
Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka; D. Rosendorf
Quasigroups which are unions of three proper subquasigroups

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 45 (2004), No. 1, 55--66

Persistent URL: http://dml.cz/dmlcz/142735

Terms of use:
© Univerzita Karlova v Praze, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142735
http://project.dml.cz


2004 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 45, NO. 1 

Quasigroups Which Are Unions of Three Proper Subquasigroups 

T. KEPKA and D. ROSENDORF 

Praha 

Received 27. September 2003 

Quasigroups that are unions of three proper subquasigroups are characterized.1 

1. Quasigroups 

A groupoid is a non-empty set equipped with a binary operation (usually denoted 
multiplicatively). A groupoid Q is said to be a quasigroup if for all a,b eQ there 
exist uniquely determined elements u,veQ such that au = b = va. 

Proposition 1.1 Let Au..., An,n > 2, be proper subquasigroups of a quasi
group Q. If Q = Ax u ... yj A„ then Q is not one-generated. 

Proof. Let, on the contrary, Q be generated by a single element, say a. Then 
a e Ai for at least one i, 1 < i < n, and hence Ax = Q, a contradiction. • 

Proposition 1.2 Let Q be a non-trivial finitely generated quasigroup. Then: 
(i) Every proper subquasigroup of Q is contained in (at least one) (proper) 

maximal subquasigroup of Q. 
(ii) Q has no maximal subquasigroups if and only if Q has no proper subquasi

groups at all. 

Proof. The set of proper subquasigroups is upwards inductive and the rest is 
clear. • 

Department of Mathematics, Charles University in Prague, Sokolovskd 83, 186 00 Praha 8, Czech 
Republic 
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Remark 1.3 Clearly, if Q is a quasigroup possessing no proper subquasigroups, 
then Q is generated by any of its elements and, in particular, Q is countable. On 
the other hand by [1, Corollary 7], if P is a countable quasigroup containing at 
least three elements, then P is isotopic to a quasigroup Q such that Q has no 
proper subquasigroups. 

Proposition 1.4 (cf 1.2) Let Q be any non-trivial finitely generated quasigroup 
such that Q has only finitely many maximal subquasigroups, say Ax,..., An, n > 0. 
The following conditions are equivalent: 

(i) Q is not one-generated. 
(ii) n > 3 and Q = Ax u ... u An. 

(Hi) n > 1 and Q = AXKJ ... u An. 

Proof, (i) implies (ii). Since Q is not one-generated, every element generates 
a proper subquasigroup, and hence every element is contained in a maximal 
subquasigroup (1.2(i)). Consequently, n =t= 0 and Q = A{ u ... u An. Then, 
clearly, n > 2 and the inequality n > 3 is also easily seen (2.1). 

(ii) implies (Hi). Trivial. 
(iii) implies (i). Every element of Q is contained in at least one of the proper 

subquasigroups Au ..., An. • 

Proposition 1.5 (cf. 1.2 and 1.4) Assume that there exist finitely many proper 

subquasigroups Au...9 An,n > 0, of a quasigroup Q such that every proper 

subquasigroup of Q is contained in at least one of Ax,..., An. Then Q is a finitely 

generated quasigroup and Q has only finitely many maximal subquasigroups. 

Proof. If n = 0, then Q has no proper subquasigroups and the assertion is clear. 
If n > 1, at e Q\ At and 5 = {a,; 1 < i < n), then Q is generated by S. • 

Example 1.6 Consider the following three-element quasigroup II: 

п CL ß У 

a 

ß 
7 

a. y ß 
y ß 0. 
ß a ľ 

Then {a},{/?} and {y} are maximal subquasigroups of II and II = {a}u {j?}u 
u{y}. 

Example 1.7 We may also consider the four-element 2-elementary abelian 
group G( + ) = Z2( + )(2) (Z2( + ) = {0,1} is the two-element additive group of 
integers modulo 2). Then G = A u B u C and 0 = A n B n C, where 
A = {(0,0), (0, \)},B = {(0,0), (1,0)} and C = {(0,0),(1, 1)} are proper subgroups 
of G( + ) (notice that 0, A, B, C and G are the only subgroups of G( +)). 
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2. The case of two subquasigroups 

Proposition 2.1 Let A and B be subquasigroups of a quasigroup Q such that 
Q = AKJ B. Then either A = Q or B = Q. 

Proof. Assume that A <£ B. \f aeA\B and beB, then ab$B, and heince 
abe A and be A. Thus B ^ A and consequently, A = Q. • 

3. The case of three subquasigroups (a) 

Throughout this section, let A, B and C be proper subquasigroups of a quasi
group Q such that Q = A u B u C. 

Lemma 3.1 (i) A -# B * C * A 
(77) Q + AuB, e + iuCanrfQ + BuC. 

(7*7) A £ B u C , B £ A . u C a . n d C £ , 4 u B . 
(iv) Q\(A u B) <= C, Q\(A u C) <= B and Q\(B u c) c A 

Proof. Easy (use 2.1). • 

Lemma 3.2 AnB = AnC = BnC = AnBnC. 

Proof. If a e (A n B)\ C and c eC, then ac £ C, and so either ac 6 A and c e A 
or a c e B and c e B . Thus C ^ AKJ B, a contradiction with 3.1(iii). We have 
shown that A n B ^ C and the remaining inclusions are similar. • 

Lemma 3.3 (i) (A\B) (B\ A) u (B\ A) (A\B)^ C\(A u B). 
(ii) (A\ C) (C\ A) u (C\ A) (A\ C) c B\(A u C). 

(Hi) (C\ B) (B\ C) u (B\ C) (C\ B) c= A\ (C u B). 

Proof. If a e A\ B and be B\A, then ab$A\jB, and hence ab e Q\ (A u B) = 
C\( .4u B). The rest is similar. • 

Proposition 3.4 Assume that A n B n C = 0. Then: 
(i) !j = ( > l x . 4 ) u ( B x B ) u ( C x C ) is a congruence ofQ and Q/Q £ II (see 1.6.). 
(ii) A, B and C are normal maximal subquasigroups of Q. 

Proof, (i) By 3.2, the subquasigroups A, B and C are pairwise disjoint, and 
hence Q is an equivalence (defined on Q). Further, by 3.3, AB u BA ^ C, 
AC u CA c B and BC u CB ^ A. Consequently, Q is a (groupoid) con
gruence of Q and Q/Q ^ II. 

(ii) This follows immediately from (i). • 

In the remaining part of this section, let D = A n B n C (then either D = 0 or 
D 4= 0 is a subquasigroup of Q) and A* = A\D, B* = B\D and C* = C\D. 

57 



Lemma 3.5 (i) A n B = A n C = B n C = D. 
(ii) A*B* u B*A* = C*, A*C* u C*4* = B* and B*C* u C*B* = A*. 

Proof. See 3.2 and 3.3. • 

Lemma 3.6 (i) For all ae A* and ceC* there exist uniquely determined 
bu b2 e B* such that abx = c = b2a. 

(ii) For all b e B* and ceC* there exist uniquely determined ah a2 e A* such that 
a{b = c = ba2. 

Proof. There exasts a uniquely determined xeQ such that ax = c. Since c$D 
and a $ D, we have x$ A v C. Thufs x e B*. The rest is clear. • 

Lemma 3.7 (i) For all ae A* and b e B* there exist uniquely determined 
cb c2 e C* such that acx = b = c2a. 

(ii) For all ceC* and b e B* there exist uniquely determined au a2e A* such that 
axc = b = ca2. 

Proof. Similar to that of 3.6. • 

Lemma 3.8 (i) For all be B* and ae A* there exist uniquely determined 
cu c2 e C* such that bc{ = a = c2b. 

(ii) For all ceC* and ae A* there exist uniquely determined bu b2 e B* such that 
b{c = a = cb2. 

Proof. Similar to that of 3.6. • 

Corollary 3.9 |,4*| = |B*| = \C*\ and \A\ = \B\ = |C|. If at least one of A, B 
or C is finite then so is Q. 

Corollary 3.10 If Q is finite, then \Q\ = 3m + n = 3fc — 2n, m = \A% 
n = \D\ and k = m + n = \A\. 

Proposition 3.11 Each of the subquasigroups A, B, C is a maximal subquasi-
group of Q. 

Proof. Let £ be a subquasigroup of Q such that A = E and A =|= E. Then either 
E n B* =\= 0 or E n C* = 0 and, since A* = F, we get E n B* =# 0 =# E n C* 
by 3.5(H). Now, if e e B n B*, then xe e A* for some xeQ and we have 
x e E n C*. If b e £*, then xbeA* = E and it follows that b e E. Thus B = E 
and, quite similarly, C ^ E. • 

Proposition 3.12 If D =t= 0 then the following conditions are equivalent: 
(i) A is normal in Q. 

(ii) B*B* u C*C* _= D. 
(Hi) D is normal in both B and C and B/D ^ Z2( + ) ^ C/D. 
(iv) A is normal in Q and Q/A = Z2( 4-). 
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Proof, (i) implies (ii). Let, on the contrary, xv ~ B* for some x, v e B*. If d e D, 
then v = yd and zd = x- yd for some y,zeQ. Clearly, y,zeB* and, 
choosing a e A*, we have za = x- yw. Now, w e A, since A is normal in Q. 
On the other hand, za E C*, and hence yw e A* and w G C*, a contradiction. 

(ii) is equivalent to (iii). Easy to see. 
(ii) implies (iv). The relation Q = (A x A)u ((Q\A) x (Q\A)) is a congruence of 

Q and Q/Q =^ Z2( + ). • 

Proposition 3.13 If D =t= 0, then the following conditions are equivalent: 
(i) At least two of the subquasigroups A, B, C, D are normal in Q. 

(ii) All four of the subquasigroups A, B, C, D are normal in Q. 
(iii) A*A* u B*B* u C*C* = D. 
(iv) D is normal in Q and Q/D £ Z2( + )(2). 
(v) D is normal in Q and Q/D is hamiltonian. 

(vi) D is normal in all three of the subquasigroups A, B, C and A/D ^ B/D = 
C/D =. Z2( + ). 

Moreover if these equivalent conditions are satisfied, then Q/A = Q/B = Q/C = 
A/D ^ B/D s C/D £ Z2( + ). 

Proof, (i) implies (ii) and (iv). If any two of the subquasigroups, A, B, C are 
normal in Q, then D = AnB = BnC = CnA is normal in Q. Now, let us 
assume that A, D are normal in Q. By 3.9 and 3.12, we have \A/D\ = \B/D\ = 
\C/D\ = 2, and hence \Q/D\ = 4 (3.10). We have Q/D = A/D u B/D u C/D and 
the three subquasigroups are two element groups. Thus Q/D is a loop and it is easy 
to see that Q/D ^ Z2( + )(2). 

The remaining implications are clear (use 3.12). • 

Corollary 3.14 If at least one of the subquasigroups A, B, C is normal in Q and 
\D\ = 1, then Q s Z2( + )^. 

Proposition 3.15 Assume that Q is finite and that k = \A\ (= \B\ = \C\) divides 
\Q\ (e.g., at least one of A, B, C is normal in Q). 

(i) All of the three subquasigroups A, B, C are normal in Q. 
(ii) IfD 4= 0, then D is normal in Q and Q/D ^ Z2( + )<2>. 

(iii) IfD = 0, then \Q\ = 3k. 
(iv) IfD*Qandn = \D\, then k = 2n and \Q\ = 4n. 

Proof. In view of 3.4, we may assume that D + 0. Now, k = 2n by 3.10, and 
hence (i) is true. The rest is clear from 3.13. • 

Corollary 3.16 If Q is finite and \A\ (= \B\ = \C\) divides \Q\, then either 3 or 
4 divides \Q\. 

3.17 Choose bijections a* : A* -• B* and T* : A* -• C* (see 3.9) and define six 
binary operations on the set A* by a^O a2 = T*~l(ala*(a2)\ ai*a2 = 
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T* \o*(a{) a2), a{<3 a2 = o* l(fliT*(a2)), a{ t>a2 = o* \T*(a{) a2), ax*a2 = 
o*(a{) T*(a2) and a- * a2 = T*(a{) o*(a2) for all ah a2 e A*. 

Lemma 3.17.1 All the six groupoids A*(o), A*^), A*{o), A*(o), A*(*), A*(+) 
are quasigroups. 

Proof. This can be checked easily. D 
Lemma 3.172 ob = T*(a O o*~\b)), ba = T*(o*~\b)* a), ac = o*(a^ T*~\C)), 

ca = O*(T*~\C) t>a), bc = o*~\b)* T*~\C) and cb = T*~\C) + o*~\b) for all 
a e A*, be B* and c e C*. 

Proof. Obvious. D 
Let o = o* u idD, T = T* U idD, and define three binary operations a, /? and y 

on A by axoca2 = a{a2, ax$a2 = o~\o(ax) o(a2)) and axy_a2 = T~\T(ax) r(a2)). 

Lemma 3.17.3 -4(a), A((l), and A(y) are quasigroups and the bisections 
idA : A(a) -> A, o : A(ft) —> B, and T : A(y) -> C ar^ quasigroup isomorphisms. 

Proof Obvious. D 
Remark 3.18 Assume that D + 0, put Q* = A* u B* u C* = Q\D, W = 

{(x,y); x, y e Q*, {x,y} <fi A*, {x,y} <£ B*, {x,y} (£ C*} and choose (arbitrarily) 
quasigroup operations a, /} and y defined on A*, B* and C*, resp. Now, define an 
operation O on Q* in the following way: 

1. A*(OL, B*(§) and C*(y) are subgroupoids of Q*(o); 
2. x O y = xy for every (x, y) e W. 

Then Q*(o) is a quasigroup that is the disjoint union of the three subquasigroups 
A*(o), B*(o) and C*(o). Moreover, Q = Q* u D and xy = x O y for every pair 
(x,y)eW. 

4. The case of t h r ee subquas ig roups (b) 

Construction 4.1 Let R be a non-empty set supplied with nine binary quasig
roup operations denoted by the symbols a, /?, y, o, • <i, i>, *, and *, resp. Put 
Q = R x {1,2, 3} and define a multiplication on Q by means of the following 
rules: 

(uocv, 1) for all u,ve R; 
(ufiv, 2) for all u,veR; 
(uyv, 3) for all u,veR; 
(u o v, 3) for all u,veR; 
(u • v, 3) for all u, v e R; 
(u <] v, 2) for all u,veR; 
(u >y, 2) for all u,v e R; 

1. (- 1)1 [». 1) = ( 
2. (" -)( v, 2) = (i 
3. (u 3)1 v, 3) = (i 
4. ("> 1)( t\2) = (i 
5. (u, -)( v, 1) = (l 
6. (u, -)( v, 3) = (i 
7. (u. 3)1 v, 1) = (l 
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8. (M, 2) (v, 3) = (M * v, 1) for all u, v e R; 
9. (u, 3) (v, 2) = (M * v, 1) for all u,ve R. 

Put A = R x {1},B = R x {2},C = K x {3},<T(M, 1) = (M, 2) and T(M, 1) = (M, 3), 

ueR. 

Lemma 4.1.1 (M O V, 1) = T_1((M, 1) a(v, 1)), (M *V,1) = X~\G(U, 1) (z;, 1)), 
(M <I v, 1) = ^ ( ( M , 1) T(I>, 1)), (v i> v) = <7_1(T(M, 1), (t;, 1)), (M * v, 1) = <T(M, 1) x(v, 1) 
and (M * v, 1) = T(M, 1) o(v, I) for all u,v e R. 

Proof. Obvious from the definitions of the operations. • 

Lemma 4.1.2 A is a subquasigroup of Q and the mapping u i—• (M, 1) is an 
isomorphism of R(<x) onto A. 

Proof. Easy. • 

Lemma 4.1.3 B is a subquasigroup of Q and the mapping u i—• (u, 2) is an 
isomorphism of R(0) onto B. 

Proof. Easy. • 

Lemma 4.1.4 C is a subquasigroup of Q and the mapping u i—• (u, 3) is an 
isomorphism of R(y) onto C. 

Proof. Easy. • 

Proposition 4.1.5 Q is a quasigroup, A, B and C are proper subquasigroups of 
Q,AuBuC = QandAnBnC = 0. 

Proof. Easy (use 4.1.1, ..., 4.1.4). • 

Theorem 4.2 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper subquasigroups A, B, C of Q such that A u B u C = Q 

and A n B n C = 0. 
(ii) The three-element quasigroup II (see 1.6) is a homomorphic image of Q. 

(Hi) Q (or an isomorphic copy of Q) is constructed in the way described in 
4.1. 

Proof, (i) implies (ii). See 3.4. 
(ii) implies (i). Let n.Q-+Tl be a homomorphism of Q onto EL For the 

completion of the proof it suffices to put A = 7t_1(a), B = n~l(fi) and 
C = n~l(y). 

(i) is equivalent to (iii). Combine 3.17 and 4.1. • 

Example 4.3 (cf 3.4) In 4.1, let us choose three pair-wise non-isomorphic 
quasigroups R(<x), R(fi) and R(y). Then Q = A u B u C, where A, B and C are 
pair-wise non-isomorphic and A n B n C = 0. 
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5. The case of t h r e e s u b q u a s i g r o u p s (c) 

Construction 5.1 Let R be a non-empty set supplied with three binary 
quasigroup operations denoted by the symbols a, /? and y, resp., and let S be 
a proper non-empty subset of R such that S is a subquasigroup of all the three 
quasigroups and xay = xpy = xyy for all x,yeS. Further, let T = R\S (we 
have T =t= 0) and let O, •, <i, o , *, and * be six quasigroup operations defined 
on T. Put Q = (T x {1,2, 3}) u S (we assume (T x {1,2, 3}) n S = 0) and define 
a multiplication on Q by means of the following rules: 

1. xy = xocy (= x/ty = xyy) for all x,yeS\ 
2. x(u, 1) = (xaw, 1) and (w, 1) x = (wax, 1) for all x e S and w e T; 
3. (w, 1) (v, 1) = wav for all w, v e T such that wav e S; 

4. (w, 1) (v, 1) = (wav, 1) for all u,veT such that wav e T\ 

5. x(u, 2) = (x/?w, 2) and (w, 2) x = (w/Jx, 2) for all x e S and w G T; 
6. (w, 2) (v, 2) = w/?v for all u,veT such that w/Jv G S; 
7. (w, 2) (v, 2) = (w/?v, 1) for all w, v G T such that w/Jv e T\ 
8. x(w, 3) = (xyu, 3) and (w, 3) x = (wyx, 3) for all x E S and w G T; 
9. (w, 3) (v, 3) = wyv for all u,veT such that wyv G S; 

10. (w, 3) (v, 3) = (wyv, 1) for all u,veT such that wyv G T; 
11. (w, 1) (v, 2) = (w"o v, 3) for all u,veT\ 
12. (w, 2) (v, 1) = (w • v, 3) for all w, v G T; 
13. (w, 1) (v, 3) = (w <i v, 2) for all u,veT\ 

14. (w, 3) (v, 1) = (w o v, 2) for all u,v e T\ 
15. (w, 2) (v, 3) = (w * v, 1) for all w, v G T; 
16. (w, 3) (v, 2) = (w * v, 1) for all w, v G T. 

Put A* = T x {1}, B* = T x {2}, C* = T x {3}, ^ = A* u S, B = B* v S, 
C = C* u S, cr*(w, 1) = (w, 2), T*(W, 1) = (w, 3) for all w e T, a = <r* u ids, 
T = T* u ids and D = S. 

Lemma 5.1.1 (w o v) = T*"1((W, 1) <r*(v, 1)), (w •v,l) = T*-1(<T*(W, 1) (v, 1)), 

(w -a v, 1) = a* - !((w, 1) T*(v, 1)), (w D> t U ) = <r* " V ( w > 1) ("> !))' (" * M ) = 
cr*(w, 1) T*(v, 1) and (u * v, 1) = T*(W, 1) <r*(v, \)for all u,veT. 

Proof. Obvious from the definitions of the operations. 

Lemma 5.1.2 A is a subquasigroup of Q and the mapping x i 
x e S, u G T, is an isomorphism of R(ct) onto A. 

Proof. Easy. 

Lemma 5.1.3 B is a subquasigroup of Q and the mapping x i 
x e S, u e T, is an isomorphism of R(0) onto B. 

Proof. Easy. • 
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Lemma 5.1.4 C is a subquasigroup of Q and the mapping x i—• x, u i—> (u, 3), 
x e S, u e T, is an isomorphism of R(y) onto C. 

Proof. Easy. • 

Lemma 5.1.5 D is a subquasigroup of Q and the mapping x i—> x, x e S, is an 
isomorphism of S(cc) (= S(/J) = S(y)) onto D. 

Proof. Obvious. • 

Proposition 5.1.6 Q is a quasigroup, A, B and C are proper subquasigroups of 
Q, Q = AuBuCandD = AnBnC. 

Proof. Easy (use 5.1.1,..., 5.1.5). • 

Lemma 5.1.7 A is normal in Q if and only ifS(fi) is normal in R([l), S(y) in R(y) 
and \R(§)/S(§)\ = 2 = \R(j)/S(y)\. 

Proof. Combine 5.1.6 and 3.12. • 

Lemma 5.1.8 All three of the subquasigroups A, B, C are normal in Q if and 
only ifS(S) is normal in R(d) and \R(d)/S(5)\ = 2 for every d e {a, §, y}. 

Proof. Use 5.1.7. • 

Theorem 5.2 Let Q be a quasigroup. Then there exist proper subquasi
groups A, B and C of Q such that A u B u C = Q and AnBnC = D + 0if 
and only if Q (or an isomorphic copy of Q) is constructed in the way described 
in 5.1. 

Proof. Combine 3.17 and 5.1. • 

Theorem 5.3 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper normal subquasigroups A, B,C of Q such that A u B u 

C = Qand AnBnC + 0. 
(ii) The four-element 2-elementary group Z2( + )^ is a homomorphic image of Q. 

(Hi) Q (or an isomorphic copy of Q) is constructed in the way described in 5.1 
where S(5) is normal in R(5) and \R(5)/S(5)\ = 2 for every <5 E {a, /?, y}. 

Proof. Combine 5.L5.2 and 3.13. • 

Corollary 5.4 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper normal subquasigroups A, B,C of Q such that 

AKJBKJC = Q. 

(ii) Either the three element quasigroup II or the four-element group Z2( + )^ is 
a homomorphic image of Q. 

Example 5.5 In 5.1, choose R(ft) = R(y) = Z( + ) (the additive group of 
integers), S = Z2 and T(o) = T(#) = T(<j) = T(o) = T(*) = T(*) any com
mutative quasigroup defined on T = Z\ {0}. Further choose a commutative loop 
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operation a defined on Z such that accb = a + bfor all a,beZ2 and consider the 
corresponding commutative loop Q (see 5.1 again), 

(i) A, B, C are proper subloops ofQ,AuBuC = Q and A n B n C = Z2 is 
an infinite cyclic group, 

(ii) A is normal in Q. 
(Hi) B (or C) is normal in Q if and only ifD = 12 is normal in Z(a) and Z(a)/D = 

Z2( + ). 
Notice that we may define a on Z in such a way that Z(a) becomes an infinite 

cyclic group and \Z(oc)/D\ = 3. Then A =" B =" C = Z( + ), A is normal in Q, D is 
normal in A, B, C and D, B, C are not normal in Q. Moreover, A/D =" ̂ -s( + ) and 
B/D _= Z2( + ) ^ C/D. 

Example 5.6 In 5.1, choose R(oc) = R(P) = R(y) = Z( + ) (the additive group 
of integers), S = {0} and T(o) = T(#) = T{<J= F(o) = T(*) = T(*) any 
commutative quasigroup defined on T = Z\ {0}. 

Then Q becomes a commutative loop, Q = A u B u C, where A, B, C are 
subloops isomorphic to Z( + ) and A n B n C is the unit subloop of Q. Notice that 
neither A nor B nor C is a normal subloop of Q. 

Example 5.7 Consider the following loop L: 

L 1 ax a2 b\ b2 cx c2 

1 1 ax a2 bx b2 C\ c2 

ax 
ax a2 1 c{ c2 b! b2 

a2 a2 1 ax c2 c{ b2 b{ 

b\ b\ C\ c2 b2 1 ax a2 

ь2 
b2 c2 C\ 1 b\ a2 ax 

ci C\ b\ b2 a\ a2 c2 1 

c2 
c
2
 b2 b\ a2 ax 1 C\ 

Then Q is a simple commutative loop, Q = A u B u C, where A = { l ,a b a2}, 

B = {l,bi, b2), C = { l ,c b c2} are subloops of Q and A n B n C = 1. 

Example 5.8 In 5.1, choose three pair-wise non-isomorphic loops R((x), R(P) 
and R(y) possesing the same neutral element 1 and put S = {l}. The quasigroups 
defined on T = R\ [l}may be chosen arbitgrarily. Then we get a loop Q such that 
Q = A u B u C, where A, B and C are pair-wise non-isomorhic proper subloops 
and A n B n C = 1. 

Remark 5.9 (cf 3.18) Let Q*(o) be a quasigroup that is the disjoint union of 
three proper subquasigroups, say A*(o), B*(o), C*(o) (see 4.2) and let !>(•) be 
a quasigroup such that D n Q* = 0. Now, put A = A* u D, B = B* u D, C = 
C* u D and choose some quasigroup operations a, /J and y defined on A, B and 
C, resp., in such a way that /)(•) is a subquasigroup of all the three quasigroups. 
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Finally put Q = Q* u D and define a multipication on Q as follows: 
1. A(QL), B(ji) and C(y) are subquasigroups of Q; 
2. xy = x O y for all x.yeQ such that {x,y} <$. A, {x,y} £ B, {x,y} £ C. 

Then Q is a quasigroup, A, B, C and D are its subquasigroups, A u B u C = Q 
andAnB = BnC = CnA = D. 

6. The case of three subgroups 

Proposition 6.1 ([2]) Let A, B, C be proper subgroups of a group G such that 
AuBuC = GandAnBnC= 1. Then G =• Z2( + )(2) (see 1.7). 

Proof. By 3.2, AnB = AnC = BnC = 1. If a e A*, b e B* and c e C*, 
then ab e C*, be e A* and hence abc e A n C = 1, a = c~{b~l. It follows that 
| ,1* | = \B*\ = \C*\ = 1, and so \A\ = \B\ = |C| = 2 and \G\ = 4. Finally, since 
G = A u B u C, we have x2 = 1 for every x e G and the rest is clear. • 

Proposition 6.2 ([2]) Let A, S, C foe proper subgroups of a group G such that 
G = A u B u C. Therz each of A, B, C w a normal maximal subgroup of G, 
G/A = G/B =• G/C = Z2( + ) ,D = y 4 n . B n C « f l normal subgroup of G and 
G/D * Z2( + )<2'. 

Proof. If a e A*, be B* and c e C*, then abc e D and a e Dc~{b~l _= A. Now 
it is clear that \_A : D] = 2, and hence Z) is a normal subgroup of A and 
A 91 NG(D) (the normalizer). Quite similarly, B u C ~l NG(D) and consequently, 
NG(D) = G and D is normal in G. Then G/D = G{ = AX\J B{u Cb A{ = A/D, 
Bx = B/D, C! = C/D, AxnBxnCx = \ and the result follows from 6.1. • 

Theorem 6.3 ([2]) The following conditions are equivalent for a group G: 
(i) There exist proper subgroups A, B and C of G such that A u B u C = G. 

(ii) The group Z2( + ) ^ is a homomorphic image of G. 
(Hi) If H denotes the subgroup of G generated by the set {x1; x e G}, then the 

factor-group G/H is not cyclic (clearly, H is normal in G). 

Proof, (i) implies (ii). See 6.2. 
(ii) implies (iii). If K is a normal subgroup of G with G/K ^ Z2( + )(2), then 

H ~\ K, and so G/H is not cyclic, 
(iii) implies (ii). G/H is a direct sum of at least two copies of Z2(-|-). 
(ii) implies (i). Use 1.7. • 

Example 6.4 Let G = S3 (the symmetric group on three letters). Then G con
tains just four non-trivial proper subgroups, say A, B, C and D, where A is the 
alternating group, \A\ = 3, and \B\ = \C\ = \D\ = 2. Clearly, all the subgroups 
are maximal, A is normal in G, B, C and D are not normal in G, G = A u B u 
CvDandAnB = AnC = AnD = BnC = BnD = CnD = 1. 
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