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A Note on Weak Convergence On Martingale Measures 

PETR DOSTAL 

Praha 

Received 17. April 2001 

It is investigated the topology of tne set of all distributions of pairs (X, Y) such that Y is 
a reál continuous local martingale on the canonical filtration of the process X and X is 
a stochastic process on some separable metric space T. 

It is offered another idea how to prove and generalize the result of weak relative 
closedness stated in ŠTĚPÁN, ŠEVČÍK (2000) and another approach to the convergence 
of continuous local martingales given by Remark 2. 

V článku se vyšetřuje topologie množiny všech rozdělení dvojic (X, Y) takových, že 
y je spojitý reálný lokální martingal vzhledem ke kanonické filtraci procesu l a l j e 
stochastický proces na nějakém separabilním metrickém prostoru T. 

Dále se nabízí jiná myšlenka, jak dokázat a zobecnit výsledek slabé relativní 
uzavřenosti ze článku ŠPĚPÁN, ŠEVČÍK (2000), a jiný přístup ke konvergenci spojitých 
lokálních martingalů daný poznámkou 2. 

Se investiga la topología de todas las distribuciones de las párej as (X, Y), dónde que 
y sea un continuo local martingalo con respecto a la filtración canónica de un proceso 
X y Y sea un proceso estocástico con los valores en un espacio métrico separable T. 

Se ofrece una otra idea de comprobar y generalizar el resultado de ŠTĚPÁN, ŠEVČÍK 
(2000) y el otro enfoque a la convergencia de los martingales locales continuos dado por 
el comentario 2. 

1. Notations and results 

Fix a metric space T and denote its Borel <r-algebra by 3${T). Write C(T) = 
C((R+, T) for the space of all continuous functions from IR+ = [0, oo) to IR and 
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endow the space by the metric topology of uniform convergence on compact 
intervals in R+ that names C(T) to be a separable space if T is separable one and 
to be a Polish space if T is Polish one. In what follows, we complement and 
generalize the result of [4] related to the convergence in distribution of random 
elements (X9 Y), where Y = (Yt91 > 0) is a continuous1 ^x or ^*p-local 
martingale with values in (R. ^(R)) and X = (Xt91 > 0) a continuous stochastic 
process with values in (T, ^(T)). 

Assuming without loss of generality that the underlying probability space 
(Q, J^, P) is complete, we employed the notation 

(1) 9* = <J{[XSeB]9s <t9Be@(T)} and Jfx p = <r(Jf* u JfP)9 

where JfP = {NG^P(iV) = 0}. We refer to [2] for the definition of local 
martingale and elements of stochastic analysis, generally. 

Having two sets of functions Jf* <= Rx and ££ ^ RL, we shall agree to denote 
by X (x) se the set of all functions h : K x L -> R of the form 

(2) h(k91) = f(k) • / ( / ) , where keK9leL 

and / e Jf9 g e 5£. 
Similarly, ®SS? denotes the set of all functions F : T^00 ' -^ R of the form 

(3) F(u) = f(u(Sl))... fk(u(sk))9 u = (u(t)9 t>0)e T^9 

where {sl9..., sk} and {/,...,/} go through all finite subsets of S ^ [0, oo) and 
£f ^ RT, respectively. 

Our main result reads as follows. 

Proposition. Let Xn, X be stochastic processes with values in separable metric 
space T and Yn9 Y be real-valued continuous processes such that 

(i) Y is an 3FX-adapted process 
(ii) Yn is an ^Xn-local martingale for every neN 

(Hi) Ef(Xn9 Yn) -• Ef(X9 Y) as n -• oo for every f e ®sCb(T) ® Cb(C) such that 
(a) S = U+ or 
(b) S is a dense subset ofU+ and X is a right-continuous process. 

Then Y is an ^ -local martingale. The assertion will stay to be valid if we 
replace the filtrations Jf* and 3{Xn by the completed ones Jfx p and Jf*"'p, 
respectively. 

Assuming that X and Xn are continuous T-valued processes, we may interpret 
the pairs (Xn9 Yn) and (X9 Y) in Proposition as continuous stochastic processes with 
values in T x R, i.e. as C(R+, T x Revalued random variables, where C(R+, T x R) 
is provided by the separable metric topology of uniform convergence on compact 
sets in R+. Recall that C(Zl9Z2) denotes the space of all continuous mappings 

1 especially, Y is a random variable with values in C = C(U) 
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from topological space Zx to topological space Z2. Using the above interpretation, 
we may look at condition (iii) in Proposition as a weakened condition of 

(4) (Xn, Yn) -> (X, Y) in distribution as n ^ oo in C(U+, TxU). 

We denote by A the family of all pairs of continuous processes (X, Y) on some 
probability space (Q, 2F, P), which may be different for different pairs (X, Y), such 
that Y is a real-valued .^-adapted process and X is a T-valued process and by 
L the family of all (X, Y) e A such that Y is an ^~*-local martingale. The families 
A, L are not sets, of course, but the following families of distributions 

(5) if (A) = {<?(X, Y), (X, Y) e A}, 2 (L) = {<£(X, Y), (X, Y) e L} 

are subsets of &(C(T x U)), where ^(C(T x U)) denotes the set of all Borel 
probability measures on metric space C(T x U). Recall that ^(Z) denotes the 
probability distribution of a r.v. Z. 

It this notation, we get by Proposition. 

Corollary 1. Let T be a separable metric space, then J-?(L) is a relatively 
weakly closed set in JSf(A). 

Remark 1. Similar assertion holds if we consider processes Y that may be 
Jfxp-adapted in the definition of A and that are ^* ,p-local martingales in the 
definition of L by Proposition. But in fact, the sets JSf(A), «£?(L) would not change 
if we worked with the completed filtrations instead of with the canonical ones. 

Note only that the values E/(X, Y) in (iii) (a) of Proposition determine 
distribution of (X, Y) as a random variable with values in C(U+, T x U) or, more 
generally. 

Lemma 1. Let P, Q be probability measures on o -algebra 3ft := (g)-0'°°^(T) (x) 
such that for every f e ®[0,oo)Q,(T) ® Cb(C) J / dP = J / dQ. Then P = Q. 

Proof. The following set of functions ®[o,oo)Cb(T) ® Cb(C), generating 3ft, is 
obviously closed under products and it is a subset of a linear set of bounded 
functions 

(6) Jtf = lf: T^'00) x C -> U bounded St measurable, f / d P = f / d Q j , 

which is closed under bounded pointwise limits and contains constants. Applying 
Proposition 1.4.11. in [3], we get that every bounded ^-measurable function is 
contained in ^ The choice / = IBe tf, B e J gives P = Q, which is the 
statement of Lemma 1. • 

We use the technology of the proof of Proposition given by Theorem 1. First, 
we introduce some more definitions that are needed to understand this Theorem. 
Fix xeC, x(0) = 0 and denote 



(7) xx
c = inf{s> 0, \x(s)\ > c] 

the first entry of the function |x| into the set { — c,C} and 

(8) ac(x) = (x(t A x% t > 0) G C 

the function x stopped at time xc. Then the mapping a°: x e C i—> ac(x — x(0)) e C 
is Borel measurable. We recall that a real-valued continuous Jf-adapted process Y 
is an J^-local martingale iff for all c > 0 a°(Y) is an Jf-martingale. 

Theorem 1. Let Yn, Y be real-valued continuous processes such that Yn —• Y 
a.s. as n -> oo in C(IR+). Then for c > 0 f/iere are sequences 5k e (0, c) and nfc e N 
swc/i t/zat 

(9) *°c-sk(Ynk) -> o£(Y), fc -> oo a.s. jh C(R+). 

Theorem 2. Let X, Xn be real-valued continuous processes such that Xn -> X 
w distribution as n -• oo in C(IR+). If i?: C(R+) -> C(lR+) /s a continuous 
mapping such that for ne N R(Xn) is a local 3{Xn-martingale and R(X) is an 
3FX-adapted process, then R(X) is also an 3FX-local martingale. The assertion will 
stay to be valid if we replace the filtrations &\x and ${Xn by 3FX'P and 2FXmP, 
respectively. 

Theorem 3. a° is a continuous mapping at Y a.s. whenever Y is an ^Y-local 
martingale and c > 0. 

Remark 2. Theorem 2 with the choice R(f) = f and Theorem 3 provide 
an equivalent condition to the a.s. convergence of local martingales as follows: 

If Ym Y are 3FYn and 3FY local martingales, respectively, then 

Yn -* Y a.s. iff a°(Y„) -+ a°c(Y) a.s. for c > 0 & Y„(0) -> Y(0) a.s. as n -• oo. 

One may ask if we could leave out the assumption, R(X) is an Jf*-adapted 
process, in Theorem 2. The following example shows that it is impossible. 

Counterexample. We will find IR-valued continuous processes such that 
Xn -> X as n -+ oo everywhere and R: C(IR+) -> C(R+) a continuous mapping 
such that for n e N R(Xn) is an J^^n-local martingale but R(X) is not even adapted 
to the completed canonical filtration of the process X. 

Denote by W one-dimensional Brownian motion and for n e N put 

Xn(t) = W(t A \)/n + W[(t - 1)+
 A 1] -• X(t) = W[(t - 1)+

 A 1], n -+ oo 
and R: C(U+) -> C(R+), R(f) (t) = f(t + 1) - / ( l ) . 

Now it is enough to check that R(Xn) = W(. A 1) is an &t
Xn = Jffrlocal 

martingale but R(X) = W(. A 1) at time 1 is a nontrivial random variable and it 
cannot be measurable with respect to a trivial fj-algebra ^t

x,p = ^ f^f)+ Al at time 
t = 1. 



2. Proofs 

Proof of Theorem 1. Let Yw Y be real-valued continuous processes on prob­
ability space (Q, J^P) such that Yn -• Y a.s. in C(lR+). Fix c > 0 and check by the 
definition of ac that we may assume that Yn(0) = 0 and 7(0) = 0 on Q and work 
with ac instead of with ac. 

I. Fix s, r\ > 0, t > 0. We will show that there is 5 e (0, c) and n0 e N such that 
for n > n0 

(10) P(||ac_,(y„)-ac(y)||, > > / ) < £ , 

where ||>>||r = sup{|y(s)|,s < t) is a pseudonorm on C(IR+). The continuity of Y 
implies that w'Y(l/k) —> 0 in probability as k —> co, where 

(11) w}(&) = sup (|f(«) - f(s)\, \s-u\<S,s,u< t) 

is the modul of continuity of function / up to time t. Hence, we can find 
a measurable set Fx e 3F and keN such that for / > k 

(12) wV(l//) < n/2 on F! and P(Ff) < e/3. 

Considering a real variable 

(13) Zk = min {K | - c|, u < xY
c A t - 1/fc}, 

which possesses only positive values, and by the continuity of measure P, we get 
a measurable set F2 e 2F and d > 0 such that 

(14) Zk > 25 on F2 and P(F2
c) < e/3. 

Applying the definition of Tc
yand Zh we get from (14) 

(15) | | y | | i j A ( _ 1 / f c < c - 2 . onF2 . 

The assumption Yn -> Y a.s. as n -> oo gives us a measurable set F3 e ^ and 
n0eM such that for n > n0 

(16) || Yn - Y\\t< rj/2 A 8 on F3 and P(F^) < e/3. 

Now apply the definition of ac to compute 

(17) ||ac_.(y„) - ac(y)||t < max \Yn(s A TJI,) - Y(s A Tc
yi,)| 

+ max \Y(s A Tc
y_.,) - Y(s A TJ)| < \\Yn - Y\\t + w'Y(\t A TJ - . A -£,1). 

A combination of the above results yields that it suffices to prove 

(18) \t A Tc
y - t A TJ_S\ < 1/fc on F! n F2 n F3. 

Fix cos Ft n F2n F3. We will show that 

(19) Tc
y A t > TJ_6 A t > TJ A t - l/k. 



Apply relations (15), (16) to check that 

(20) IIYJ-jM-iA. -S WY\\x>_l/k + Hy« - Yl <c-25 + 8 = c-8, 

which by the definition of xYn_6 easily implies the second inequality in (19). To 
prove the first one in (19), we may assume that xY

c < t, which implies || 1%-^ = c. 
Now use the definition of xYn_b to check that the following inequality, using 
(16) and || -niTrAt

 = c> proves the first one in (19). 

(21) \\Yn\\xrAt > \\Y\\x^t - \\Yn - Y\\t >c-S. 

II. For me N put s,rj = \/m, t = m and use (10) to get S(m)e(0, c), n(m) e N 
such that 

(22) P(l|ac-.W(^H) - *c(Y)\\m > 1/m) < 1/m. 

Now it remains to realize that ccc_S(m)(Yn(m)) converge to ac(y) in probability in C as 
m -> oo and select mk such that 

(23) ac-%.iy"K)) -> OLC(Y) a.s. in C(R+), 

which is the statement of Theorem 1, since we assumed that Yn, Y started at 0. • 

Now we introduce lemma, which characterizes the martingale property of 
an adapted process with respect to the canonical filtration of another process in 
terms of their distribution. 

Lemma 2. Let Y be a real-valued continuous process adapted to the canonical 
filtration of a process X, which possesses values in some separable metric space 
T. Then Y is an ^x-martingale iff for all 0 < s < t, H e ®[o,s]Cb(T) 

(24) EH(X)YS = EH(X)Yt. 

Proof. If y is an if ^-martingale and 0 < s < t, then 

(25) EH(X) Yt = EE^H(X) Yt = EH(X) E*?Yt = EH(X) Ys. 

Conversely, we are to show that 3FX is a subset of Jt = {Fe 3FX, ElFYs = EIFYt), 
which is easily seen to be a Dynkin system. Now it remains to find a system 
i? .= Ji closed under intersections, which generates cr-algebra 3FX, and use 
Dynkin Lemma. Put 

(26) if = {[Xs. e Gh i < n\, st < s, Gt open in T,i <ne N) 

and check that it is closed under intersections and every F e if is a pointwise 
bounded limit of some Hn(X), where Hne ®[o,s]C6(T). Now use Dominated 
Convergence Theorem and (24) to get that <£ <^ M. • 

Remark 3. Apply Lemma 2 to see that the 2FY (local) martingale property of 
a real continuous process depends only on its distribution and note that Lemma 2 
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will stay to be valid if we replace the canonical filtration of the process X by the 
completed one Jf*p. 

Lemma 3. Let Zn = (Zn, Z
2

n), neN VJ [oc}be random variables with values in 
T\ x T2for some Polish spaces Tx and T2 such that for every f e Cb(T{) (x) Cb(T2) 

(27) Ef(Zn) - Ef(Z„) as n - oo. 

Then Zn -> Z^ in distribution as n -> oo in T{ x T2. 

Proof. Use Prochorov Theorem to get {£?(Zn),ne N} is a tight set of Borel 
probability measures on Th (i = 1, 2), which easily implies that {<g(Zn), n e N} is 
also a tight set of Borel probability measures on Tx x T2. Now use Prochorov 
Theorem again to get that {<£(Zn), n e N] is a relatively weakly compact set. Note 
that the system Cb(Tx) (x) Cb(T2) contains only continuous functions and determines 
measure on T{x T2 to get by (27) that S£(Z^ is the only possible weak limit of 
each subsequence of (S£{Zn), neN). A combination of the above results yields 
S£{Zn) -> JŜ Zoo) as n -» oo weakly, which is the statement of Lemma 3. • 

We will use Skorochod Theorem on the representation of the convergence in 
distribution, Theorem 1 and Lemma 2 and 3 to prove the Proposition. The proof 
of Theorem 2 will be omitted, since it is a consequence of the Proposition. 

Skorochod Theorem. If 9n, 3 are S-valued random variables, where S is 
a separable metric space, such that 9n -> 9 in distribution, then there are r\n, r\ on 
some probability space (Q, ^ P) such that <£(9n) = &(r\n), &(9) = <£(r\) and 
r\n -> r\ as n -> oo on Q (see thm. 6.7. page 70 in [1]). 

Proof of Proposition. We will work with the canonical filtrations of the 
processes X, Xn. The proof for the completed ones would be similar. 

1. case (a) Fix s < t and H e ®[o,s]Cf,(T) and use assumption (iii) and Lemma 3 
to get 

(28) (H(Xn), Yn) -* (H(X), Y) as n -> oo in distribution in U x C. 

Now use Skorochod Theorem and the separability of IR x C to check that we may 
assume2 that Zn: = (H(Xn), Yn) —> Z : = (H(X), Y) everywhere on some common 
probability space. Fix c > 0 and apply Theorem 1 to get nkeN and Sk e (0, c) such that 

(29) (H(Xnk), a°c_6k(Ynk)) - (H(X), «%Y)) a.s. as fc -> oo . 

Then for every v e U 

(30) EJf(XJ oc?_,Jk(yJr ^ £H(X) ^ (7 ) , as /c - oo . 

2 A suspicious reader can imagine that Z„, Z are defined on some other probability space given by 
Skorochod Theorem and look at H(Xn\ H(X) and Ym Y as projections of Z„, Z up to the relation (33), 
which depends only on distribution of (H(X), Y). 



Now use assumption (ii) and the equivalent definition of local martingale, using 
a°, to see that for k e M 

(31) <fi-6k(Ynk) is an Jf^-martingale. 

By Lemma 2 and the previous relation, for k e N 

(32) EH(Xnk) «?_fc(ig, = _,__(__ J «?_,,(Ynk)t. 

A combination of (30) for v = s, t and relation (32) gives 

(33) EH(X) a%Y)s = EH(X) a%Y)t, 

which is by Lemma 2 the martingale property of a°(Y) with respect to the canonical 
filtration of the process X, since J£a°(y) ___ J£y _= J** and s < t, if e ®[o,s]Q,(T) 
were arbitrary. Now it remains to apply the equivalent definition of local 
martingale and assumption (i) again to see that Y is an JfMocal martingale. 

2. case (b). Let s < t and G e ®[0,5], say 

(34) G(u) = gx(u(s_))... gk(u(sk% u e T^^ for some gx e Q(T), s, <s,i<k. 

Choose s™ eS such that s? | s, and put Hju) = g_(i^))... gMstye ®[0,^]nsCfe(T), 
where sm : = ŝ 1 v ... v sm. Then for sufficiently large m (sm < t) and by part 1. up 
to the relation (33) with H := Hm and s : = sm we get for c > 0 

(35) £Hm(X) a?(Y)s, = EHm(X) OL%Y\ . 

Now it remains to use the right continuity of process X and Dominated Conver­
gence Theorem to get EG(X) a°(Y)s = EG(X) a^(Y). and to repeat arguments of 
part 1. following after the relation (33). • 

Remark 4. For / e C0 = [g e C, g(0) = 0} and o O w e may define T{+ = 
lim£_>0+ T{+E = inf {t > 0, |/(t)| > c] the time of the first entry of the function | / | 
into (c, oo). Then T{ is a lower semi-continuous and T{+ is an upper 
semi-continuous function on C0. 

Now we introduce lemma which characterizes points of discontinuity of 
mapping a°c in terms of T{ T{+. 

Lemma 4. Let c > 0, / be a continuous real function on IR+. Then ct°c is 
continuous at f iff g = f — /(0) is constant on interval [r9, T9

C+~\? 

Proof. See for the definition of a£ to check that it is enough to prove that for 
/ e C with/(0) = 0 holds 

(36) / is constant on \r{, T{+] iff ac(/n) -• ac(/) in C, 

3 By [a, b~\ we understand the interval [xe R, a < x <, b] even if b = +00. 
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whenever, fn -> / in C such that fn(0) = 0 for n e N. If the left-hand side of (36) 
fails, then it is enough to put /„ = / • (1 — 1/n) and check that the right-hand side 
fails, too. 

Conversely, we use the following inequality for t > 0 

(37) ||ac(f„) - ac(f)||( = sup |ac(f„) (s) - aif) (s)\ < 
s<t 

(38) SUp |f„(S A T{») - f(S A t£)| + SUp \f(S A T{») - f(S A T{)\ < 
s<t s<t 

(39) | | / -f\\t + sup { [ / » - f(v% u, v between T{ A t, T{+ A t} v 0. 

If / is constant on [T£ T{+] and / -> / in C0 = {ge C, g(0) = 0}, then the lower 
and upper semi-continuity of TC and TC+ provide 

(40) T{ A t < lim inf Tfn A t < lim sup Tfn
+ A t < T{+ A t. 

It implies that the last term in (39) is asymptotically less or equal to zero since 
/ is constant on [T{ A f, T{+ At]. • 

Now we introduce lemma which says something about stability of the property 
of being a point of continuity of a° under transformation. 

Lemma 5. Let c > 0, / h e C such that there exists a non-decreasing con­
tinuous real function a such that a(0) = 0 and f(t) = f(0) + h(a(t))for t > 0. If 
h is a point of continuity of oc°Cf then so is f 

Proof. See for the definition of a£ to check that we may assume that /(0) = 0. 
Denote by a(oo) = lim^^ a(t) and use definitions of T{ T{+ to check4 that for d > 0 

(41) Th
d = a(Tf

d) which implies TC+ = a(Tf
c+) as d -> c+ 

since a is continuous. By Lemma 4, we get that h is constant on [TC, TC+] and we 
are to show the same for / Let u e [T{ T{+], then f(u) = h(a(u)) = h(Tc) does not 
depend on u, since a(u) e [a(r{), fl(t{+)] = [TC, TH

C+]. D 

Proof of Theorem 3. I. If Y = W is a Brownian motion, then T™ = TI\ a.s. 
which by Lemma 4 implies that â  is continuous at W almost surely. 

II. If Y is an JfMocal martingale with <Y> (oo) = oo a.s., use DDS Theorem 
to get a Brownian motion W on Q such that 

(42) Y(t) = Y(0) + W((Y))(t), t > 0 a.s., 

where <Y>o, is a non-decreasing continuous real function with < Y> (0) = 0 a.s., 
which implies that â  is continuous at Y a.s. by Lemma 5 and part I. 

4 Show that h(a(xf)) e {— d, d} if a(xf) < oo and use the properties of a to verify that h(w) e (— d, d) 
if a(0) < u < a(rf). 
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III. If Y is an i f y-local martingale, see for Remark 3 to check that both, the 
assumption and the conclusion of Theorem 3, depend only on distribution of the 
process Y. It means that we may assume that there is a Brownian motion W 
independent of Y. Now use Lemma 4 or the definition of ac to check that we may 
assume that Y(0) = 0. For n e M w e define an J^y'^-local martingale 

Yn(t) := Y(t) + W[(t - n)+] with <Yn} (t) = (t - n)+ -> oo a.s. as t -• oo. 

By Lemma 4, we are to show that Y is a.s. constant on [TJ, Ty+]. Since Yn = Y 
on [0, n\ for n e N, it is sufficient5 to show that for n e N Yn is a.s. constant on 
[T7*, Tc

yq_]. Now it remains to use Lemma 4 and part II of this proof for Yn since 
for its quadratic variation holds {Yn} (oo) = oo almost surely. • 
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