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A Solution of art Equation for Indexed Functions 

PETR LACHOUT 

Praha 

Received 6. March 2003 

We present a characterization of indexed real functions (4) fulfilling an equation (5). 
Consequently, we are receiving a description of those linear transformations of a Wiener 
process which result in a time-changed Wiener process, Brownian bridge or Ornstein-
Uhlenbeck process. 

1. Problem setting and examples 

Assymptotic investigation of statistical estimators and test statistics often leads 
to a linear transformation of a Wiener process that turns out to be a timed-changed 
Wiener process, a Brownian bridge or Ornstein-Uhlenbeck process. Let us recall 
some typical examples of such transformations. 

Given a Wiener process (W(t\ t > 0), the process (tW(i), t > 0) is a Wiener 
processes, (W(t) - tW(\\ t e [0,1]) and (twfe), t e (0,1)) are Brownian bridges 
and (e~W(e2f), t e R) is an Ornstein-Uhlenbeck process. 

In [3] we treated a collection of stochastic integrals of non-random real functions 
w.r.t. a Wiener process (W(t), t > 0), i.e. 

\\ax d W, AeA], where ax e L2(m) VA e A (1) 

and m denotes the Lebesgue measure on [0, +00). 
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We seek conditions under which (1) satisfies 

\ak dW = V(£(X)) a.s. V/l e / l , (2) 

where V is a prescribed Gaussian process, e.g. a Wiener process, a Brownian 
bridge, an Ornstein-Uhlenbeck process, A is a non-empty set and £: T-> IR+ is 
an appropriate function. 

Because (1) is always a Gaussian process, one can verify (2) computing the 
covariance function of (1), only. Applying that, we have proved in [3] that (2) with 
V being a Wiener process is equivalent to 

Ia}a^ dm = min \ Ia\ dm, Ia\ dm > VA, xj/ e A. (3) 

Of course in (2) we set <;(X) = J a\ dm. 
In [3] we also present some examples of function families satisfying (3). 

Especially, we consider families of functions which are constant till a point and 
zero after that. For these families we succeeded to determine a complete description 
to satisfy (3). Two particular families keeping (3) are shown in [1], also. 

Inspired by (3) we consider a measure space (K, S, JJ) in this paper and indexed 
real functions 

( f ,AeA) , where f : (£, S) - (R, B)e L2(/.), (4) 
fulfilling 

VA, ilf e A : Jff̂  d/. = min { j / ? d/i, Jf,2 d/xj. (5) 

Let us start with two examples of indexed real functions fulfilling (5). 

Example 1. Let f e L2(/x), A c U and Ak e $ for each X e A. If Ax a A^ 
whenever X, {// e A, X < if/ then the collection of restrictions (ffl^, X e A) fulfills 
(5). 

Evidently, f\A. e L2(/i) for each XeA. The property (5) can be also easily 
checked since for X, \j/ e A, X < t/t we are receiving 

JAvf^,d/i = jfXAdfi < jf-K.dfi. A 

Example 2. Let \i be a probability measure, f e L2(/i), A cz R and j ^ cz <f be 
a o"-algebra for each XeA. Further let $4k cz j ^ whenever X, \/J e A, X < i/L 

Hence, the collection of conditional mean ( E [ f | j ^ ] , XeA) fulfills (5). 

It is known that E [ f | j ^ ] e L2(/i) whenever f e L2(t(). 
The condition (5) follows properties of the conditional mean, especially Jensen 

inequality. Taking X, i/t e A, X < xj/ we are receiving 



JE[jK] E[/И] dџ = j(E[f|<])2dџ < J(E[fK])2dџ. Д 

2. A solution 

We start the section with observations allowing a simplification of the problem. 

Lemma 1. Let a collection of indexed real functions (4) fulfdls (5). Then 
1. For X e A, ff/ dfi = 0 implies fi(fx + 0) = 0. 
2. For A, i/> e A, J// dfi = JJ^2 d/x /m/?/fe,s /i(/A + f,) = 0. 
J. For a net Xl e A, i e I 

fAi, i el is convergent in L2(fi) iff Jf2 dja,ie I is convergent. 
4. If A, ij/,(peA, [ft d\x < \fl d\x < [ft dfi then f, - fa fk are orthogonal in 

Proof. The first statement is evident. The other statements need short proofs. 
(a) For A, i/t e A, we have 

\(fx ~ Uf dfi = Jf/ dfi - 2 J/J" , dfi + Jf,2 dfi 

= J f/ dfi - J j£ d J , accordingly to (5). 

Hence, the property 2 is evident and, clearly, a convergence of indexed real 
functions in L2(fi) is equivalent with convergence of their second powers 
integrals w.r.t. to fi. 

(b) Let ^ , ? e A, Jf/ dfi < \ft dfi < Jf2 then 

\(U ~ U) h dli = J / / dfi - Jf/ dfi = 0 according to (5). 
Q.E.D. 

The solution we want to present is based on an integration w.r.t. a process with 
orthogonal increments. 

Definition 2. A mapping U : [0, + oo) -• L2(fi) :t\-+Ut being right-continuous 
in \-2(fi) and having Uv — Us, Ut orthogonal in \-2(fi) whenever 0 < t < s < v will 
be called on o.i.-process in L2(fi). 

The process possesses the reference function defined by 

Fv:[0, + o o ) ^ [ 0 , + o o ) : r ^ J[/2d/z. (6) 

(The abbreviation "o.i.-process" stands for "process with orthogonal incre­
ments".) 



Lemma 3. The reference function of an o.i.-process is always a non-decreasing 
non-negative right-continuous function. 

Proof. Non-negativity is evident. The reference function is non-decreasing since 
for each 0 < t < s. 

Fv{s) = j V 2 dfi = JU2 dfi + 2 J(US - Ut) Ut d/i + J(l/f - Utf d/i 

= Fv{t) + J(US - Utfdfi. 

Right-continuity follows the same equality and the fact that the o.i.-process is 
right-continuous in L2(/z) by definition. 

Q.E.D. 

Hence, we can employ Lebesgue-Stieltjes integral w.r.t. Fv and integrate w.r.t. 
an o.i.-process U. 

Proposition 4. Let U be an o.i.-process in L2(/x). Then an integral w.r.t. U can 
be defined such that 

1. The integral is defined for all functions from L2{Fu) and its values are in L2{fi). 
2. Vf, g e L2{FV), a, be U: $af + bg dU = a JfdU + b Jg dU \i-a.e. 
3. W, s e [0, + oo); JD(r s] dU = Us - Ut /a-a.e. 
4. Vf, g e L^Fu): J(JfdC7) (Jg dU, d/i = $fg dFv. 
The integral is correctly defined and its values are modulo \i uniquely 

determined. 

A proof for a finite (probability) measure \i is given in [2], Chap. 2, § 3. The 
same arguments are also valid for an arbitrary measure. The crucial point of the 
proof, i.e. 12. lemma in [2], concludes the proof for an arbitrary measure /i, too, 
since L2(/x) is always a Banach space. 

Now, we formulate a solution of the considered problem. 

Theorem 1. Indexed functions {4) fulfill (5) iff there are an o.i.-process U in 
L2(ju), a function h : [0, + oo) -> R and a collection of sets Ax a (0, + oo), X e A 
such that 

H ^ e ^ j V ^ A , (7) 

Ax cz A^ whenever I f2 d\i < I f2 dju VA, i/t e A, (8) 

fA = \h\AkdU \i-a.e. VAeA. (9) 

Proof. 
1. Let (9) be fulfilled, A, i/t e A and J / / d/i < Jf/ d/i. Hence, 



jAfcdji = j(j/iD^dC/^J/iD^df/)d/i = JfcO f̂cl̂ dF̂  = Jtfl^dfi, 

= j(jfcl^dl/JdAi = Jf/d/i. 

Thus, (5) is satisfied. 
2. Let (5) be fulfilled. 
Accordingly to Lemma 1, without any loss of generality we may suppose 

a closed set A cz [0, + oo), 0 G A and If} d/i = X for all X e A. 
Then, we define U : [0, + oo) -» L2(/i) by the formula 

Vt G [0, + oo) [/, = fXt where A, = max {XeA:X < t}. (10) 

Accordingly to Lemma 1, U is an o.i.-process and, evidently, 

fx — Ux = Ux — U0 = IO^] dl7 whenever X e A. 

Hence, we set h = 1 and Ax = (0, A] for all X e A to show (9). 
Q.E.D. 

3. A solution for the original problem 

The previous section gives a solution of the original task when (1) is fulfilling (2). 

Theorem 2. Indexed functions (1) fulfill (2) with V being a Wiener process iff 
there are an o.i.-process U in L2(m), a function h : [0, + oo) -• IR and a collection 
of sets Ax a (0, + oo), X e A such that 

W ^ G L ^ V A G A , (11) 

rf(A) = JW^dF^VAeA, (12) 

Ak cz A^ whenever £(X) < £(\j/) V>1, \\t e A, (13) 

ax=[hiAjLdU m-a.e. V / I G A . (14) 

Proof. The theorem is a particular case of Theorem 1 with \i = m. 
Q.E.D 

Theorem 3. Indexed functions (1) fulfill (2) with V being a Brownian bridge iff 
there are an o.i.-process U in L2(m), a function h : [0, + oo) -• U and a collection 
of sets Ax a (0, + oo), X G A such that 

MAxeL2(Fv) V A G A , (15) 
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£(X) = \hHAAFv < 1 VAeA, (16) 

A, cz A+ whenever £[X) < {(ifr) VA, \ji e A, (17) 

aA = J^Q^ - (̂A) DXl)dt/ m-a .e . VAeA. (18) 

Proof. Theorem follows immediately Theorem 2 because the transformation 
(W(t) — tW(\\ t e [0, 1]) transforms a Wiener process to a Brownian bridge and 
the transformation (B(t) + tN, te [0, 1]), where N is a standard Gaussian r.v. 
independent with B, reverses a Brownian bridge to a Wiener process. 

Q.E.D. 

Theorem 4. Indexed functions (1) fulfill (2) with V being an Ornstein-Uhlen-
beck process iff there are an o.i.-process U in L2(m), a function h:\0, +oo) -• R 
and a collection of sets Ax cz (0, + oo), X e A such that 

MAxeL2(Fv) VAeA, (19) 

^ ) = ^log^Jfc20^dF^VAeA, (20) 

Ak cz A^ whenever £(X) < t;(\jj) VA, i/t e A, (21) 

^ = e-^'J/zO^dU m-a .e . V/leA. (22) 

Proof. Theorem follows immediately Theorem 2 because the transformation 
(e"W(e2t), t e R) transforms a Wiener process to an Ornstein-Uhlenbeck process 
and the transformation (y/tU (\ log (t)\ t e U+) alters an Ornstein-Uhlenbeck 
process to a Wiener process. 

Q.E.D. 
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