## Acta Universitatis Carolinae. Mathematica et Physica

## Michal Kupsa <br> Local return rates in Sturmian subshifts

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 44 (2003), No. 2, 17--28
Persistent URL: http://dml.cz/dmlcz/142724

## Terms of use:

© Univerzita Karlova v Praze, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# Local Return Rates in Sturmian Subshifts 

MICHAL KUPSA

Praha

Received 6. March 2003

The local return rates have been introduced by Hirata, Saussol and Vaienti [7] as a tool for the study of the asymptotic distribution of the return times to cylinders. We give formulas for these rates in Sturmian subshifts.

## 1. Introduction

The lower and upper local return rates have been introduced by Hirata, Saussol and Vaienti in [7] as a tool for the study of the asympotic distribution of the return times to cylinders in a class of non-uniformly hyperbolic dynamical systems. They are functions $\underline{R}_{\xi}, \bar{R}_{\xi}: X \rightarrow[0, \infty]$ defined for an arbitrary topological dynamical system $(X, F)$ and a finite partition $\xi$ of $X$. For a subshift $\Sigma \subseteq A^{\mathbb{N}}$ and the canonical partition $\{[a] \mid a \in A\}$ we can reformulate the definition as

$$
\begin{aligned}
& \underline{R}(x)=\liminf _{n \rightarrow \infty} \frac{\tau([x(n)])}{n} \\
& \bar{R}(x)=\limsup _{n \rightarrow \infty} \frac{\tau([x(n)])}{n} .
\end{aligned}
$$

Here $x(n)=x_{0} x_{1} \ldots x_{n-1}$ is a prefix of $x \in \Sigma$ of length $n,[x(n)]$ is its cylinder and $\tau([x(n)])$ is the Poincaré return time of $[x(n)]$.

For an arbitrary dynamical system $(X, F)$ the functions $\underline{R}_{\xi}, \bar{R}_{\xi}$ are subinvariant, i.e., $\underline{R}_{\xi} \circ F \leq \underline{R}_{\xi}$ and $\bar{R}_{\xi} \circ F \leq \bar{R}_{\xi}$. Moreover, if $\mu$ is an $F$-invariant Borel probability measure and $\xi$ is a measurable partition of $X$, then $\underline{R}$ and $\bar{R}$ are
invariant allmost everywhere. In particular, if $(X, F, \mu)$ is ergodic, then by the Birkhoff ergodic theorem there exist constants $\mathbf{r}_{0}, \mathbf{r}_{1} \in[0, \infty]$ such that for almost all $x \in X, \underline{R}_{\xi}(x)=\mathbf{r}_{0}$ and $\bar{R}_{\xi}(x)=\mathbf{r}_{1}$.

The ergodic case has been treated in several more papers. Saussol et al [9] (see also [1]) show that if the entropy of $\mu$ is positive, then $\mathbf{r}_{0} \geq 1$. Cassaigne et al [2] show that this inequality is not satisfied for systems with zero entropy. In particular for the Fibonacci shift obtaind from the golden angle rotation, the lower local rate assumes the value $\mathbf{r}_{0}=\frac{3-\sqrt{5}}{2}<1$. Afraimovich et al [1] show that $\mathbf{r}_{0}=0$ for some rotations of the circle whose parameter has unbounded continued fraction expansion. It follows that the same result holds for the corresponding Sturmian subshift. Kůrka [8] treats the case of substitutive subshifts and obtains a formula for $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$. In this case both $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$ are positive and finite.

In this paper we will discuss completely the situation in the Sturmian shifts. One can easy check that the result of Afraimovich et al considered for corresponding Sturmian shifts and the result of Cassaigne et al for Fibonacci shift follows immediately. We give formulas for $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$ in terms of the convergents $q_{k}$ obtained from the continued fraction expansion of the parameter $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$. If $a_{k}$ are bounded, then $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$ are positive and finite. If $a_{k}$ are unbounded, then $\mathbf{r}_{0}=0$ and $\mathbf{r}_{1}=\infty$. This result, that $\mathbf{r}_{0}=0$ iff $\mathbf{r}_{1}=\infty$ iff the continued fraction expansion is unbounded, has been obtained by a different technique by Chazottes and Durand in [3].

## 2. Sturmian shifts

A dynamical system is a pair $(X, F)$, where $X$ is a compact metric space and $F$ is a continuous function from $X$ to $X$. The Poincaré return time of a subset $M \subseteq X$ is

$$
\tau(M)=\min \left\{k>0 \mid F^{k}(M) \cap M \neq \emptyset\right\} .
$$

Let $A$ be a finite alphabet, and $A^{\mathbb{N}}$ the space of all infinite sequences of letters from $A$ with the product topology. The set $A^{*}$ consists of all words (finite sequences) over $A$. For a word $u=u_{0} u_{2} \ldots u_{n-1} \in A^{*}$, denote by $|u|=n$ its length. The set $A^{n}$ consists of all words of length $n$. The shift map $\sigma: A^{\mathbb{N}} \rightarrow A^{\mathbb{N}}$ is defined by $\sigma_{i}(x)=x_{i+1}$.

A subshift is any subsystem $(\Sigma, \sigma)$ of $\left(A^{\mathbb{N}}, \sigma\right)$, where $\Sigma \subseteq A^{\mathbb{N}}$ is nonempty, closed and $\sigma$-invariant. For a subshift $\Sigma$ and for a word $u=u_{0} u_{1} \ldots u_{n-1} \in A^{*}$ we denote by $[u]=\left\{x \in \Sigma \mid \forall i<n: x_{i}=u_{i}\right\}$ the cylinder of $u$. The language of a subshift is the set of words which have nonempty cylinders, i.e., $\mathscr{L}(\Sigma)=\left\{u \in A^{*} \mid[u] \neq \emptyset\right\}$. The set $\mathscr{L}^{n}(\Sigma)$ consists of all words of the language of length $n$. If we denote by $x(n)=x_{0} x_{1} \ldots x_{n-1}$ the prefix of $x \in \Sigma$ of length $n$, then $\mathscr{L}^{n}(\Sigma)=\{x(n) \mid x \in \Sigma\}$.

A Sturmian shift is a coding of an irrational rotation of the unit circle (Hedlund and Morse [6]). This is a dynamical system ( $\mathbb{T}, F_{\alpha}$ ), where $\mathbb{T}=[0,1[$ is the circle with the metric $d(x, y)=\min \{|x-y|, 1-|x-y|\}$ and $F_{\alpha}(x)=x+\alpha \bmod 1$, where $\alpha \in \mathbb{R}$. We consider only irrational angles from the open interval $] 0,1[$.

There is the canonical partition $\mathscr{I}=\left\{I_{0}, I_{1}\right\}$ of $\mathbb{T}$, where $I_{0}=[0,1-\alpha[$ and $I_{1}=\left[1-\alpha, 1\left[\right.\right.$. For $u \in 2^{*}$, set

$$
I_{u}=\bigcap_{k=0}^{|u|-1} F_{\alpha}^{-k}\left(I_{u_{k}}\right)
$$

Any $I_{u}$ is either a semiopen interval or the empty set. The associated Sturmian subshift $\left(\Sigma_{\alpha}, \sigma\right)$ is defined by its language $\mathscr{L}\left(\Sigma_{\alpha}\right)=\left\{u \in \mathbf{2}^{*} \mid I_{u} \neq \emptyset\right\}$. In other words,

$$
\Sigma_{\alpha}=\left\{\xi \in 2^{\mathbb{N}} \mid \forall n \in \mathbb{N}, I_{x(n)} \neq \emptyset\right\} .
$$

If $\alpha \in] 0,1\left[\right.$ is irrational, both the rotation $\left(\mathbb{T}, F_{\alpha}\right)$ and the Sturmian subshift $\left(\Sigma_{\alpha}, \sigma\right)$, are minimal and uniquely ergodic. Moreover, if $u \in \mathscr{L}\left(\Sigma_{\alpha}\right)$, then

$$
\mu([u])=\left|I_{u}\right|, \quad \tau([u])=\tau\left(I_{u}\right),
$$

where $\left|I_{u}\right|$ is the length of the interval $I_{u}$. It follows that the local return rates can be computed from the return times of intervals.

$$
\begin{aligned}
& \underline{R}(x)=\liminf _{n \rightarrow \infty} \frac{\tau\left(I_{x(n)}\right)}{n} \\
& \bar{R}(x)=\limsup _{n \rightarrow \infty} \frac{\tau\left(I_{x(n)}\right)}{n} .
\end{aligned}
$$

The description of the intervals $I_{u}$ is obtained from the continued fraction expansion of $\alpha$. There exists the unique sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$ of positive integers such that

$$
\alpha=\left[0, a_{1}, a_{2}, \ldots\right]=0+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}
$$

The convergents of $\alpha$ are the sequences $\left\{p_{k}\right\}_{k=-1}^{\infty},\left\{q_{k}\right\}_{k=-1}^{\infty}$ defined by $p_{-1}=1$, $q_{-1}=0, p_{0}=0, q_{0}=1$ and

$$
q_{k+1}=a_{k+1} q_{k}+q_{k-1}, \quad p_{k+1}=a_{k+1} p_{k}+p_{k-1}
$$

By the Klein theorem (see Hardy and Wright [5]), the closest returns of the iterates $F_{\alpha}^{n}(0)$ to zero happen at times $q_{k}$. We have $d\left(0, F^{q_{k}}(0)\right)=\eta_{k}=(-1)^{k}\left(q_{k} \alpha-p_{k}\right)$ and for $q_{k}<n<q_{k+1}, d\left(0, F^{n}(0)\right)>\eta_{k}$. In particular $\eta_{-1}=1, \eta_{0}=\alpha$ and

$$
\eta_{k+1}=a_{k+1} \eta_{k}-\eta_{k-1}
$$

The sequence $\left\{\eta_{k}\right\}_{k=-1}^{\infty}$ is positive, decreasing and converges to zero. It follows that if $I=[a, b[$ is a semiopen interval, then

$$
\eta_{k+1}<|I| \leq \eta_{k} \Rightarrow \tau(I)=q_{k+1}
$$

The return times of intervals from $\mathscr{I}^{n}$ are therefore convergents $q_{k}$. We determine times when return times jump from some $q_{k}$ to a higher $q_{k+1}$ (or $q_{k+2}$ ) and obtain a formula for the local return rates.

## 3. Jumps of the return time

Proposition 1. For $x \in \Sigma_{\alpha}, k \geq-1$, define the $k$-th jump of the return time as

$$
r_{k}(x)=\min \left\{n \in \mathbb{N} \mid r\left(I_{x(n)}\right) \geq q_{k+1}\right\} .
$$

Then $r_{-1}(x)=0$ and the following equalities hold for $x \in \Sigma_{\alpha}$.

$$
\begin{aligned}
& \underline{R}(x)=\liminf _{k \rightarrow \infty} \frac{q_{k}}{r_{k}(x)}=1 / \limsup _{k \rightarrow \infty} \frac{r_{k}(x)}{q_{k}} \\
& \bar{R}(x)=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{r_{k}(x)}=1 / \liminf _{k \rightarrow \infty} \frac{r_{k}(x)}{q_{k+1}}
\end{aligned}
$$

Proof. For $x \in \Sigma_{\alpha}$, denote $S=\left\{k \in \mathbb{N} \mid r_{k-1}(x)<r_{k}(x)\right\}$. The set is infinite and we can order it into increasing sequence $\left\{k_{i}\right\}_{i=0}^{\infty}$. If $r_{k_{i}}(x) \leq n<r_{k_{i+1}}(x)$, then $\tau\left(I_{x(n)}\right)=q_{k_{i+1}}$ and if $k_{i}<k<k_{i+1}$, then $\frac{q_{k}}{r_{k}(x)} \geq \frac{q_{k_{i}}}{r_{k_{i}}(x)}, \frac{q_{k}}{r_{k-1}(x)} \leq \frac{q_{k_{i+1}}}{r_{k_{i}}(x)}$. Thus

$$
\begin{aligned}
\underline{R}(x) & =\liminf _{n \rightarrow \infty} \frac{\tau\left(I_{x(n)}\right)}{n}=\liminf _{i \rightarrow \infty}\left(\min _{r_{k_{i}}(x) \leq n<r_{k_{i+1}}(x)} \frac{\left.\tau\left(I_{x(n)}\right)\right)}{n}\right) \\
& =\liminf _{i \rightarrow \infty} \frac{q_{k_{i+1}}}{r_{k_{i+1}}(x)-1}=\liminf _{i \rightarrow \infty} \frac{q_{k_{i}}}{r_{k_{i}}(x)}=\liminf _{k \rightarrow \infty} \frac{q_{k}}{r_{k}(x)} . \\
\bar{R}(x) & =\limsup _{i \rightarrow \infty}\left(\max _{r_{k_{i}}(x) \leq n<r_{k_{i+1}}(x)} \frac{\tau\left(I_{x(n)}\right)}{n}\right)=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{r_{k}(x)} .
\end{aligned}
$$



Figure 1. The symbolic space $X_{\alpha}$

To compute the jumps of the return time, we construct another symbolic description of Sturmian subshifts. The partition $\mathscr{I}^{n}=\left\{I_{u} \mid u \in \mathscr{L}^{n}\left(\Sigma_{\alpha}\right)\right\}$ consists of semiopen intervals on the unit circle divided by cut points

$$
\operatorname{Cut}(n)=\{\langle i\rangle \mid i=0,1, \ldots, n\},
$$

where $\langle i\rangle=F_{\alpha}^{-i}(0)=(i \alpha) \bmod 1$. The structure of $\mathscr{I}^{n}$ is described by the Three
length theorem (Sós [10]) which says that $\mathscr{I}^{n}$ contains intervals of at most three lengths. For some $n$, however $\mathscr{I}^{n}$ contains only intervals of two lengths. This happens in particular at times $n=q_{k}-1$, when the intervals of $\mathscr{J}^{n}$ have lengths $\eta_{k-1}$ and $\eta_{k-1}+\eta_{k}$. To describe the partitions $\mathscr{I}^{q_{k}-1}$ we consider a new symbolic space $X_{\alpha}$ which consists of paths in the infinite graph in Figure 1. It looks like Bratelli diagram ([4]), but the dynamics on $X_{\alpha}$ is far more complicated. The main reason for introducing the space $X_{\alpha}$ is to obtain a simple formula for $r_{k}(x)$ in Proposition 3.

Definition 1. For an irrational $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ set

$$
\begin{aligned}
X_{\alpha} & =\left\{x \in \prod_{k=1}^{\infty}\left\{0,1, \ldots, a_{k}\right\} \mid x_{1} \neq 0, \quad\left(x_{k+1}=0 \Rightarrow x_{k}=a_{k}\right)\right\} \\
\mathscr{L}^{n}\left(X_{\alpha}\right) & =\left\{u \in \prod_{k=1}^{n}\left\{0,1, \ldots, a_{k}\right\} \mid u_{1} \neq 0, \quad\left(u_{k+1}=0 \Rightarrow u_{k}=a_{k}\right)\right\} \\
\mathscr{L}\left(X_{\alpha}\right) & =\bigcup_{n \geq 1} \mathscr{L}^{n}\left(X_{\alpha}\right) .
\end{aligned}
$$

We construct a system of intervals $\left\{J_{u} \mid u \in \mathscr{L}\left(X_{\alpha}\right)\right\}$. If $1 \leq u_{1} \leq a_{1}$ set

$$
J_{u_{1}}=\left\{\begin{array}{l}
{\left[\left\langle u_{1}\right\rangle,\left\langle u_{1}-1\right\rangle\left[\text { if } u_{1}<a_{1}\right.\right.} \\
{\left[\langle 0\rangle,\left\langle a_{1}-1\right\rangle\left[\text { if } u_{1}=a_{1}\right.\right.}
\end{array}\right.
$$

If $u \in \mathscr{L}^{k}\left(X_{\alpha}\right), k>1, J_{u(k-1)}=(-1)^{k-2}\left[\langle a\rangle,\langle b\rangle\left[\right.\right.$, and if $u_{k-1}<a_{k-1}$ set

$$
J_{u}= \begin{cases}(-1)^{k-1}\left[\left\langle u_{k} q_{k-1}+a\right\rangle,\left\langle\left(u_{k}-1\right\} q_{k-1}+a\right\rangle[ \right. & \text { if } 1 \leq u_{k} \leq a_{k}-1 \\ (-1)^{k-1}\left[\langle b\rangle,\left\langle\left(a_{k}-1\right) q_{k-1}+a\right\rangle[ \right. & \text { if } u_{k}=a_{k}\end{cases}
$$

If $u_{k-1}=a_{k-1}$ set

$$
J_{u}= \begin{cases}(-1)^{k-1}\left[\left\langle\left(u_{k}+1\right\rangle q_{k-1}+a\right\rangle,\left\langle\left\langle u_{k} q_{k-1}+a\right\rangle[ \right.\right. & \text { if } 1 \leq u_{k} \leq a_{k}-1 \\ (-1)^{k-1}\left[\langle b\rangle,\left\langle\left(u_{k} q_{k-1}+a\right\rangle[ \right.\right. & \text { if } u_{k}=a_{k}\end{cases}
$$



Figure 2. Partitions of the circle
Here $(-1)[b, a[=[a, b[$, where $0 \leq a<b<1$, is a semiopen interval of the circle. We identify also $\left[a, 0\left[=\left[a, 1\left[=(-1)\left[0, a\left[\right.\right.\right.\right.\right.\right.$. If $x \in X_{\alpha}$, we denote by $x(n)=x_{1} \ldots x_{n}$ the prefix of $x$ of length $n$. Figure 2 we can see the partitions of the circle for $\alpha=[0,2,3, \ldots]$.

Proposition 2. If $u \in \mathscr{L}^{k}\left(X_{\alpha}\right), k \geq 1$, then

$$
\left|J_{u}\right|= \begin{cases}\eta_{k-1} & \text { if } u_{k}<a_{k} \\ \eta_{k-1}+\eta_{k} & \text { if } u_{k}=a_{k}\end{cases}
$$

and

$$
\begin{aligned}
\mathscr{I}_{q_{k}-1}= & \left\{J_{u} \mid u \in \mathscr{L}^{k}\left(X_{\alpha}\right)\right\} \\
= & \left\{( - 1 ) ^ { k - 1 } \left[\left\langle i+q_{k-1}\right\rangle,\langle i\rangle\left[\mid i=0,1, \ldots, q_{k}-q_{k-1}-1\right\} \cup\right.\right. \\
& \left\{( - 1 ) ^ { k - 1 } \left[\langle i\rangle,\left\langle i+q_{k}-q_{k-1}\right\rangle\left[\mid i=0,1, \ldots, q_{k-1}-1\right\} .\right.\right.
\end{aligned}
$$

Moreover, $\mathscr{J}_{u}=\left\{J_{v}\left|v \in \mathscr{L}^{k+1}\left(X_{\alpha}\right)\right| v(k)=u\right\}$ is a partition of $J_{u}$ and

$$
\mathscr{I}^{q_{k+1}-1}=\bigcup_{u \in \mathscr{L}^{k}\left(X_{\alpha}\right)} \mathscr{F}_{u} .
$$

Proof. If $u \in \mathscr{L}^{k}\left(X_{\alpha}\right), k \geq 1, u_{k}<a_{k}$, then $J_{u}$ is an image of $(-1)^{k-1}\left[\left\langle q_{k-1}\right\rangle, 0[\right.$ in a rotation. By the Klein theorem, $\left|I_{u}\right|=\eta_{k-1}$.
We have $1>\langle 1\rangle>\langle 2\rangle>\ldots\left\langle a_{1}-1\right\rangle>0$, so $\left\{J_{u_{1}} \mid 1 \leq u_{1} \leq a_{1}\right\}=\mathscr{I}^{q_{1}-1}$ and $\left|J_{a_{1}}\right|=1-\left(a_{1}-1\right) \eta_{0}=\eta_{0}+\eta_{1}$. Assume that the first part of the proposition holds for $k \geq 1$. Let $u \in \mathscr{L}^{k}\left(X_{\alpha}\right)$. Intervals from $M=\left\{J_{k j} \mid j<a_{k+1}\right\}$ coincide and we have proved that its length is $\eta_{k}$. Denote $J=\bigcup M$. If $u_{k}<a_{k}$ then $|J|=\left(a_{k+1}-1\right) \eta_{k}$ and if $u_{k}=a_{k}$ then $|J|=a_{k+1} \eta_{k}$. In both cases, $|J|<\left|J_{u}\right|$, $J_{u a_{k+1}}=J_{u}-J$ and $\left|J_{u a_{k+1}}\right|=\eta_{k-1}-\left(a_{k+1}-1\right) \eta_{k}=\eta_{k}+\eta_{k+1}$. Thus $\mathscr{J}_{u}$ is a partition of $J_{u}$. Because $\left\{J_{u} \mid u \in \mathscr{L}^{k}\left(X_{\alpha}\right)\right\}$ is a partition of $\mathbb{T}$, then also

$$
\mathscr{J}=\left\{J_{v} \mid v \in \mathscr{L}^{k+1}\left(X_{\alpha}\right)\right\}=\bigcup_{u \in \mathscr{\mathscr { L }}^{k}\left(X_{\alpha}\right)} \mathscr{J}_{u}
$$

is. It is not difficult to prove that the endpoints of intervals from $\mathscr{J}$ belong to $\left\{\langle i\rangle \mid 0 \leq i \leq q_{k+1}-1\right\}$. The partitions $\mathscr{\mathscr { L }}$ and $\mathscr{I}^{q_{k+1}-1}$ contain intervals of two lengths $\eta_{k}$ and $\eta_{k}+\eta_{k+1}$, hence $\mathscr{J}=\mathscr{I}^{\mathscr{q}_{k+1}-1}$. For the partition

$$
\begin{aligned}
\mathscr{J}^{\prime}= & \left\{( - 1 ) ^ { k } \left[\left\langle i+q_{k}\right\rangle,\langle i\rangle\left[\mid i=0,1, \ldots, q_{k+1}-q_{k}-1\right\} \cup\right.\right. \\
& \left\{( - 1 ) ^ { k } \left[\langle i\rangle,\left\langle i+q_{k+1}-q_{k}\right\rangle\left[\mid i=0,1, \ldots, q_{k}-1\right\}\right.\right.
\end{aligned}
$$

we prove the equality $\mathscr{I}^{9_{k+1}-1}=\mathscr{I}^{\prime}$ similarly.
For each $k \geq 1$ we have thus an one-to-one map $\gamma_{k}: \mathscr{L}^{q_{k}-1}\left(\Sigma_{\alpha}\right) \rightarrow \mathscr{L}^{k}\left(X_{\alpha}\right)$ given by $J_{\gamma_{k}(u)}=I_{u}$. For the corresponding symbolic spaces we get a homeomorphism $\gamma: \Sigma_{\alpha} \rightarrow X_{\alpha}$ given by $\gamma(x)(k)=\gamma_{k}\left(x\left(q_{k}-1\right)\right)$. The local return rates, as well as the functions of the return jumps are carried over to the space $X_{\alpha}$. By the abuse of notation we keep for them the same symbols $\underline{R}, \bar{R}: X_{\alpha} \rightarrow[0, \infty], r_{k}: X_{\alpha} \rightarrow \mathbb{N}$. We now obtain a recursive formula for $r_{k}$.

Proposition 3. For $x \in X_{\alpha}$ we have $r_{-1}(x)=0$ and

$$
r_{k}(x)=x_{k+1} q_{k}+r_{k-1}(x)=\sum_{j=0}^{k} x_{j+1} q_{j} .
$$

Proof. Assume $y \in \Sigma_{\alpha}, x=\gamma(y) \in X_{\alpha}$ and $k \geq 0$. We show first that if $J_{x(k)}=$ $(-1)^{k-1}\left[\langle a\rangle,\langle b\rangle\left[\right.\right.$, then $r_{k-1}(x)=b+q_{k-1}$. If $x_{k}<a_{k}$, then $J_{x(k)}=I_{y(a)}$. Since $I_{y(a-1)} \neq I_{y(a)},\left|I_{y(a-1)}\right|>\eta_{k-1}$ and $r_{k-1}(x)=a=b+q_{k-1}$. Let $x_{k}=a_{k}$. Since the form of partition $\left\{J_{u} \mid u \in \mathscr{L}^{k+1}\left(X_{\alpha}\right), u(k)=x(k)\right\}$ of $J_{x(k)}$ we get $J_{x(k)}=I_{1} \cup I_{2}$ where $I_{1}=(-1)^{k-1}\left[\langle a\rangle,\left\langle a+q_{k}\right\rangle\left[, \quad I_{2}=(-1)^{k-1}\left[\left\langle a+q_{k}\right\rangle,\left\langle a+q_{k}-q_{k-1}\right\rangle[\right.\right.\right.$, $I_{1}, I_{2} \in \mathscr{I}^{a+q_{k}},\left|I_{1}\right|=\eta_{k},\left|I_{2}\right|=\eta_{k-1}$ and $I_{y\left(a+q_{k}-1\right)}=J_{x(k)}$ and either $I_{y\left(a+q_{k}\right)}=I_{1}$ or $I_{y\left(a+q_{k}\right)}=I_{2}$. Hence $\left|I_{y\left(a+q_{k}\right)}\right| \leq \eta_{k-1},\left|I_{y\left(a+q_{k}-1\right)}\right|>\eta_{k-1}$ and $r_{k-1}(x)=a+q_{k}=$ $b+q_{k-1}$.

Assume now that $J_{x(k+1)}=(-1)^{k}\left[\langle c\rangle,\langle d\rangle\left[\right.\right.$, so $r_{k}(x)=d+q_{k}$. Put $j=1$ if $x_{k}=a_{k}, j=0$ otherwise. It follows $d=a+\left(x_{k+1}-1\right) q_{k}+j q_{k}$ and $a=$ $b+q_{k-1}-j q_{k}$. Thus

$$
\left.r_{k}(x)-r_{k-1}(x)=\left(d+q_{k}\right)-\left(b+q_{k-1}\right)=\left(a+x_{j+1} q_{k}+j q_{k}\right)-a+j q_{k}\right)=x_{k+1} q_{k}
$$

Proposition 4. For every $x \in X_{\alpha}$ we have $q_{k} \leq r_{k}(x) \leq q_{k+1}+q_{k}-1$.
Proof. Clearly $q_{-1}=0=r_{-1}(x)=0=q_{0}+q_{-1}-1, q_{1}=1 \leq r_{1}(x) \leq a_{1}=$ $q_{1}+q_{0}-1$. Assume that the statement holds for all integers less that $k$. Then

$$
r_{k}(x)=x_{k+1} q_{k}+r_{k-1}(x) \leq a_{k+1} q_{k}+q_{k+1}-1=q_{k}+q_{k+1}-1
$$

If $x_{k+1} \geq 1$, then $r_{k}(x)=x_{k+1} q_{k}+r_{k-1}(x) \geq q_{k}$. If $x_{k+1}=0$, then $x_{k}=a_{k}$ and

$$
r_{k}(x)=r_{k-1}(x)=a_{k} q_{k-1}+r_{k-2}(x) \geq a_{k} q_{k-1}+q_{k-2}=q_{k}
$$

Proposition 5. Define the points $b, c, d \in X_{\alpha}$ by

$$
b=\left(a_{1}, a_{2}, a_{3}, \ldots\right), \quad c=\left(1, a_{2}, 0, a_{4}, 0, a_{6}, \ldots\right), \quad d=\left(a_{1}, 0, a_{3}, 0, a_{5}, \ldots\right)
$$

Then

$$
\begin{aligned}
\min \underline{R} & =\underline{R}(b)=\liminf _{k \rightarrow \infty} \frac{q_{k}}{q_{k+1}+q_{k}-1}=\mathbf{r}_{0} \\
\min \bar{R} & =\bar{R}(b)=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{q_{k+1}+q_{k}-1} \\
\max \bar{R} & =\max (\bar{R}(c), \bar{R}(d))=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{q_{k}}=\mathbf{r}_{1}
\end{aligned}
$$

Proof. It is easy to see that for $k \in \mathbb{N}$,

$$
\begin{aligned}
r_{k}(b) & =\sum_{j=0}^{k} a_{j+1} q_{j}=q_{k+1}+q_{k}-1 \\
r_{2 k-1}(c)=r_{2 k}(c) & =1+\sum_{j=1}^{k} a_{2 j} q_{2 j-1}=q_{2 k} \\
r_{2 k}(d)=r_{2 k+1}(d) & =\sum_{j=0}^{k} a_{2 j+1} q_{2 j}=q_{2 k+1}
\end{aligned}
$$

By Proposition 4 we obtain the bounds for the limits in the right hand sides. The following formulas complete the proof.

$$
\begin{aligned}
\underline{R}(b) & =\liminf _{k \rightarrow \infty} \frac{q_{k}}{r_{k}(b)}=\mathbf{r}_{0} \\
\bar{R}(b) & =\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{r_{k}(b)}=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{q_{k+1}+q_{k}-1} \\
\max (\bar{R}(c), \bar{R}(d)) & \geq \max \left(\limsup _{k \rightarrow \infty} \frac{q_{2 k+1}}{r_{2 k}(c)}, \limsup _{k \rightarrow \infty} \frac{q_{(2 k-1)+1}}{r_{2 k-1}(d)}\right) \\
& \geq \max \left(\limsup _{k \rightarrow \infty} \frac{q_{2 k+1}}{r_{2 k}}, \limsup _{k \rightarrow \infty} \frac{q_{2 k}}{r_{2 k-1}}\right) \\
& \geq \limsup _{k \rightarrow \infty} \frac{q_{k+1}}{q_{k}}=\mathbf{r}_{0} .
\end{aligned}
$$

We have not been able to obtain a formula for $\min \bar{R}$. Our results, however are sufficient to get formulas for $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$. Now, put some bounds for the values $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$.
Proposition 6. Let $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ be irrational, $M=\lim \sup a_{k}, \gamma=\frac{\sqrt{5}+1}{2}$. If the continued fraction expansion of $\alpha$ is unbounded, then $\mathbf{r}_{0}=0$ and $\mathbf{r}_{1}=\infty$. Otherwise, $\mathbf{r}_{1}=\frac{1}{\mathrm{r}_{0}}-1$ and

$$
\frac{1}{M+2} \leq \mathbf{r}_{0} \leq \gamma^{-2}<\gamma \leq \mathbf{r}_{1} \leq M+1
$$

Moreover, $\mathbf{r}_{1}=\gamma$ (resp. $\left.\mathbf{r}_{0}=\gamma^{-2}\right)$ if and only if $M=1$.
Proof. Let $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ be irrational, $M=\lim \sup a_{k}, \gamma=\frac{\sqrt{5}+1}{2}$. Denote $B_{k}=\frac{q_{k+1}}{q_{k}}$. Then $a_{k} \leq B_{k} \leq a_{k+1}+1$ and $\mathbf{r}_{1}=\lim \sup B_{k}$.

$$
\mathbf{r}_{0}=\lim \inf \frac{1}{B_{k}+1-\frac{1}{q_{k}}}=\lim \inf \frac{1}{B_{k}+1}
$$

If the continued fraction expansion of $\alpha$ is unbounded, then also $\left.\left\{B_{k}\right\}\right\}_{k=0}$ is. Hence $\mathbf{r}_{0}=0$ and $\mathbf{r}_{1}=\infty$.

Let $M \in \mathbb{N}$. Then $M \leq \mathbf{r}_{0} \leq M+1$. If $M \geq 2$, then $\gamma<M \leq \mathbf{r}_{0}$. If $M=1$, then there exists $n_{0} \in \mathbb{N}$, such that for every $n>n_{0}, a_{n}=1$. Hence

$$
\lim \sup B_{k}=1+\frac{1}{\lim \inf B_{k}}, \quad \lim \inf B_{k}=1+\frac{1}{\lim \sup B_{k}}
$$

It implies that $\mathbf{r}_{0}=1+\frac{1}{1+\left(1 / r_{0}\right)}$. This equality have just one positive solution $\mathbf{r}_{0}=\gamma$. All properties of $\mathbf{r}_{1}$ is given by the equality $\mathbf{r}_{0}=\frac{1}{\mathbf{r}_{1}+1}$.

## 4. The measure

We are going to show that the constants $\mathbf{r}_{0}$ and $\mathbf{r}_{1}$ are assumed by $\underline{R}$ and $\bar{R}$ almost everywhere. The unique invariant measure $\mu$ on $\Sigma_{\alpha}$ is carried over to the space $X_{\alpha}$ using the length of associated intervals. If $u \in \mathscr{L}^{k}\left(X_{\alpha}\right)$, then the measure of the cylinder of $u$ is $\mu\left\{x \in X_{\alpha} \mid x(k)=u\right\}=\left|J_{u}\right|$. Define the projections $W_{k}: X_{\alpha} \rightarrow$ $\left\{0,1, \ldots, a_{k}\right\}$ by $W_{k}(x)=x_{k}$. Then $W_{k}$ are random variables and $\left(W_{k}\right)_{k \geq 1}$ is a nonstationary Markov chain. Using Proposition 2 we get the transition probabilities.

$$
\begin{aligned}
& \mu\left[W_{1}=j\right]=\eta_{0}=\alpha \\
& \mu\left[W_{1}=j\right]=\eta_{0}+\eta_{1} \\
& \text { for } \quad \text { for } j \leq j<a_{1} \\
& \mu\left[W_{k+1}=j \mid W_{k}<a_{k}\right]=\frac{\eta_{k}}{\eta_{k-1}} \\
& \mu\left[W_{k+1}=j \mid W_{k}<a_{k}\right] \text { for } 1 \leq j=a_{k+1} \\
& \eta_{k-1} \text { for } j=a_{k+1} \\
& \mu\left[W_{k+1}=j \mid W_{k}=a_{k}\right]=\frac{\eta_{k}}{\eta_{k-1}+\eta_{k}} \text { for } \quad 0 \leq j<a_{k+1} \\
& \mu\left[W_{k+1}=j \mid W_{k}=a_{k}\right]=\frac{\eta_{k}+\eta_{k+1}}{\eta_{k-1}+\eta_{k}} \quad \text { for } \quad j=a_{k+1}
\end{aligned}
$$

Theorem 7. If the continued fraction expansion is unbounded, then $\underline{R}(x)=0$, $\bar{R}(x)=\infty$ almost everywhere.

Proof. For every $x \in X_{\alpha}$ we have

$$
x_{k+1} \leq \frac{x_{k+1} q_{k}+r_{k-1}(x)}{q_{k}}=\frac{r_{k}(x)}{q_{k}}
$$

Given $m \geq 1$ then $C_{m}=\left\{k \geq 1 \mid a_{k} \geq m\right\}$ is an infinite set. Assume that $k+1 \in C_{2 m+1}$. We have

$$
\begin{aligned}
& \mu\left[W_{k+1} \leq m \mid W_{k}<a_{k}\right]=\frac{m \eta_{k}}{\eta_{k-1}}=\frac{m \eta_{k}}{a_{k+1} \eta_{k}+\eta_{k+1}} \leq \frac{m}{a_{k+1}} \leq \frac{1}{2} \\
& \mu\left[W_{k+1} \leq m \mid W_{k}=a_{k}\right]=\frac{(m+1) \eta_{k}}{\eta_{k-1}+\eta_{k}} \leq \frac{m+1}{a_{k+1}+1} \leq \frac{1}{2}
\end{aligned}
$$

It follows that $\mu\left[W_{k+1} \leq m \mid W_{j}=i\right] \leq \frac{1}{2}$ for any $j \leq k$ and any $i \in\left\{0,1, \ldots, a_{j}\right\}$. Given $k_{0}>0$ let $k_{0}<k_{1}<\ldots k_{n}$ be a sequence of integers from $C_{2 m+1}$. Then

$$
\begin{gathered}
\mu\left[W_{k_{1}} \leq m, \ldots, W_{k_{n}} \leq m\right]= \\
\mu\left[W_{k_{1}} \leq m\right] \cdot \mu\left[W_{k_{2}} \leq m \mid W_{k_{1}} \leq m\right] \ldots \mu\left[W_{k_{n}} \leq m \mid W_{k_{1}} \leq m, \ldots, W_{k_{n-1}} \leq m\right] \leq 2^{-n+1}
\end{gathered}
$$

It follows

$$
\mu\left\{x \in X_{\alpha} \left\lvert\, \frac{r_{k}(x)}{q_{k_{i}}} \leq m\right., 1 \leq i \leq n\right\} \leq \mu\left\{x \in X_{\alpha} \mid x_{k_{i}} \leq m, 1 \leq i \leq n\right\} \leq 2^{-n+1}
$$

so $\mu\left(x \in X_{\alpha} \left\lvert\, \underline{R}(x)>\frac{1}{m}\right.\right\}=0$ and $\underline{R}(x)=0$ almost everywhere. We prove now the statement for $\bar{R}$. Given $\varepsilon \in] 0,1\left[\right.$, let $m$ be an integer with $1-\varepsilon+\frac{4}{m}=\delta<1$. Assume that $k+1 \in C_{m}$ and let $x \in X_{\alpha}$ be such that $r_{k}(x) / q_{k+1} \geq \varepsilon$. Then

$$
\begin{aligned}
\varepsilon & \leq \frac{x_{k+1}+r_{k-1}(x)}{a_{k+1} q_{k}+q_{k-1}} \leq \frac{x_{k+1} q_{k}+q_{k}+q_{k-1}}{a_{k+1} q_{k}} \leq \frac{x_{k+1}+2}{a_{k+1}} \\
x_{k+1} & \geq \varepsilon a_{k+1}-2=\varepsilon_{k}
\end{aligned}
$$

The probability of this event is bounded away from one. For any $j \leq a_{k}$ we have

$$
\begin{aligned}
\mu\left[W_{k+1} \geq \varepsilon_{k+1} \mid W_{k}=j\right] & \leq \frac{\left((1-\varepsilon) a_{k+1}+3\right) \eta_{k}+\eta_{k+1}}{\eta_{k-1}} \\
& \leq \frac{\left((1-\varepsilon) a_{k+1}+4\right) \eta_{k}}{a_{k+1} \eta_{k}} \leq \delta
\end{aligned}
$$

It follows that $\mu\left[W_{k+1} \geq \varepsilon_{k+1} \mid W_{j}=i\right] \geq \delta$ whenever $j \leq k$ and $i \in\left\{0, \ldots, a_{j}\right\}$. Given $k_{0}>0$, let $k_{0}<k_{1}<k_{2}<\ldots<k_{n}$ be an incresing sequence of indices from $C_{m}$. Then $\mu\left[W_{k_{1}} \geq \varepsilon_{k_{1}}, \ldots, W_{k_{n}} \geq \varepsilon_{k_{n}}\right] \leq \delta^{n}$. It follows

$$
\mu\left\{x \in X_{\alpha} \left\lvert\, \frac{r_{k_{k}}(x)}{q_{k_{i+1}}} \geq \varepsilon\right., 1 \leq i \leq n\right\} \leq \mu\left[x \in X_{\alpha} \mid x_{k_{i}} \geq \varepsilon_{k_{i}}, 1 \leq i \leq n\right] \leq \delta^{n}
$$

so $\mu\left\{x \in X_{\alpha}: \bar{R}(x)<\frac{1}{\varepsilon}\right\}=0$ and $\bar{R}(x)=\infty$ almost everywhere.
Proposition 8. If $\alpha$ have bounded coeficients in its continued fraction, then $\underline{R}(x)=\mathbf{r}_{0}, \bar{R}(x)=\mathbf{r}_{1}$ almost everywhere.

Proof. Proposition 5 says that $\min \underline{R}=\underline{R}(b)$, where $b=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. We are going to prove that

$$
\mu\left\{x \in X_{\alpha} \left\lvert\, \limsup _{k \rightarrow \infty} \frac{r_{k}(x)}{q_{k}} \leq \limsup _{k \rightarrow \infty} \frac{r_{k}(b)}{q_{k}}\right.\right\}=1 .
$$

Fix $m \geq 1$. There exists an integer sequence $\left.\left\{n_{k}\right\}\right\}_{k=0}$ such that $n_{0}<m, n_{k}-n_{k-1}>m$, for $k \geq 1$ and

$$
\limsup _{n \rightarrow \infty} \frac{r_{n}(e)}{q_{n}}=\lim _{k \rightarrow \infty} \frac{r_{n_{k}}(e)}{q_{n_{k}}} .
$$

For $k \in \mathbb{N}$, set

$$
D_{k}=\left\{x \in X_{\alpha} \mid x_{n_{k}}=b_{n_{k}}, x_{n_{k-1}}=b_{n_{k-1}}, \ldots, x_{n_{k}-m+1}=b_{n_{k}-m+1}\right\} .
$$

and $D=\bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} D_{k}$. We show $\mu(D)=1$. Let $M$ be a bound for the continued fraction expansion, so $a_{k} \leq M$ for every $k$. Then for any $i \leq a_{k}$, $j \leq a_{k+1}$ we have

$$
\mu\left[W_{k+1}=j \mid W_{k}=i\right] \geq \frac{\eta_{k}}{\eta_{k}+\eta_{k+1}} \geq \frac{1}{a_{k+1}+2} \geq \frac{1}{M+2}
$$

If follows $\mu\left(X_{\alpha} \backslash D_{k}\right) \leq 1-\frac{1}{(M+2)^{n}}$ and

$$
\mu(D)=1-\mu\left(\bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty}\left(X_{\alpha} \backslash D_{k}\right)\right)=1-0=1 .
$$

Given $x \in D$, there exists an increasing integer sequence $\left\{k_{\}}\right\}_{j=1}^{\infty}$ such that $x \in D_{n_{k} j}$. For each $j$, we have

$$
\begin{aligned}
r_{n_{k_{j}}}(b)-r_{n_{k_{j}}}(x) & =\sum_{i=0}^{n_{k_{j}}} b_{i+1} q_{i}-\sum_{i=0}^{n_{k_{j}}} x_{i+1} q_{i}=\sum_{i=0}^{n_{k_{k}}-m} b_{i+1} q_{i}-\sum_{i=0}^{n_{k_{k}}-m} x_{i+1} q_{i} \\
& =r_{n_{k_{j}}-m}(b)-r_{n_{k_{j}}-m}(x) \leq q_{n_{k_{j}}-m+1}+q_{n_{k_{j}}-m}-1-q_{n_{k_{j}}-m} \leq q_{n_{k_{j}}-m+1} .
\end{aligned}
$$

Since $q_{n+2}=a_{n+2} q_{n+1}+q_{n} \geq 2 q_{n}$, we get

$$
\frac{r_{k_{k_{j}}}(b)}{q_{n_{k_{j}}}}-\frac{r_{k_{k_{j}}}(x)}{q_{n_{k_{j}}}} \leq \frac{q_{n_{k_{j}}-m+1}}{q_{n_{k_{j}}}} \leq \frac{2^{-\lfloor(m-1) / 2\rfloor} q_{n_{k_{k}}}}{q_{n_{k_{j}}}}=2^{-\lfloor(m-1) / 2\rfloor} .
$$

and

$$
\limsup _{k \rightarrow \infty} \frac{r_{k}(x)}{q_{k}} \geq \limsup _{j \rightarrow \infty} \frac{r_{k_{j}}(b)}{q_{k_{j}}}-2^{-\lfloor(m-1) / 2\rfloor}=\lim _{k \rightarrow \infty} \frac{r_{k}(b)}{q_{k}}-2^{-\lfloor(m-1) / 2\rfloor} .
$$

It follows

$$
\mu\left\{x \in X_{\alpha} \left\lvert\, \limsup _{k \rightarrow \infty} \frac{r_{k}(x)}{q_{k}} \geq \limsup _{k \rightarrow \infty} \frac{r_{k}(b)}{q_{k}}-2^{-\lfloor(m-1) / 2\rfloor}\right.\right\}=1
$$

so $\underline{R}(x)=\mathbf{r}_{0}$ almost everywhere. The proof for $\bar{R}$ is similar using the points $c$ or $d$ instead of $b$.
Corrolary 9. Given an irrational $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ with convergents $q_{k}, \gamma=\frac{\sqrt{5}+1}{2}$, set

$$
\mathbf{r}_{0}=\liminf _{k \rightarrow \infty} \frac{q_{k}}{q_{k+1}+q_{k}-1}, \quad \mathbf{r}_{1}=\limsup _{k \rightarrow \infty} \frac{q_{k+1}}{q_{k}}
$$

Then $\mathbf{r}_{0} \leq \underline{R}(x) \leq \bar{R}(x) \leq \mathbf{r}_{1}$ for every $x \in \Sigma_{\alpha}$ and $\underline{R}(x)=\mathbf{r}_{0}, \bar{R}(x)=\mathbf{r}_{1}$ almost everywhere.

If $\left\{a_{k}\right\}_{k=0}^{\infty}$ is unbounded, then $\mathbf{r}_{0}=0$ and $\mathbf{r}_{1}=\infty$. In the case of bounded $\left\{a_{k}\right\}_{k=0}^{\infty}$,

$$
\frac{1}{M+2} \leq \mathbf{r}_{0} \leq \gamma^{-2}<\gamma \leq \mathbf{r}_{1} \leq M+1
$$

where $M=\lim \sup a_{k}$. Moreover, $\mathbf{r}_{1}=\gamma\left(\right.$ resp. $\left.\mathbf{r}_{0}=\gamma^{-2}\right)$ if and only if $M=1$.
Acknowledgement. I thank P. Kůrka of the Charles University in Prague, whose comments were essential to the formation of this paper. Also I'm indebted to $S$. Vaienti of the University Toulon for suggesting me the problematics, during my study at Centre de Physique Theorique in Luminy, Marseille, where I have done the main part of the paper.

## References

[1] Afrainmovich V., Chazottes J.-R., Saussol B., Pointwise dimensions for Poincaré reccurence associated with maps and special flows. Discrete and Continuous Dynamical Systems A 9 (2003), n. 2.
[2] Cassaigne J., Hubert P., Vaienti S., private communication.
[3] Chazottes J.-R., Durrand F., Local rates of Poincaré recurrence for rotations and weak mixing. To appear in Discrete and Continuous Dynamical Systems. (2003).
[4] Dartnell P., Durand F., MaAss A., Orbit equivalence and Kakutani equivalence with Sturmian subshifts. Studia Math. 142 (2000), 25-45.
[5] Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers. Oxford University Press, Oxford 1979.
[6] Hedlund G., Morse M., Symbolics dynamics II. Sturmian trajectories. Am. J. Math. 62 (1940), 1-42.
[7] Hirata M., Saussol B., Vaienti S., Statistics of return times: A general framework and new applications. Comm. Math. Phys. 206 (1999), 3-55.
[8] Kürka P., Local return rates in substitutive subshifts, submitted.
[9] Saussol B., Troubetzkoy S., Vaienti S., Reccurence, dimensions and Laypunov exponents. J. Stat. Phys. 106 3/4 (2002), 623-634.
[10] Sós V., On the distribution mod 1 of the sequences n $\alpha$. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1 (1958), 127 - 134.

