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A multicriterial approach to solving so called separable location problem with n service 
centres and m customers is investigated. The problem consists in locating each of the 
n service centres T}, on exactly one road connecting two places A,, B,,(j = 1,..., n). The 
centres are supposed to serve m customers C„ i = 1,..., m. The distances Q(AP C,), 
Q(B}, C,), Q(AJ, BJ) are given. The problems are called separable, because they split up in 
n one-dimensional optimization problems. The multicriterial approach takes into account 
three objective functions. Suggestions for further research are briefly discussed. 

1. Introduction 

In this article, we consider a location problem with n service centres 7/, 
j = 1,..., n and m customers O, i = 1,..., m, which are served from centres 7/. 
Centre 7/ must be placed on a road connecting two places Ah Bj with known 
distances from O. The distance between Aj and Bj is also known. The position of 
Tj on the road AjBj is uniquely given by the distance Xj of 7/ from Aj. If O is served 
from Tj, then customers O can be reached from 7/ either via Aj or via Bj and we 
assume that the shortest route out of TjAjQ and TjBjO can always be chosen (see 
Fig. 1). The aim is to determine the locations of 7/ on roads AjBj (i.e. the distances 
Xj of Tj from Aj) in such a way that a reasonable balance (or compromise) among 
three criteria will be found. The framework of the location problem considered in 
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this article is similar to that used in one-criterion problems considered in [1], [2], 
[3], [5], [6]. We chose also a different approach than that one described for 
a bi-criteria problem in [4]. 

2. Problem Formulation 

Let Q(X, Y) denote the distance between two points in a plane and let us 
introduce the following notations for all ieS:= {1,..., m}, je N := {1,..., n}: 
dj: = Q(AJ, BJ), aij: = Q(d, Aj), btj: = d} + g(C,-, Bj). If Xj = Q(AJ, T}), then the length 
of the route TjAjCt is equal to Xj + ay and the length of TjBjd is equal to 
dj — Xj + g(d, Bj) = bij — Xj (see Fig. 1). Therefore if a location Xj e [0, dj] of 
Tj on AjBj is chosen, then the distance to be covered in order that C, may be 
reached from Tj is given by function r^xy): = min (ay + xj9 bij — xj) (i.e. we 
assume that the shorter of the two possible routes is chosen). 

P(С.,Ą) 

We shall consider three objective functions evaluating the performance quality 
of the system of service centres 7J with the location given by Q(AJ, TJ) = xj 
Xj e [0, dj] for j e N. The objective functions will be defined as follows: 

(2.1) f(x) = max max rtJ(xj) = max UJ(XJ), 
jeN ieS jeN 

(2.2) g(x) = min min r^Xj) = min /;{x;), 
jeN i e S jeN 

(2.3) h(x) = max(w,(x;) — lj(xj)). 
jeN 
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The first function (2.1) can be interpreted as a "pessimistic" performance 
evaluation, its value gives for each j e N the greatest distance between T} and C, 
over all customers C„ i e S. The second function (2.2) can be interpreted as 
a "optimistic" evaluation and its value gives for each j the smallest distance 
between Tj and C, over all Ch i e S. In the ideal case centre 7J will serve the closest 
customer at a distance lj(xj) but it may happen that Tj must serve the farthest 
customer at a distance Uj{xJ), because e.g. all other centres, which may be closer to 
this customer are occupied. In such situation, it may be reasonable to require that 
Uj{xJ) — l{xj) < I, for a given X. A similar situation arises if service centre T} is 
"obnoxious" to some extent and it may be desirable that lj{xj) > jS for a given 
positiv /?. On the other hand, we may require for a given positive a that u}{xj) < a, 
which together with lj{xj) > /} gives again a restriction Pj(xJ) = Uj{xJ) — lj{xj) < 
X = a — p. That's why we included the objective function h(x). We shall first 
investigate the behaviour of functions Uj(xJ), lj{xj) and Pj(xJ) on [0, dj]. Using these 
results several optimization problems will be solved. The optimal solutions will 
represent various types of compromises among the three criteria represented by 
objective functions /, g, p. Hints for further research will be briefly discussed. 

In the next paragraph we shall investigate the properties of Pj{xJ) for a fixed 
j e N. These properties will make possible to solve easily some optimization 
problems, the optimal solutions of which represent a compromise among the three 
objective functions /, g, h. 

3. The Properties of pJ(xJ) 

We shall investigate the properties of function 

(3.1) pj(xj):=uj(xj)-lj{xj) 

on the interval [0, dj]. We shall assume in the sequel that j is an arbitrary fixed 
index from N. 

It holds: 

{ Vj + Xj for Xj e 0, min f dj9 -^—z—- ] 

Wj - Xj for Xj e max (0, ; J\ dj 
where 

Vj: = min ӣij, Wjf: = min b^ 
isS i є 5 

Further, it may happen that for some i e S the inequality r^xj) < Uj{xJ) holds for 
all Xj e [0, dj]. Such functions are "redundant" for the definition of uj(xj) and will 
be excluded from further consideration by the following 
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Algorithm "reduction" 
0 S,:= ft S :--{l,..., m} 
[2] T:= {k\akj = max a,,}; yp: = max 5(0*, + bv) 

ieS keT 

[3] S2:= {ieS\atj<apj & btj<bPJ] 
\4\Sl:=S1u{p},S:=S\S2 

IU If S * 0, go to [2] 
[6] Si is the reduced set of indices i 

The set Sx in step [6] contains only such i that t^x,) = r^x,) for some subset of 
[0, dj\ (so called non-redundant r./s). 

In Example 5.1 below functions r5j9 r6j are redundant (Fig. 2). The determination 
of the piecewise linear function uj{xj) needs to determine all local minima and 
maxima of this function on [0, dj\. This will be done by making use of the 
following. 
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x1 ; = 0 < x1 ; < x2j < .. • ^^* w\ŕy> 1/ "̂ "Ч *^fj •""" W'í 

x1 ; = 0 < x 1 ; < x2j < .. . < x r _ 1 ; < x r ; = dj 

x1 ; = 0 < x1 ; < x2 ; < .. . < x r _ 1 ; < x r ; = dj 

Xu "^1 U < Xu ^C X^j ^ •• • ^ ^ *^fi ^ 4 4 *\f 1 / • Ł4-/ 

Algorithm —"local extrema" 
|T] Compute local maxima x j ;: = -JL^U for all i G SX and consider only xi; G [0, d;] 

and xhj: = max {x;; | xi; < 0} (if {x;; | xtj < 0} =t= 0) x j ;: = min {x;; | xi; > dj} (if 
{x;; | x/; > d;} 4= 0). Let {iu ..., ir} be such sequence of indices. We shall assume 
w.l.o.g. that /; = j for j, 1 < j < r so that it holds x1; < x2; < ... < xr; with 
r < m. 

[2] If x1; < 0 and btj > 0, set x1 ;: = 0, otherwise set x1; = 0; 
If xr; > 0 and arj > — d, set xr; := d;, otherwise set x r + 1 ; = dj. 

[5] Compute local minima xf_1; : = '~1
2
/~a'7 for t = 2,..., r + 1. 

Exactly one of the following cases occurs: 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(compare Example 5.1, Fig. 2, where r = 4 and case (3.2) occurs). 

It follows immediately from the properties of M;(X;) and /;{x;) that p;(x;): = 
UJ(XJ) — lj(xj) is a piecewise linear quasiconvex function, the first linear piece of 
which is decreasing in case (3.2) a (3.4) and constant in cases (3.3) and (3.5). The 
minimum of p;(x;) is attained either on [£, xtJ] where £; = (̂vv; — vjj and 
xtj = min{xj;|xr; > jfy} and £; > X/_1;, or on the whole interval [xr;, £j], where 
xtj = max{.$;|xi; < £;} and £; < x/;. In Example 5.1 1 = 2 and p;(x;) = 4 on 
[Xj, x2J] = [5, 6.5]. If £j < 0, then p;(x;) is nondecreasing on [0, dj] and if #; > d;, 
function p;{x;) is nonincreasing on [0, dj]. 

Let us denote kj: = min {#(x;) | x; e [0, dj]} and _5(A): = {*• e [0, dj] \ p;(x;) < k}. 
Then F){/1) is closed subinterval of [0, dj] and Fj(k) = 0, if k < kj. 

Let QLj: = min {w;{x;) | x; G P){A)} and /J;: = max {/;{x;) | x; G -FJ{/1)}. Then w;{x;) — /;{x;) < 
a — p can be satisfied on [0, dj] if a — ft > kj9 a > a; and /? > /?;. The deter
mination of a;, /?; is a purely technical problem and is not described in detail here. 
The same holds for the determining of subintervals Fj(k) (compare Tab. 5 in 
Example 5.1). 

4. Some Optimization Problems 

Let us define for each j e N the value x°pt G Fj(kJ) as follows: x°pt = x/;, where 
the index /, i ; and kj are defined as in the preceding paragraph. It holds then 

(4.1) «;{xf) = min{H{x,)|x,6i<.(A,)}. 
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Similarly if we set xopt = x, Vj e N then it holds: 

(4.2) lj(xr) = max{lj(xJ)\xjeFj(XJ)} 

(compare Example 5.1, Fig. 2, where Xj = 4, / = 2, xopt = 5, xopt = 6.5). 
Let us consider the following optimization problems: 

minimize f(x) 1 
s.t. XjeF^VjeNJ { } 

minimize f(x) j 
s.t. XjeFlXjVjeN) [ } 

minimize g(x) j 

s.t. XjeFAtyVjeN) [ ' 

minimize h(x) ^ 
s.t. f(x) < a t (P4) 

0 < Xj < dj Vj e N J 

It follows immediately that xopt = (xopt,..., xopt) 1s the optimal solution of (PI), 
xopt = (xopt, ..., xopt) is the optimal solution of (P3). Optimal solution of (P2) can 
be found via the minimization of Uj(xj) on intervals Fj(X) Vj e N (note that the set 
of feasible solutions of (P2) is nonempty only for X > max Xj). The set of feasible 

jeN 

solutions of (P4) is the Cartesian product of Lj9j e N, where L; ^ [0, dj], and each 
subset Lj is a union of at most m closed intervals. It remains therefore for each j to 
minimize function Pj(xj) on the closed intervals, the union of which is equal to 
Lj and then choose the minimal value of these minima. 

Remark 4.1 It is obvious that in this way we can formulate further easily 
solvable optimization problems, the optimal solutions of which are other types of 
compromise solutions among the three objective functions f(x), g(x), h(x) (e.g. 
maximization ofg(x) s.t. f(x) < a and h(x) < X and so on). 

Remark 4.2 The case, in which the weighting coefficients expressing the 
importance of customers are included can be a subject of further research. In such 
case, instead of functions rijf functions f^Xj) = min (a^ + w x̂,, b̂  — Wyxj) would 
be used. 

Remark 4.3 Another subject of further research could be the usage of the 
results described above for finding approximate solutions for nonseparable location 
problems with the objective function s(x): = max min r^xj), which are in general 
NP-hard ([3]). ieS jeN 

Remark 4.4 The inclusion of stochastics can be another direction for further 
investigation. We could study e.g. the case in which for each pair (C„ Tj) 
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there a probability ptj e (0,1) is given, that customer Ci will be accepted by centre 

Tj-

Remark 4.5 The procedures suggested above can be adjusted to discrete 
problems, in which only finite subsets of positions in the connecting roads AjB} are 
available for locating centres T}. 

5. Numerical Example 

Example 5.1 
We shall assume that; e IV is an arbitrary fixed index, m = 6, dj =12 , r.̂ x,) = 

min (at> + x;, btj - x7), where btj = by + dp Uj(x}) = max riy(x;), lj(x}) = min r^x,), 
, . . r-p , ! 1<.'<6 l < i < 6 

aip btj are given in Tab. 1 

Í 1 2 3 4 5 6 

üÿ 14 6 1 0 2 1 

h 10 14 18 24 12 13 

Table 1 

The graphs of Uj(xj), l}(Xj) are presented in Fig. 2. The explicit expression of u}(xj) 
and //(x,) is given in Tab. 2 (functions r5j(xj), r6j(xj) are redundant for the definition 
of Uj(xj), so that Si obtained from the algorithm "reduction" is equal to {1,2, 3, 4} 
with r = 4. 

XjЄ [0,2) [2,4) [4,6.5) [6.5, 8.5) [8.5,9.5) [9.5,12] 

фj) 10 - Xj 6 + Xj 14 - Xj 1 + Xj 18 - xj Xj 

XjЄ [0,5] [5,12] 

lÂ*j) Xj 10 - Xj 

ТаЫе 2 

max lj(xj) = lj[xj) = //5) = 5 
0^x,<12 

Local maxima xip xtj of Uj(xj) are given in Tab. 3 
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i 1 2 3 4 

* ÿ 0 4 8.5 12 

?.ï 2 6.5 9 — 

Table 3 

We see that in this case xtj < xi+ij for i = 1,..., 3 so that no reordering of 
indices i e Sx is necessary. The explicit expression of function PJ{XJ) = uj{xj) — lj{xj) 
is given in Tab. 4. Its graph is presented in Fig. 3. 

PÁxi) 

Figure 3 
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XjЄ [0,2] (2,4] (4,5] (5, 6.5] (6.5, 8.5] (8.5,9] [9,12] 

PÂXJÌ 10 - 2xj 6 14 - 2xj 4 - 9 + 2xj 8 - 1 0 + 2xj 

Table 4 

We see that min p;(x,) = X}, = 4 and p}(xj) = X}- = 4 for all x; G [5,6.5]. Let 
0<x,<.12 

us define i ^ ) = {xj \ p}(xj) < X}- & x; e [0, 14]}; the form of point-to-set mapping 
Fj(X}) follows from Tab. 5. 

If kj < 4, FJ(XJ) = 0; if Xj > 14, Ffo) = [0, 14] 

^ m 
[4,6] 

П 4 - Xj Ãj + 91 

[6,8] 
П 0 - Àj Åj + 91 
L 2 ' 2 J 

[8,10] 
Г10 - Xj Àj + 91 
L 2 ' 2 J 

[Ю, 14] Һя'ľ°] 
ГaèZe 5 
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