) or NG(T) $ H and b~xa e Z(R) by (ii). 

We have proved that A <~\ BZ(R). Quite similarly, B ~l AZ(R), and hence 
AZ(R) = BZ(R) = E. Clearly, H nE = Z(R). 

(v) Let aeA and beB. Then c~labeH for some ceB and we have 
c~xabeT=Hn aHa~l (see the proof of 4.2). If NG(T) ~\ H, then aeAnH<~\ 
lG(H) -\ Z(R), b~lab e LG(II) and ab e blG(H) <~\ bZ(R) c E. If NG(T) $ II, 
then c~lab e Z(R) and, again ab e E. 

We have proved that AB ~\ E. Quite similarly, BA ~\ E. 
(vi) Let aeA. Then b~[a~l e II for some b e II, and so ab e AB n H <~\ 

EnH = Z(R). Now, b~la~l e Z(R) and a~l e bZ(R) c E. 
We have proved that A~{ <~\ E. Quite similarly B~x <~\ E. 
(vii) Let aeA and beB. Then c~la~lb e II for suitable ceB and c~la~lbaH = 

c~la~labH = c~laa~lbH = c~lacH = c~lcaH = aH (since a~lb~lab e II and 
c~la~lcae H). Now a~lc~la~lba e II and c~la~lb e T = II n aHa~l. Procee­
ding similarly as in (v), we check that ab~l e E. Thus A~lB <~\ E and, symetrically, 
B~lA ~\ E. 

(viii) AE = ABZ(R) c £Z(.R) = AZ(R) Z(R) = E. Similary BE-\E, A~lE<~\E 
and B~lE c E, and hence SS ~l E and SE -\ E where S = A u A~l u B u B~l. 
Further, by induction on n > 1, n — timesSS... S ~\ E. On the other hand, 
(A,B) = [J^SS... S, so that <-4,B> _= £ . 

(ix) Since II ^ R, we have II + Z(R) and we take u e H\Z(R). IfueE, then 
u = ar for same aeA, re Z(R), and then ae A n H <~\ Z(R\ u = are Z(R), 
a contradiction. Thus u$E and, in particular, <-4,B> <~\ E 4= G. 

5.4 Theorem. If G = <-4,I?>, then II is subnormal in G. 

Proof, (i) First, assume that G is finite and proceed by induction on card(G). 
Let K be a subgroup of G such that II ~\ K and II =N K. Then L = LG(K) * 1 
and K = HL ([1, 3.1 l(i)]). Further, by induction, K is subnormal in G and, since 
G is finite, also the subgroup I? = f]K is subnormal in G. If II ^ R then G = 
</l,B> + G by 5.3(ix), a contradiction. Thus II ^ R and II is subnormal in G. 

(ii) Next, let G be (possibly) infinite. We can assume that D_G(II) = 1. Now, by 
1.5, the index [G : Z(G)] is finite, and so IIZ(G) is subnormal in G by (i). However, 
II ^ IIZ(G). 

5.5 Corollary. If LG(II) = 1 * G = <A,_B>, then Z(G) =N V 

бi 



R e f e r e n c e s 

[1] DRAPAL A. and KEPKA T., Multiplication groups of quasigroups and loops I, Acta Univ. Carolinae 
Math. Phys. 3411 (1993), 8 5 - 9 9 . 

[2] DRAPAL A., KEPKA T. and MARSALEK P., Multiplication groups of quasigroups and loops II, Acta 
Univ. Carolinae Math. Phys. 3511 (1994), 9 - 2 9 . 

[3] IT6 N., Ober das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 4 0 0 - 4 0 1 . 
[4] KEPKA T. and NIEMENMAA M., On loops with cyclic inner mapping groups, Arch. Math 60 (1993), 

2 3 3 - 2 3 6 . 
[5] KEPKA T. and NIEMENMAA M., On conjugacy classes infinite loops, Bull. Austral. Math. Soc. 38 

(1988), 171-176 . 
[6] KEPKA T. and PHILLIPS J. D., Connected transversals to subnormal subgroups, (to appear in 

Comment. Math. Univ. Carol.). 
[7] NIEMENMAA M. and KEPKA T., On multiplication groups of loops, J. Algebra 135 (1990), 

112 -122 . 
[8] NIEMENMAA M. and KEPKA T., On connected transversals to Abelian subgroups in finite groups, 

Bull. London Math. Soc. 24 (1992), 343-346 . 
[9] NIEMENMAA M. and KEPKA T., On connected transversals to Abelian subgroups, Bull. Austral. 

Math. Soc. 49 (1994), 121-128 . 
[10] NIEMENMAA M., On the structure of the inner mapping groups of loops, Commun. Algebra 24 

(1996), 135-142 . 
[11] NIEMENMAA M. and ROSENBERGER G., On connected transversals in infinite groups, Math. Scand. 

70(1992) , 172-176 . 

62 


		webmaster@dml.cz
	2019-09-17T13:37:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




