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1 Introduction

By a tournament we mean a directed graph (T, —) such that whenever x, y are
two distinct elements of T, then precisely one of the two cases, either x — y or
y — x, takes place. There is a one-to-one correspondence between tournaments and
commutative groupoids satisfying ab € {a, b} for all a and b: set ab = a if and only
if a — b. This makes it possible to identify tournaments with their corresponding
groupoids and employ algebraic methods for their investigation.

So, an equivalent definition is: A tournament is a commutative groupoid, every
subset of which is a subgroupoid. For two elements a and b of a tournament, we
set a — b if and only if ab = a.

The aim of this paper is to investigate the the variety of groupoids generated by
tournaments. This variety will be denoted by T. We have started the investigation
in our previous paper [9], in which it is proved that the variety is not finitely based.
Here we will find a four-element base for the three-variable equations of T, and
proceed to investigate subdirectly irreducible algebras in T. Our main effort will
be focused on an attempt to find a positive solution to a conjecture, which has
several equivalent formulations:

Conjecture 1. (1) Every subdirectly irreducible algebra in T is a tournament.

(2) Every finite, subdirectly irreducible algebra in T is a tournament.

(3) If A is a subalgebra of a direct product of finitely many finite tournaments,
then every subdirectly irreducible homomorphic image of A is a tournament.

(4) T is the same as the quasi-variety T, generated by tournaments.
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(5) For every quasi-equation ¢ which is valid in all tournaments, the.
a finite set I" of equations true in all tournaments such that ' I ¢.

(6) For every Ae€T, and a,be A and congruence Y of A, we have
(6(a, ab) v ¥) A (0(b, ab) v Y = . (Here 0(a, b) denotes the congruence
generated by (a, b).)

The equivalence of these various formulations is easy to see. (Use the fact that
the variety T is locally finite; this has been proved in [9].) We have not been able
to prove the conjecture. We will prove here that it is true in various special cases.

For any n > 1, let T, denote the variety generated by all n-element tournaments,
and let T" denote the variety determined by the at most n-variable equations of
tournaments. So, T, = T,,; < T < T"*! = T" for all n.

Our proof in [9] relied on the construction of an infinite sequence M,, (n > 3)
with the following properties: M, is subdirectly irreducible, |M,| = n + 2 and
M, e T* — T**!. These algebras will play an important role also in the present
~ paper. They are defined as follows. M, = {a,b, ..., b,}; the commutative and
idempotent multiplication is defined by

ab, = b,

ab; = b, fori<n—1and i+ 1,
ab, = a,

bb,,y = b, fori<n-—1,

b,b,_, = b,

bb;=b;, for i <n— 1.

Here we will need to take one more similar algebra under consideration. We
denote it by J. It is defined as follows. J; = {a, bo, by, by, bs}; au; = ug; ug — u; —
Uy = Uy, @ = U3 > U] = U, > a and u, > Uz — U

We will prove later that J; is a subdirectly irreducible algebra belonging to

T — T

Conjecture 2. Every subdirectly irreducible algebra from T® is either
a tournament or contains a subalgebra isomorphic to either J; or M, for some
n > 3.

This conjecture is even stronger that the more interesting Conjecture 1.
However, it may happen that it would be easier to prove it in this form. We are
also going to confirm this stronger conjecture in some special cases. We were able
to verify, making use of a computer program, that it is true for all algebras with
at most ten elements. (It turns out that there are 18399858 isomorphism types of
subdirectly irreducible ten-element algebras in T? 8874054 of them are not
tournaments.)

We denote by F, the free groupoid in T on n generators.

Theorem 3. F, is a free groupoid on n generators in T,, as well as in T".
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Proof. Denote by A the free groupoid in T, on n generators, by B the free
groupoid in T” on n generators and by h the canonical homomorphism of B onto
A. All we need to do is to check that A is an isomorphism. Let a, b be two elements
of B such that h(a) = h(b). If f is a homomorphism of B into a tournament, then
f(B) is an at most n-element tournament, so that there exists a homomorphism g of
A into f(B) with f = gh; we get f(a) = f(b). This means that the equation a ~ b
is satisfied in all tournaments, and thus a = b. [J

2 Three-variable equations of tournaments

Theorem 4. The following five equations are a base for the equational theory

of T
(1) xx =x
(2) xy = yx
(3) xy-x =xy

@ (xy-xz)(xy-yz) = xyz
The free groupoid F; has 15 elements

a=x d = xy g=yzx j=2Xxy-xz m = yxzx = yzxz
b=y e = xz h = xzy k=yx-yz m=zxyx = zyxy
c=z f=yz i =Xxyz l=2zx-zy 0 = Xyzy = Xzyz

The commutative multiplication is shown in the table given below. Moreover, the
following equations are consequences of (1), ..., (4):
(5) (xy-xz)x = xy- xz
(6) (xy-xz)" yz = xyzy
(7) xyzy = xzyz
8) (yzx)(xy - xz) = xy - xz
9) xzyxz = xyz
(10) yzx - xyzy = yzx
(11) yzx - xzy = zyxy
(12) yzx - xy = zyxy
(13) (xy - xz) (zyxy) = xy - xz
(14) yxzx:zyxy = xy - xz
(15) (xy - xz) (xyzy) = xyzy
(16) xy- zxyx = zxyx
(A7) (xy- xz) (yxzx) = xy - xz
(18) x(xy - yz) = yzx
(19) (yzx) (yx - yz) = yzx
(20) xy - yxzx = xy* xz
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abcde fghij kl mno
aladede ggnmjggmngyg
bldb fdhfnhohkHnhhno
cle fcie fmoiiil mio
dlddi dj knnigj knjnek
ele hejel mhmjml mjl
flg ffkl fgoookl !l ko
glgnmnmggnmjggmng
hin honhonhohkhhno
ilmoi i momoi i il mi o
Jlj hijjojhijihijjo
kigki kmkgkiikgmkek
Ifgh!l nll ghl hgll nl
mimhmj ml mhmj ml mj I
nlnninj knnijknjnek
olgookl ogoookl !l ko
Proof. Put X = xy, Y = xzand Z = yz; LS is the left and RS is the right side

of the equation to be proved.

() LS =qo(x- 52) oy ) (- x2) () =p (57-x2)9) (v 32 x2) =
(xy - xz) (xy - xz) =1 RS.

(6) LS = XYZ = (XY XZ)(XY-YZ) = ((XY-XZ)(X Y- YZ))(XY-XZ) =
(XY-XZ) (XY YZ)((XY-XZ)- XZ) = 15((X Y- XZ)(X Y- (X Y- YZ)))((X Y-
XZ)(XZ-XZ)) =3 (XY - XZ)(XY - X)(XY - (XY - YZ)(XY-X2Z)(XZ-
X)(XZ"2) =(XY- X2) (X V- xy9) (XY~ x2y) (X Y- X2) (X2 x0) (2
y2y)) =@ (((xy - x2) (xy - y2)) ((xy - x2) y)) (e - x2) (xy - y2)) ((xy - y2) ¥)) = o) ((xy -
xz) (xy - yz)) y = RS

(7) LS =g (xy- x2)- yz =@ (xz " xy) zy = RS.

(8) LS = (yz-yx)(yz-zx) - (xy - x2) =(ZX - ZY) - XY = ZYXY =
(xy - (xz - yz))" xz = 2yxy - Xz =7 2XyX * X2 =) (yx * 2x) X =(5 RS.

(9) LS = (xzyx - xz) (xzyx - x2yz) =) (%(x2 - x¥)) (X(x2 - )" 2(x2 - y)) =3
(x2x3) (x{w5-3) 052 3) =gz x3) (42 3) (52-0) (32 3) ) (2 3) (-
2 (52 3) 7)) =z ) (Ocz-3)- 1) (2 3)32) =gy 52) (e (e 22
xz)) (yz -+ (xy- xz)(yz - x2))) = XY (X(XY - YZ) (XY YZ)Z) =) XY (YZ -
(X(¥- YZ)) (XY~ (Z(Y - X)) = XY (X - YZ) (2~ XT) = (xy - x2) (57 -
(52 y2) 0 (xy - ¥2)) =1 (X - Y2) (XY~ (2(X - YZ) = (X - ¥2) - X V).
X(Z XY)=4)(X - YZ)- X(XY XZ) =(X - YZ) (XY - XZ) = XY - XZ =
(xy - xz) (xy - yz) =4 RS.

(10) LS =y ¢(zy- x2)(zy - yx) - (zy - (xz - xy)) = (ZY - ZX)(Z  YX) = ZY -
XZ = (yz- xz)(xy - yz) = RS.

(11) LS =y (yx - yz) (zx - zy) - (xy - x2) (zx - zy) = (XZ - YZ) (XY - YZ) =
ZY-X = (yz- xz)* xy = RS.
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(12) LS =9 yzXXyx * yzX =(3) yZXYX * YZX =(7) ZXYXX * YZIX =3 ZXYX * YIX =3
zyxy * yzx =3 RS.

(13) LS =g (xy - (xz " z)) (xy - x2) =3 (vz - X2) - xy) - X2 =5 2yxYy - X2 =)
zxyx - xz =@ (yx - zx) x =(5 RS.

(14) LS Zg(zx- (2 y2) (x3- (25 23) = (07 x2)- ) 2 = (32 x2)-

xy) (xy - xz) =) (zyxy) (xy - xz) =3 RS.

(15) LS = (xy xz) (yz - (xy - xz)) =@ yz - (xy - xz) = RS.

(16) LS =5 zxyxxyxX = ZXyX =3 ZXYXYX * ZXYX =(34) ZXYX * ZXyX =3 RS.

(17) LS = (X xz) (Xz* x) =qn X(x - zX) =@)(zx - X) x = (zx - xy) x =(5,RS.

(18) LS =5 ((y- yz) x) - yz —(3 ) RS.

(19) LS = 17) (yx yZ) X =(18) RS.

(20) LS = (zx - xy) x =5 RS.

Now that the equiations are proved, we can start to build the free groupoid on
three generators Xx, y, z. Equations (1), ..., (20) imply that the fifteen terms g, ..., 0
multiply among each other, with respect to the equational theory of T?, as in the
table. Consequently, the free groupoid can have no more than fifteen elements.
Clearly, a, ..., f are distinct from each other and from each of the elements
g, ..., 0. The last nine elements are also distinct from each other: one can easily
check that the terms behave differently on the three-element cycle. []

Lemma 5. Let AT and let a, b, c € A. Then:

(1) If ab — c, then a, b, c generate a semilattice.

(2) If ab - ¢ — a, then bc = ab.

() If a > ¢ > ab, then ¢ > b.

4 If a—> cand b — c, then ab — c.

(5) If a > ¢ = band a, b, c, ab are four distinct elements, then the subgroupoid
generated by a, b, c either contains just these four elements and ¢ — ab, or
else it contains precisely five elements a, b, ¢, ab,ab - c and a — ab - ¢ — b.

Proof. Each of these situations generates a congruence in F,, and the con-
gruence can be easily described from the multiplication table of the fifteen element
free groupoid given above. []

Lemma 6. In every algebra from T, ifa - ¢, —... »>c,— b, then a— abc,... ¢,
Proof. We have to prove the quasiequation
xz, =x&zz, =21& ... &2,y = z, = Xyz,... Z;X = X.
As it is easy to see, the quasiequation is equivalent to the equation
zn - 20X) YY20) (VZrZn1) oo (V20 oo 21) (V20 oo 20X) = yZy .o 21X

in all algebras from T. It is easy to check that the quasiequation is satisfied by all
tournaments. From this the result follows. [J
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3 Quasitournaments

By a quasitournament we mean a graph (4, —) where — is a binary relation
satisfying the following three conditions:

(1) a —» a for all ae 4;

(2) if a—> b and b — a, then a = b;

(3) for any pair a, b of elements of A there exists an element c € 4 such that
¢ — a, ¢ = b and whenever ¢’ is an element with ¢’ — a and ¢’ — b, then
¢ —ec

Clearly, the element c in the last condition is uniquely determined. We will denote
it by ab. In this way, every quasitournament becomes a groupoid satisfying

(1) xy = yx,
2) xx = x,
(3) x-xy = xy,

4) xz2=z&yz=2z=>xy-z=12

On the other hand, it is easy to check that every groupoid satisfying these four
quasiequations is a quasitournament with respect to the relation — defined by
a —> b if and only if ab = b, and this is a one-to-one correspondence between
quasitournaments and the groupoids satisfying the four quasiequations. We will
identify the two classes. So, the class of quasitournaments is a quasivariety; it will
be denoted by Q.

Lemma 7. We have T < T?> =« T' = Q, where T' is the variety determined by
the following four equations:

(1) xy = yx,
2) xx = x,
(3) x-xy = xy,

@) ((xz-y)x)z = xy-z
The variety generated by Q is equal to T,

Proof. The first assertions are easy to see. In order to prove the last, it is
sufficient to show that the free groupoids in T? are quasitournaments. Clearly, T?
is the variety of commutative idempotent groupoids satisfying (x y)y = xy.

Let X be a nonempty set. Denote by F the free commutative groupoid over X.
If u, v are two elements of F, we say that u is a subterm of v if v = uw, ... w, for
some wy, ..., w, € F (n > 0). Denote by G the set of all elements of F that contain
no subterm uu or (uv) v (for any u, v € F). Define a binary operation * on G as
follows: if u = v, then u x v = u; if v = uw for some w, then u x v = v;if u = vw
for some w, then u * v = u; in all other cases, put u * v = uv. It is easy to prove
that G is a commutative and idempotent groupoid satisfying (xy) y = xy with
respect to *. From this it follows that the groupoid is free in the variety determined
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by the three equations, i.e., in T2 By the construction of G, G is a quasitourna-
ment. []

Two elements a, b of a quasitournament A are said to be comparable if either
a — b or b — a. So, a quasitournament is a tournament if and only if it contains
no pair of incomparable elements.

For a quasitournament A and two elements a, b € A, write a < b if there exists
a path from a to b; write a ~ bif a < b and b < a. So, < is a quasiordering and
~ is an equivalence on A.

Lemma 8. Let AeT’. Then < is a compatible quasiordering, ~ is a con-
gruence of A and the factor A/~ is a semilattice; actually, ~ is just the least
congruence of A such that the factor is a semilattice.

Proof. Compatible means that a < b implies ac < bc; for this, it is sufficient
to prove that a — b implies ac < bc. If ab = a, then ac = aca = abca = baca =
bcac — bca — bc.

Consequently, ~ is a congruence. Due to the equation (9), the factor A/~
satisfies xy -z = xz - y; together with commutativity, this implies associativity.
We have proved that A/~ is a semilattice. Clearly, every congruence, the factor
by which is a semilattice, contains ~. []

Lemma 9. Let A be a quasitournament and 0 be a congruence of A such that
whenever x,y are two incomparable elements with x0xy, then x0y. Let B be
a block of 6, a,be B, and ce A — B. Then:

(1) a—c ifand only if b — c;
(2) ¢ > a ifand only if ¢ — b;
(3) if a, c are incomparable, then ac = bc.

Proof. (1) Let a — c. We have acObc, so that afbc and bc ¢ B; consequently,
(b, c) ¢ 6. If b, c are incomparable, we get a contradiction by the assumption. So,
b, c are comparable and then bfbc implies b = bc.

(2) Let ¢ - a. We have acfbc, so that cObc and bc ¢ B. The rest is similar as
in case 1.

(3) We have ac ¢ B, acfbc and ac — a, so bc — a by (1). Since also bc — c,
we get bc — ac. We have ac — a, so ac —» b by (2). Since also ac — ¢, we get
ac = bc. Now bc — ac — bc imply ac = bc. []

Theorem 10. Let A be a subdirectly irreducible quasitournament which is not
a tournament, and 0 be its monolith. Then only two cases are possible: Either there
are two incomparable elements a,be A with (a, ab)€ 0 or else 6 has a single
non-singleton block B and B is a simple quasitournament.

Proof. Let the first case not apply, so that the assumptions of Lemma 9 are
satisfied. Take a nontrivial block B of 6. By Lemma 9, it can be easily verified

27



that B? U id is a congruence of A and also that if « is a congruence of B, then
a v id is a congruence of A. From this it follows that B is the only non-singleton
block of 6 and that B is simple. []

4 Subdirectly irreducibles come in quadruples

Lemma 11. Let A be a finite subdirectly irreducible algebra in T, and let « be
its monolith. Then either A contains a zero element 0 and a — {0} is a subdirectly
irreducible subalgebra of A, or else (a, b) € a and a + b imply a < x for any x € A.

Proof. If ~ = id, then A is a semilattice, so it is a two-element semilattice and
we have the first case. Now assume that ~ is not the identity; hence o = ~.
Denote by B the least block of ~. If |B| > 1, then B>uid is a nontrivial
congruence, a S B? U id and we have the second case. Let B = {O}for an element
0. Clearly, O is the zero element of A. If A/~ contains two different atoms C and
D, then (C U {0}} U id and (D U {0}} U id are two congruences contradicting the
subdirect irreducibility. Hence, there exists precisely one atom C of A/~. But
then, A — {0}is a subalgebra and the restriction of « to 4 — {0} is the monolith
of A —{0}. O

Given a quasitournament 4, we denote by 4, the quasitournament obtained
from A by adding a new zero element (element 0 such that x0 = 0 for all x) and
we denote by A* the quasitournament obtained from A by adding a unit.

Lemma 12. There is a one-to-one correspondence, given by A+ A, between
all finite, at least three-element subdirectly irreducible algebras in T® without zero
and all finite, at least three-element subdirectly irreducible algebras in T with
zero. The algebras A and A, generate the same variety.

Proof. Since A, is a homomorphic image of the direct product of A with the
two-element chain, the algebras 4 and A, generate the same variety. The rest is
an easy consequence of Lemma 11. []

It should be clear what we mean by the term obtained from a given term ¢ by
deleting all variables from a given proper subset X of v(t); by v(t) we denote the
set of the variables contained in t. Let us denote this term by t~*. One can easily
prove that an equation u ~ v is satisfied in A4, if and only if v(u) = v(v) and
u™* ~ v~ is satisfied in A for any proper subset X of v(u).

Lemma 13. There is a one-to-one correspondence, given by A+ A*, between
all finirte, at least three-element subdirectly irreducible algebras in T without unit
and all finite, at least three-element subdirectly irreducible algebras in T® with
unit. We have A€ T if and only if A*€ T, and also A € T" if and only if A¥* € T"
forany n > 3.
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Proof. Let A€ T (or A € T", respectively); we are going to prove that the same
holds for A*. Let u & v be an arbitrary equation (an equation in at most variables,
respectively) which is satisfied in any tournament. Clearly, v(«) = v(v). For any
proper subset X of v(u), the equation u™* ~ v~* is satisfied in all tournaments,
because for any tournament 7T, T* is also a tournament; consequently, these
equations are satisfied in 4. This means that u = v is satisfied in A*. But then, 4*
belongs to T (or to T" respectively). The rest is an easy application of
Lemma 11. [

Theorem 14. All subdirectly irreducible algebras of cardinality > 3 in T (and
also in T" for any n > 3) can be partitioned into quadruples A, A,, A*, A} where
A is a subdirectly irreducible algebra without zero and without unit.

Proof. It follows from the preceding lemmas. []

5 Subdirectly irreducible algebras with just one incomparable pair

Lemma 15. The algebra J, is subdirectly irreducible and belongs to T° — T*.
Proof. Define terms s,, t; in variables X, y;, y2, y3 by

(1) sy = xy, and t; = yy;

(2) s, = t1y, and t, = s,y

(3) 83 = Ly:y1xys and t3 = $,¥3)1XY3;
(4) sy = xyt3sy(xt;) and t4 = s(xyts).

Making use of the fact that in a tournament we must have either xy; = x or
Xy; =y, it is easy to see that the equation s = ¢t is true in all tournaments and
hence in any algebra of T. On the other hand, it is not true in J;: under the
interpretation x+— a and y;— b, we have s+—»a while ¢+ u, Consequently,
J3 does not belong to T. Since it is generated by four elements, it cannot belong
to T*. By Theorem 4, it belongs to T>. [

Theorem 16. Let A € T be a subdirectly irreducible algebra containing pre-
cisely one two-element subset {a,b} with ab ¢ {a,b}. Then A contains a subalgebra
isomorphic to either J; or M,, for some n > 3. Consequently, A does not belong
toT.

Proof. Suppose that A contains neither J; nor M,. By an a-sequence we will
mean a finite sequence uy, uy, ..., u, of elements of A such that n > 0, u, = ab,
u; = a (if n > 1) and for every i > 2, one of two cases takes place: either u;_, —
w, — u;_, or u;_, - u; = u;_,. A sequence with the same properties, except that
u; = b, will be called a b-sequence. An a-sequence is said to be minimal if there
is no shorter a-sequence with the same endpoint.
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Claim 1. Let uy, uy, ..., u, be a minimal a-sequence with n > 2. Then u; —
U, — uy and u, — b.

Proof. Since the a-sequence is minimal, u,  a and hence either b — u, or
u, - b. If uy - u, - u,, then bu, = u, by Lemma 5(2), so that u, is either b or
u,, a contradiction. Consequently, the other case, u; — u, — u,, must take place.
By Lemma 5(3), u, — b.

Claim 2. Let uy, ..., u, be a minimal a-sequence such that n > 2 and u, ...,
u;, b is not a-admissible for any i < n. Then u,_, = u,, u, > u;foralli < n — 2,
and u, — b.

Proof. For n = 2 this is due to Claim 1. Let n > 2 and suppose that the
assertion has been proved for all numbers in {2,..., n — 1}.If b > u,, then u,_, —
b — u,, so that the sequence uy, ..., u,, b is a-admissible, a contradiction with the
assumption. We get u, — b. If a - u,, then ab — u, by the minimality of n and
a = bu,au, = bau,a = ab gives us a contradiction. Hence u, — a. By the mini-
mality of n,u, — uy, ..., u, > u,_,. From u, - u,_, wse get u,_; = u,, since
either u,_, - u, - u,_, or u,_, - u, - u,_, must take place.

Claim 3. The element b is not an endpoint of any a-sequence.

Proof. Suppose, on the contrary, that there exists a minimal a-sequence uq, ...,
Uy, b. Clearly, n > 3. By Claim 2, we have uy = u; - ... - u,_;, 4; = u; when-
ever0<i<i+2<j<n—1l,anduy,—»>bforall2<i<n Fromu, ,—>b
wegetu, > b—-u, Ifu,_, > u, > u,_y, then y; > u, for all i < n — 2 by the
minimality of n, and {b,uy, ..., u,} is a subalgebra of A isomorphic to M,,
a contradiction. So, only the case u,_; - u, — u,_, remains to be considered. By
the minimality of n, u, — u; for all i < n — 2. But then, the elements b, ug, u,, u;
form a subalgebra isomorphic to J;, a contradiction.

Claim 4. Where C, denotes the set of endpoints of all a-sequences, E, =
C2 v id is a congruence of A; we have b ¢ C,.

Proof. By Claim 3, b¢ C,. Let p,qeC, and r be an element such that
p = r — q. We need to prove that r € C,. There exist two minimal a-sequences
ug, ..., U, =p and vy,..., v, = q. If neither u,,..., u,,r nor vy,..., v,,r is an
a-sequence, then u,—>r,u, {—>r,...,uy—=>r and r—> U, 7 = Vp_y,..., I = Up,
a contradiction.

Claim 5. Where C, denotes the set of endpoints of all b-sequences, E, =
C2 U id is a congruence of A; we have a ¢ C,.

Proof. It is a symmetric version of Claim 4.
Claim 6. The two congruences E, and E, of A are nontrivial, while their

intersection is the identity. Consequently, A is not subdirectly irreducible.
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Proof. We have (a, ab) € E, and (b, ab) € E,. If E, N E, # id, then there is an
element in C, N C,. Suppose there is such an element r. There are a minimal
a-sequence U, ..., 4, = r and a minimal b-sequence vy, ..., v,, = r. Clearly, we
cannot have n =m =2 Hence {4, v, .} + {a,b} and we have either
U,_y = Up_y OF U,,_; = U,_;. Consider, for example, the case u,_; — v,,_;. Then
it is easy to see that uy, ..., U, = r = v, U,_y, ..., U; iS an a-sequence ending with
b, a contradiction. []

6 A few lemmas

Lemma 17. Let AT let B be a subgroupoid of A such that B* U id, is
a congruence of A, and let 0 be a congruence of B. Then 0 U id, is a congruence
of A.

Proof. We must prove that afb implies either ac = bc or acfbc for any c € A.
Let ac + bc. Then the elements a, b, ac, bc all belong to B. Put e = ac, f = bc,
g = af, h = be and | = ac - bc. Since all these elements belong to B, we have
aefbe, afObf, aelfbel and af10bf1, i.e., e6h, gbf, 10h and g6! (this can be checked
from the multiplication table of F;). By transitivity of 0, eff, i.e., ac6bc. [

Lemma 18. Let A€ T? be a subdirectly irreducible algebra such that the
monolith of A is B*> U id, for a block B. Then B is simple.

Proof. Use Lemma 17. [

Lemma 19. Let A be a finite, subdirectly irreducible algebra in T> with
monolith p. Let S be a union of non-singleton blocks of A, and denote by U the
union of all non-singleton blocks of A. Suppose that for any x € A and s € S, either
xs € S or |x(s/u)l = 1. Then either S = Q or S = U.

Proof. The condition says that S* U id is a congruence. This congruence must
be either identity, or contain pu. []

Lemma 20. There is no finite, subdirectly irreducible algebra in T® with
precisely two non-singleton blocks of its monolith.

Proof. Suppose the monolith has precisely two non-singleton blocks S; and S,.
If §,5, =S, for some i, then Lemma 19 gives contradiction with § = S, If
S,S, ¢ {8, S,}, then Lemma 19 gives contradiction with § = S;. [J

7 Strongly connected algebras

A quasitournament A is said to be strongly connected if for any a, b € A there
exists a patha = gy > a; > ... - a, = b.
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Lemma 21. Let A € T3, let B be a subgroupoid of A such thatbe Band b < a
imply a € B, and let 0 be a congruence of B. Then 0 L id, is a congruence of A.

Proof. Clearly, B’ U id, is a congruence, so we can apply Lemma 21. []
P

Lemma 22. Let A € T? be subdirectly irreducible. Then every subgroupoid B of
A such that be B and b < a imply a € B, is subdirectly irreducible. In particular,
the least block of ~ 4 is subdirectly irreducible.

Proof. It follows from Lemma 21. [J

Lemma 23. Let A € T be such that the least block of ~ 4 is a tournament. Then
for every element a € A — B, such that a is incomparable with at least one element
of B, there exists a unique element a’' € B with the following two properties:

(1) ax = a for any x € B incomparable with a (in particular, a' — a);
(2) y » a for any y € B such that y — a.

Proof. Suppose ax, + ax, for two elements x;, x, € B incomparable with a. We
have either ax, — x, or x, — ax,. If ax, — x,, then ax; — x, and ax, — a imply
ax,; — ax, by the properties of a product. If x, — ax,, then x, — ax;, — a implies
ax; — ax, by Lemma 5(5). So, ax; — ax, in any case. But then ax, — ax; by
symmetry, and we get ax, = ax,.

Take an arbitrary element x € B which is incomparable with g, and put a' = ax.
Let y € B be such that y — a. The only alternative to y — a’ could be a’ — y, so
suppose that. Since a' = ax and @’ - y — a, we have xy = a’. But xy is either
xory,soy=a. []

Lemma 24. Let A € T° be a finite, subdirectly irreducible algebra such that the
least block B of ~ 4 is a tournament. Then x — a for any x € Band anya€ A — B.

Proof. Suppose, on the contrary, that some element of A — B is incomparable
with at least one element of B, and take a minimal (with respect to <) such
element a. Take an element x € B incomparable with a and put a’ = ax. If there
is an element b such that B < b/~ < a/~, then there is one such element with
b — a (replace b with ab if necessary); we have x — b by the minimality of a, so
that b — a’ by Lemma 5(5), a contradiction. This proves that a/~ is an atom in
A/~ . So by Lemma 22, it is sufficient to assume that A = B U (a/~).

The set A — B can be partitioned into two subsets; the (possibly empty) subset
C of the elements c satisfying x — ¢ for all x € B, and the subset D of the elements
a for which the element a’' € B, as in Lemma 23, exists. Denote by 6 the
equivalence on A with blocks {x}uU {ae D:a = x} for xe B (and singletons,
corresponding to the elements of C). The following two observations will imply
that 0 is a congruence of A.

Claim 1. If ce C and a € D, then (ac) = a'.
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Proof. Since a' — aand @’ — ¢, we have a’ — ac. Since @' = ac — a, we have
x-ac = xa = a’' by Lemma 5(2). If x — ac, then x — ac — a implies ac — a’ by
Lemma 5(5), a contradiction.

Claim 2. If ,be D and @’ — b/, then (ab) = d'.

Proof. Since a' — b’, we have ab’ = a'. By the definition of b, @’ — b’ implies
a’ — b. By Theorem 4(9) we get ab - b’ = ab’bab’ = a’bab’ = d'ab’ = a'b' = a'.
It remains to prove that ab and b’ are incomparable. If ' — ab, then b’ - ab — a
gives ab — a’, a contradiction.

We conclude that 0 is a congruence of A. This gives us a contradiction with
Lemma 11, since 0 is nontrivial and 6 n B> = id. [

Lemma 25. Let A € T? be a finite, subdirectly irreducible algebra without zero,
such that the least block of ~ , is a tournament. Then A is a tournament.

Proof. Suppose that A contains a pair of incomparable elements. By Lemma 24,
both elements must belong to A — B, where B is the least block of ~,. If A — B
is a subgroupoid, then (4 — B)* U id, is a congruence, which is not possible. So,
let ab € B for some a,be A — B. For every x € B we have x —» a and x — b and
hence x — ab. Hence ab is the unit element 1, of B. Hence (4 — B) L {15}f U id,
is a congruence, and we get a contradiction. []

Theorem 26. Every finite, subdirectly irreducible algebra in T> which is not
a tournament contains a strongly connected, subdirectly irreducible subalgebra
which is again not a tournament.

Proof. By Lemma 12 we can assume that the algebra has no zero element. By
Lemma 22 the least block of ~ does the work, unless it is a tournament. However,
it is not a tournament by Lemma 25. []

A quasitournament A is said to be rich if a - b — ¢ implies that the elements
a, c are comparable, i.e., either a - c or ¢ — a.

Lemma 27. Let A be a rich, strongly connected quasitournament and let a, b
be two incomparable elements of A. Then thkere exist elements c,d such that
a->c—-d—->b,d—oa b—c ab— candd — ab.

Proof. Denote by n the length of a shortest path leading either from a to b or
from b to a.

Let there be a path a = uy » u; —» ... - u, = b. We have n > 3, because A4 is
rich. Since A is rich, the elements u;, u;,, are comparable for any 0 < i <
i + 2 < n; by the minimality of n, u;,, — u;. Suppose n > 4. If n is even, then
U, > U,_5 = ... = U, > Uy is a path from b to a, contradicting the minimality of
n. If nis odd, then u, —» u,_, = ... = u; = u, = ugy gives the same contradiction.
So, n = 3.
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There is also a path of length 3 from b to a, namely, b — u;, — u, — a. So, the
assumption that the path of length n went from a to b, was inessential.

Since u, — a and u, — b, we have u, — ab. Since a — u; and b — u,, we have
ab—-u. O

Lemma 28. Let A be a rich, strongly connected quasitournament and let
ai, ..., a, be an n-tuple of pairwise incomparable elements of A. Then there exist
elements b and c such that b — a; — c for all i.

Proof. By induction on n. For n = 1 this is clear. Let n > 2. By the induction
assumption, there are elements b’, ¢’ such that b’ — a; > ¢’ foralli=1,..., n — 1.

Let us prove first that there is an element ¢ with ¢’ — ¢ and a, — c. If ¢’ and
a, are incomparable, it follows from Lemma 27. We cannot have ¢’ — a,, since that
would give, together with a; — ¢, the comparability of a, with a, by the richness of
A. So, if ¢’ and a, are comparable, then a, — ¢’ and we can take ¢ = ¢'.

For i < n we have a; - ¢’ — c, so that ¢ and g; are comparable. If ¢ — a;, then
it follows from a, — ¢ — g, that a,, a, are comparable, a contradiction. Hence a; — c.

Put b = b'a,. For i < n we have b —» b’ — a,, so that a,, b are comparable. If
a; — b, then a; > b — a, implies that g, a, are comparable, a contradiction. Hence
b—-a. O

Lemma 29. Let A be a finite, rich, strongly connected quasitournament. Then
there exist two distinct, comparable elements a, b € A such that every element of
A is comparable to either a or b.

Proof. Let a,, ..., a, be a maximal n-tuple of pairwise incomparable elements
of A. By Lemma 28 there exist elements a, b such that a — a; — b for all i. Since
a — a; - b, the elements a, b are comparable. Let x be any element of A. By the
maximality, x is comparable with g; for some i. If x — a;, then x —» a; — b implies
that x,b are comparable. If g, - x, then a — g; > x implies that x,a are
comparable. []

8 Polynomials on pairs of elements

For a groupoid A, define a quasiordering < on the set of ordered pairs of
elements of A in the following way: (c, d) < (a, b) iff there is a unary polynomial
p of A such that p(a) = ¢ and p(b) = d. Write (a, b) ~ (c,d) if (a,b) < (c,d) <

(a, b). Write (c, d) < (a, b) if (¢, d) < (a, b) but not (a, b) < (c, d).

Theorem 30. Let A €T and let a, b be two incomparable elements of A. Then
(a, ab) < (a, b) and (b, a) £ (a, ab).

Proof. Clearly, (a,ab) < (a, b). Suppose that there is a polynomial p with
p(a) = a and p(ab) = b. There are a term t(x, x, ..., x,) and elements c,, ..., ¢, € A
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such that p(x) = #(x, ¢, ..., ¢,) for all x € A. Define terms r,, s; (i = 0, 1,....) in this
way; ro = X, So = J, Fiyy = Hri Xp, ..., X,) and 5,4y = Hrs; Xy, ..., X,)-

Let T be a tournament and x — a,, y — by, Xx; — d; be an interpretation in T.
Define a, b;e T by r;— a; and s, — b,. Since all a,, b; belong to {a, by, d, ..., d,},
there exist i,j with 0 < i <j < (n + 1 and (a;, b) = (a, b). Observe that if
ab, = a, for some k, then a, = b,, for all m > k, so that a; = b; and hence
a,zb,: = b,.. Since T is a tournament, the only alternative to a,b, = a, for some
k is ab, = b, for all k, in which case we also have a,.b,. = b,.. Hence
a,2b,> = b, in any case. This proves that the equation r,25,> = s, is satisfied in
all tournaments, and hence in A. But in A4, under the interpretation x, y, x,, ...,
x,—a,b,c,, ..., c, we have r;s;— ab and s; — b for all i, a contradiction.

In order to prove (b, a) £ (a, ab), it is enough to replace the definition of r,, s,
with ry = X, o = y, Fiy1 = H(ris, Xa, ..., X,) and s;4; = t(ry, X, ...y X,). O

9 Subdirectly irreducible algebras in T,

We denote by C, the two-element semilattice, and by C; the three-element
tournament cycle.

Theorem 31. The variety T; has just three subdirectly irreducible algebras,
namely, C,, Cs, and (C,),,.

Proof. It is sufficient to prove that every finite, subdirectly irreducible algebra
S in T, is isomorphic to one of the three algebras. Since T; is generated by C,,
there exist a positive integer n, a subalgebra D of Cj and a congruence 6 of D such
that S is isomorphic to the factor D/f. Take n to be minimal with this property.
Suppose n > 2.

Denote by f the only cover of 6 in the congruence lattice of D. We will make
use of tame congruence theory, as developed in [7]. It is clear that the type of /0
is either 4 or 5. Let U be a (B, 6)-minimal set and (c, d) € (8 — 6) N U2 Then either
(c,cd)e B — 6 or (d, cd) € p — 6. Applying either the polynomial x — xc or the
polynomial x +— xd, we obtain a minimal set Uc or Ud. Hence we can assume that
d = cd.

Now U = ¢(D) for an idempotent polynomial e of D. Since (x, y)r>x *xy =
e(xy) maps Uonto Uandcxc = candc xd = d xc = d xd = d, it follows that
there is a pseudo-meet operation A on U with ¢ A d = d. Thus we have
(¢/6) n U = {c}and also cx = x for all xe U.

Denote the elements of C; by 0, 1, 2, with0 - 2 - 1 — 0. We can assume that
¢ =0"and thus U < {O, 1}". It follows from tame congruence theory that for any
x,y €D, (x,y) €0 iff for every unary polynomial p, ep(x) = ¢ is equivalent to
ep(y) = c.
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Denote by di, ..., d, all the elements of D. Put ¢’ = (cd,)(cdy) ... (cd,) and ¢” =
(c'd,)(c'dy) ... (c'd;). For some k and I (and some ordering of the indexes) we have
¢ =0 ¢ = 04" ¢ = 012" %' and D < {0,2) x {0,1) x {0,1, 2%~

Claim 1. If x, y € D and x(i) = y(i) for all i > k, then x0y. Indeed, if (x, y) ¢ 0
then there is a polynomial p such that, e.g., ep(x) = c and ep(y) + c. Put
q = ep(y). Now q(i) = c(i) flor i > k. Also, g € U and hence q(i) € {0,1} for i < k.
Since g € D, g(i) € {0,2} for i < k. Thus g = ¢, a contradiction.

Claim 2. k = 0, ¢’ = 1" and ¢” = 1'2"~". This follows from Claim 1 by the
minimality of n.

Claira 3. D 2 {0,1}" U ({1} x {0,1,2}""'). Since n was minimal, for i < n
there are x, y € D such that (x, y) ¢ 6 and x, y differ on i only. By the characteri-
zation of 6, there is an element g, U < {0,1}" such that g, differs from ¢ on
i only. We must have g; = 0'10"~'~'. Then, by forming products, D = {0,1}".
Since 17,12"~! and 0" belong to D, it is not hard to see that also
S 2 {1} x {0,1, 2"

Case 1: | = 0. Then D = Cj. We can assume that the number of components
on which c differs from d is as small as possible. In that case we are going to show
that the two elements differ on one component only. Indeed, suppose that there is
an element g € {0, 1}" different from both ¢ and d and such that cq = g and dq = d.
We have g =gcfqd =d. If g0d then e(q)0d and (c,e(g))ep — 6 while
e(q) € {0, 1}" agrees with e(c) = c at all i with g(i) = c(i), and agrees with e(d) = d
at all i with g(i) = d(i); i.e., ¢(g) = q and the minimality is contradicted. On the
other hand, if (¢, d) € f — 6 then there exists a polynomial p such that ep(q) = ¢
iff ep(d) * c. These two elements agree more often than c¢,d do, and since
(c/6) N U = {c},they are related by f — 6, again a contradiction. Hence c, d differ
on one component only and we can assume that d = 10"~

Now we will show that whenever x(0) = y(0) then xfy. Suppose that
x(0) = y(0) and (x, y) ¢ 6. Then (c, d) belongs to the join of 6 with the congruence
generated by (x, y) and so there exist elements wy, wy, ..., w,, such that wy = c,
w,, = d and for every i < m either (w;, w;, ) € 8 or w{0) = w,,(0). Replace w; by

w; = wie(01"71) (02" %) c.

Then wy = ¢, wj, = d, {W, ..., Wi} = {c,d} and for every i < m either (wj, w,,)€ 0
or w; = wj,;. This means (c, d) € 6, a contradiction.

We have shown that in Case 1, the homomorphism of D onto S factors through
the (first) projection of D onto Cs;. This contradicts the minimality of n > 1.

Case 2: | % 0. Note that if x = p(y) for some non-constant polynomial p, then
X = yy;... y, for some yy, ..., y, € D. Thus if in addition, y(i) = 1 for some i < I,
then x(i) = 1 for the same i, since the restriction of D to | is contained in {0,1}.
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Hence our characterization of 6 implies that where Q = D — {0} x {0,1,2}"~', we
have Q x Q < 6.

It is impossible that Q/0 n {0} x {0,1,2}"~' + @. Because if this happened,
then every element of D would be §-equivalent to some element of the subalgebra
P = {0} x {0,1,2}"~". Then S would be isomorphic to P/6' where @' is the
restriction of 0 to P, contradicting the minimality of n.

HZence S is isomorphic to (P/6'),.

We have proved that every finite subdirectly irreducible algebra in T} is either
C, or C; or else contains zero. By Theorem 14 it follows that the only subdirectly
irreducibles are the three claimed ones. []

10 T is inherently non-finitely-generated

We use often the tournament L,, which consists of n elements a,, ..., a,_; with
a;— q;iff eitheri =jorj=i+ lori>j+ 1.

Let N, be the tournament L, with two elements a and b adjoined where
a—»a—-bforalli<na—>bforali<n—1andb - a,_,.

Theorem 32. If A is any groupoid with N, € HSP(A) then |A| > n. Hence the
variety T is inherently non-finitely-generated.

Proof. We can assume that A is finite, D is a subalgebra of A% ¢ is
a homomorphism of D onto N,, and k is minimum for the existence of D and ¢.
Thus there exist f, g € D such that ¢(f) + ¢(g) and f|i_; = gli_:.

The crucial property of L, is that for any x + y and u #+ v in L, there is
a translation (i.e., a polynomial p of the form p(w) = wrr,... r,) such that
{p(x).p(y)} = {u,v}. In fact, L, is a simple algebra of type 3 and it follows from
a result in [7] that L, must be a homomorphic image of a subalgebra of 4 (actually,
k = 1). But let’s just prove directly that |4| > n.

From the two remarks above, there must exist f; g; € D such that fi_; = g
and (p(f;) = a and (0(9,) = a,. Then put
f = jE)-fl oo f;1—1 ’

hi = fo.. ficrGifisr- fuca
and we have that all elements f, h,, ..., h,_, agree on k — 1 and ¢(f) = a while
(P(hi) = a;
These elements of D must all disagree at their last coordinate, hence A has at
least n + 1 elements. []

11 Simple algebras

Theorem 33. Every finite simple algebra in T is a tournament.
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Proof. The relevant result from Hobby-McKenzie [7] is this. Let S be a finite
simple algebra of type 3 or 4. If S € HSP(A,, ..., A}) and A; and k are finite, then
S € HS(A,) for some i. The proof is as follows. We have S = D/6 where D has
congruences 1, ..., fl,, such that /\{n;:i < m} = 0, and D/n; € $(4;). Now 6 is
a maximal congruence of D and the type of (6, 1p) is 3 or 4. Let M be any
(6, 1p)-minimal set in D. Then M = {a,b} is a two-element set and M = ¢(D) for
some unary polynomial e with e = e*>. Moreover, for every (c, d) € D* — 6, there
is a unary polynomial f with {f(c), f(d)} = {a,b}. We can see that there is i with
n; < 0. For if this fails, then for every i, picking (c; d) e n; — 0 and f{{c, d}) = M,
we see that (a, b) € . But this would hold for every i, forcing a = b. Thus for
some i, n; < 0. So S € H(D/n)), i.e., S € HS(4;).

Now when 4 is a tournament, we have that HS(A4) = S(4) and every member
of HS(A) is a tournament. Thus we have completed a proof that every finite simple
algebra of type 3 or 4 in T is a tournament. (Such a finite simple algebra must be
a homomorphic image of a subdirect product of finitely many tournaments, since
T is locally finite.)

The variety T omits types 1 and 2, i.e., it has no non-trivial Abelian congru-
ences, or again, equivalently, it is congruence meet-semi-distributive. All this
follows in tame congruence theory since if a and b two distinct elements of an
algebra in T then either {a, ab} or {b, ab} becomes a two-element semilattice under
the basic operation of the algebra.

Thus we have simple algebras only of types 3, 4, 5. It remains to see that every
finite simple algebra of type 5 in the variety T is a tournament. To do this, I will
show first that such an algebra must have a zero element u, satisfying ux = u for
all x.

Thus let S be a finite simple algebra of type 5 in T. This means that the minimal
sets are two-element sets on which some polynomial induces the operation of
a semilattice, but there is only one polynomial-induced semilattice operation on
a minimal set. Let {a,b} be one of the minimal sets for S. Without losing
generality, assume that a + ab. Then {a,ab} is a minimal set since it is the image
under f(x) = xa of {a,b}. Obviously x - y is a semilattice operation on {a,ab} and
so there is no polynomial g(x, y) of S with g(a, a) = a, g(ab, ab) = ab, g(a, ab) =
g(ab, a) = a.1 claim that for every minimal set {c,d} we have that cd € {c,d}. The
tool for proving this is the above assertion involved in type 5 and the fact that
{c,d} = f({a,b})for some polynomial f. By induction on the complexity of f, we
show that f(a) f(ab) = f(ab).

So assume that f, g are polynomials with this property and that h(x ) f(x) g(x).
Note that for any element p we must have f(ab) p — f(a). For where u = f(ab) p
and v = f(ab) pf(a) we have (u,v) = (Af(ab), Af(a)) with A(x) = f(ab) px, but
also (using the equation x(yz) = (( ) (v2)) ((xz) (vz)) of T:

v = {[f(ab) f(a)] [ (ab) ]} {[f (ab) P] [/ (a) ]} = [f(ab) P] [ /() P]
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u = f(ab) f(a) p = {[f(ab) f(a)] [ /(ab) p1} {[/(ab) f(a)] [/ (a) P]}
= u[ f(ab) (f(a) p)] = u{(f(ab) (f(a) p)) ([f(ab) P] [ /(4) P])}

and so where y(x) = u{f(ab) (f(x) p) v} we have that (u, v) = (y(a), y(ab)). Now if
u # v then there is a polynomial t with {z(u),(v)} = {a,ab}. By composing either
with Af or with y, we have a polynomial g such that g(a) = ab and g(ab) = q,
which would give that the set {a, ab} has the structure of a Boolean algebra induced
by polynomials, contradicting that the type is 5. Thus u = v and we have that
f(ab)p — f(a). Similary, g(ab)p — g(b). But then f(ab)g(ab) - f(a) and
f(ab) g(ab) — g(a), implying that h(ab) — h(a) as desired.

Now by Hobby-McKenzie [7], we have a compatible partial order < on S such
that ab < a (for the particular minimal set {ab,a}) and for every minimal set
{f(ab), f(a)} (f a polynomial), f(ab) < f(a). Let ue S be a minimal element
under this oder. Let v be any element of S. We wish to show that uv = u. Suppose
not. Then we can assume that uv = v % u. (Just replace v by uv.) There is a chain
Xo = U, Xy, ..., X, = v where for all i < s, {x, X;,} is a minimal set. There is i < s
with ux; = u and ux;,; + u. Then {u,ux;,,} is a minimal set {f(ab), f(a)} and
since we've seen that f(ab) — f(a), we have that f(ab) = ux;,,, f(a) = u,
implying that u % f(ab) < u, contradicting the minimality of u.

Thus our algebra S has a zero element u.

Case 1: S — {u}is a subalgebra. Then since S is simple, it follows that |S| = 2,
so certainly S is a tournament.

Case 2: We have uw = u where v  u + w. Since § is simple, there must be
a sequence v = vy = v; = ... = v, = w (else the congruence generated by ident-
ifying w with u cannot make v equivalent to anything). We can assume that v, w
and vg,... are chosen so that g is minimal. Now q > 2 by Theorem 16. By
minimality, vv, , #+ u. However (yx) (yz) — y(xz) is valid in our variety. Taking
X=W, y=10,, z=0v we get vv,_; - u. This is an obvious contradiction,
showing that Case 2 cannot occur.

Thus the only finite simple algebra S in T of type 5 is the two-element one. []

12 Conjecture: equivalent formulations

It seems to be a hard and interesting problem to determine whether the variety
T generated by tournaments is the same as the quasi-variety T, generated by all
tournaments. Since both classes are locally finite, the problem can be formulated
several ways: Is it true that whenever A is a subalgebra of [[{T;:1 < i < n},
T, finite tournaments, then every subdirectly irreducible homomorphic image of
A is a tournament? Is it true that every finite si algebra in T is a tournament? Is
it true that for every quasi-equation ¢ which is valid in all tournaments, there is
a finite set I' of equations true in all tournaments such that I' - ¢?
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Here we shall show that only very special ¢ need be considered. Write 6(x, y)
for the congruence generated by a pair (x, y) in an algebra A. Another equivalent
form of our problem: Is it true that for every 4 €T, and a, b € A and congruence
Y of A, we have that (6(a, ab) v ¥) A (8(b, ab) v ¢ = y?

By a clog I mean a system (a, b, ¢, d) of elements in an algebra A4 such that
a=ab+bandc=ca=cbandd =da =db.If AT and (qa,b, c,d)is aclog,
then obviously (a, b)€ 6(c, b) A 6(d, b). By a linear polynomial of A, I mean
a fuinction of the form f(x) = xa, ... a, for some a, ..., a,€ A. Write (a,b) <,
(c, d) to denote that there exists a linear polynomial f for which {f(c), f(d)} =
{a,b}. Given elements a, b,c,d € A and a clog (u, v, w, z) in A, we say that this
clog is a special clog for (a, b, c, d) iff (w, v) <, (a, b) and (z, v) <, (c, d).

Lemma 34. Let AeT® and a,b,c,d € A. Then 6(a, b) A 0(c, d) + 0, iff there
exists a special clog for (a, b, ¢, d). In fact, if (e, f) € 0(a, b) A O(c,d) withe + f
then there exists a special clog (u, v, w, z) for (a, b, c, d) with (u, v) € 8(e, f).

Proof. Suppose that 0, + 4 < 6(a, b) A 6(c, d). We first show that there exist
u,v,w with u = uv + v, w = wo = wu, (w,v) <, (a, b) and (u, v) € .. We begin
with the observation that, choosing any pair (', v') € 2 with ' = u'v’ # v’ (there
exists such a pair), there must exist some Xx, =10, X,..., X, = u' where
(x5 Xi+1) <1(a, b) for all i < n. Replacing x; by x;v’, we can assume that x; = x;v'
for all i. We also assume that n is the least positive integer for which there
exists such a system x,=1,..,x,=u with « =uv +v, (u,v)€el,
(x> Xiv1) <1(a, b).

If n = 1, then (v, v') = (x,, Xo) <, (a, b) and we can take (u, v, w) = (u, v/, ).
Also, if x,u’ = x, then we can take (u, v, w) = (, v/, X,). Now assume that n > 1
and x;u’ # x,. Then replace u',v" by xu, x; and the sequence x,..., X, by
Yo» > Ya—1 Where y; = x,x;,;. Since x, = x,v" = x,u’ (mod 1), we have contra-
dicted the minimality of n.

So let (u,v,w) satisfy u = uv + v, (u,v)e A, w = wo = wu, (w,v) <, (a, b).
Since A < 6(c,d) there is a system X, = v, X, ..., X, = u, for some n, where
(xi Xi+1) <i(c, d). Again, we can assume that x;v = x; and that n is minimal for
the existence of a system (u, v, W, Xg, ..., x,,) satisfying all these conditions. If
xu = x, then (4, v, w, x,) is a special (g, b, ¢, d) clog with (u, v) € 4, as desired. So
assume that x;u + x;, which implies, of course, that n > 1.

Case 1: x;w = x;w- x;u. In this case, replace u, v, w by xu, x,, x;w (noting
that (x,w, x;) = (x,w, x,v) so that (x,w, x;) <, (a, b)), and replace x,, ..., x, by
Yo --+s Yn_1 Where y; = x,x;, ;. This contradicts minimality of n.

Case 2: x;w #+ x,w-" x;u. Now x;w = x;w-x;0 = x;w-x,u (mod ). Also
(3w, x,w * xqu) = (wux; - wux,, vux, - wux,) so that (x,w,xw-xu) <,(a,b).
Replace u, v, w by x;w - x,u, x;w, x;w - x;u and replace X, ..., X, bY Yo, ..., Yu_1
where y; = x;,X; ... x;w. This contradicts the minimality of n. []
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Theorem 35. The following are equivalent:
\HT=T,
2) Let x,y,2z, Xy, X1y ... Xk, Xs» ... be distinct variables and for every positive
integer n, let t,(w) denote wx, ... x, and tw) denote wxi... x,. Letting
{u,v} = {y,yz} and {r,s} = {z,yz}, then T satisfies the quasi-equations

x = xt,(v) A t,(v) = tis) A t(u) = t,(u) t,(v) = t(u) x A tr)
= t(r) tifs) = t,(r) x > x = t,(v).

(3) With notation as above, for all n and A € T, and elements x, y, z, x,, X}, ... in
A, we have that the congruence on A generated by identifying the two sides
of every equation to the left of the arrow in the quasi-equation above identifies
x with t,(w).
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