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and Formal Spaces 
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We investigate the connection between the spatiality of locale products and the earlier 
studies of the author on the locally fine coreflection of the products of uniform spaces. 
After giving a historical introduction and indicating the connection between spatiality 
and the locally fine construction, we indicate how the earlier results directly solve the 
first of the two open problems announced in the thesis of T. Plewe. Finally, we establish 
a general isomorphism between the covering monoids of the localic product of 
topological (completely regular) spaces and the locally fine coreflection of the corres
ponding product of (fine) uniform spaces. Additionally, paper relates the recent studies 
on formal topology and uniform spaces by showing how the transitivity of covering 
relations correspond to the locally fine construction. 

1. INTRODUCTION 

This paper1 is based on the work carried out on the products of uniform spaces 
since 1981 by the author and others (see [16]-[24], [25], [26], [27]) using the 
technique of the locally fine corecflection. We study the connection of these results 
with the spatiality of localic products of topological spaces and the relationship of 
the locally fine corecflection with the so-called formal spaces. 
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Our work has been motivated by the appearance in 1996 of T. Plewe's Ph.D. 
thesis [41]2 on the spatiality of localic products of topological, especially separable 
metrizable spaces. Not only did the author discover an analogy between the 
previous results and those obtained in the thesis in question, but the solution of the 
first open problem left open (re-solved consistently with ZFC) in [41] was seen to 
follow from the author's article [23]. Therefore, we decided to write this paper in 
order to indicate the existence and usefulness of such previous research in an 
equivalent field. Let us note that the link between the spatiality of the localic 
products of paracompact spaces and the corresponding product of fine (uniform) 
spaces was already established by J. Isbell in [32]. 

On the other hand, the connection between locales and so-called formal spaces 
as clearly indicated in the thesis of I. Sigstam ([46]), led the author to discover the 
relation of the latter to (pre-)uniform spaces defined by means of filters of covering 
of a space. The transitivity of the covering relations of formal spaces is obtained 
by applying the locally fine construction. Hence, we obtain an interesting link 
between three 'unorthodox' approaches to topology, viz. locales (frames), unifor
mities and formal spaces. In fact, the locally fine coreflection was first introduced 
and studied by Ginsburg and Isbell in the beginning of the 1950's as a combina
torial approach to topology (given a monoid or filter of coverings). This project 
failed as one obtained topology - for metric spaces - only in the case of complete 
spaces, or more generally, when the spaces considered were paracompact, in the 
case of so-called supercomplete spaces. Their work [12] was published in 1959. 

However, the then recently introduced study of 'local lattices' and 'paratopolo-
gies' (see J. Benabou [3], D. and S. Papert [39]) was taken up by Isbell resulting 
in an article on uniform locales [32], in which he characterized [12] as a paper 
"about objects in a category Jf now visible as the hypercomplete uniform locales" 
(ibid., p. 31). The hypercomplete uniform locales obained from uniform spaces 
also have spatial products, provided that the corresponding topological products are 
paracompact. The study of locales (their opposite objects being named frames) is 
now a well-established field, both in topology (Johnstone) and uniform spaces, 
closely related to topos theory (see MacLane and Murdijk). Isbell's student Plewe 
extended results on spatial products, and also improved our theorem in [27] that 
Cech-scattered paracompacta have paracompact countable products by establishing 
that countable localic products of partition-complete ([37], [49]) paracompact 
spaces are spatial. The connection to the locally fine coreflection was, however, 
never pointed out. 

Formal spaces form a counterpart of the original constructive approaches to 
topology which considered recursive sequences to define points: One gives 
a collection of 'pieces' of a space related through a covering relation and studies 

2 The doctoral dissertation, on which [41] is based, had appeared in 1994. 
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recursive construction on the basis of these pieces. After being introduced by 
Fourman and Grayson in 1982 ([9]) and made manifest by Sambin in 1987 ([45]), 
this approach to a point-free topology has been studied by several authors (see, 
e.g., Negri and Valentini [38] and Sigstam [46]). As will be seen in the sequel, the 
transitivity requirement of the covering relation of a formal space is the counterpart 
of Kuratowski's classical condition that C2 = C for a closure operation C, and is 
essentially equivalent to the locally fine construction X, when the definition is 
extended from pre-uniformities (covering monoids) to covering relations. This 
connection will perhaps give a justification for the original attempt by Ginsburg 
and Isbell to obtain topology combinatorially through X. 

2. The locally fine coreflection 

Open covers of topological spaces have an obvious local character in the 
following sense: If ^ is an open cover of a topological space, and for each G e ^ , 
J^G is an open cover of G, then again the combined family u {J#G - G e &} is an 
open cover of the space. This is, however, not valid when 'open' is replaced by 
'uniform'. The locally fine operation { can be thought of as an attempt to reach 
topology from a given filter of coverings through combinatorial localization, i.e., 
by closing the given filter under the above condition. Let n be such a filter of 
coverings (pre-uniformity) on a set X. Assume that {[/,} is a member of p and for 
each i, we are given a member {if}. Then the above condition requires that the 
'uniformly locally uniform' cover {[/, n V/} be again uniform. A pair (X, n) with 
this property is called locally fine. In case (X, (i) is not locally fine, we may define 
the closure of n under this construction as follows. 

For generality, let v be another pre-uniformity on the set X. Then the filter /i/v 
is defined to consist of all coverings having a refinement of the form {Ut n V/}, 
where £/, e \x and for each i, V/ e v. Now let us define by transfinite iteration the 
consecutive Ginsburg-Isbell derivatives3 by setting °̂> = \i\ /^a+1) = \i^l\i% and 
^ = u {/ia): a < f}} when f} is a limit ordinal. There will be a least a such that 
if +x = ff-9 this filter is called the locally fine coreflection of \i and denoted X\i. 
On of the essenttial results in [12] state that if the filter \L is a uniformity, then so 
is X\i. 

If Xfi sufficient for the topology of the underlying space X, even in the case of 
a metric uniformity? There is a curious connection with the completeness of 

3 Ginsburg and Isbell ([12]) define /i("+ !) as ^/^ which, however, is less suitable for certain 
inductive purposes. The above 'slowed down' version was introduced by the author in [20]. For 
products of the form /. x v, we may still slow down the derivation by proceeding one coordinate at 
a time: Instead of using covers of the form # x {Y}, {X} x Y. The corresponding 'coordinatewise 
refinement condition' can be extended to arbitrary products. 
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hyperspaces, hence the term 'hypercomplete' or 'supercomplete'. In case the metric 
uniform space QX is complete, then by [12] XQ is the fine uniformity of X. (The 
fine uniformity is the collection of all normal covers of a given completely regular 
space, or in terms of entourages the filter of all neighbourhoods of the diagonal 
A(X) in X x X.) In this case every open cover is in XQ, because (by A. H. Stone) 
every open cover of a metrizable space is normal. It was previously known that 
the hyperspace of a complete metric space is again complete. Isbell proved that for 
a uniform space \iX, the uniform hyperspace H(\iX) is complete if, and only if, 
the locally fine coreflection Xfi is fine and X is paracompact ([30]). Thus, for such 
supercomplete spaces, the locally fine construction is sufficient for defining 
topology (open covers) combinatorially from uniform ones. 

3. Locales 

For a topological space X, the topology of X, written T(X), is a complete lattice 
which additionally satisfies the following Heyting axiom: 

(*) x A \Jya = \Jx A ya. 

Given topological spaces X, Y and a continuous mapping / : X -* Y, there is 
a natural homomorphism f*: T(Y) -• T(x) obtained by sending an open set 
0 e T(Y) to its preimage under f. Complete lattices satisfying the axiom (*) with 
opposite morphisms are called local lattices (Benabou) or simply locales (Isbell). 
Thus, we have a contravariant functor T:Top->Loc. Very general 'local 
structures' satisfying (*) were considered by Ehresmann in [7], who also defined 
the notion of 'paratopology', studied in the papers [39], [3]. The category of frames 
is the opposite Loc01* of the category of locales, i.e., they are complete right 
distributive lattices with morphisms in the standard direction. 

The other way goes from locales to spaces. Recall that the points of a locale L may 
be considered homomorphism (t>:L-+t, where % denotes the lattice with two 
elements 0, 1 such that 0 < 1. One defines the topological space Pt(L) of points by 
choosing for the subbasis the sets x* = {(f>eHom(L, X): <j>(x) = 1}. A question 
arises concerning the relations of X, T(X) and Pt(T(X)). One says that L is spatial 
('has enough points') if distinct elements of L can be distinguished by points, i.e., if 
for x, y € L, x # y, there is a point 0 : L -* % such that <\>(x) j± <j> (y). Then if L has 
enough points, L is isomorphic to T(X) for some space X. Isbell has proved e.g. 
that quasi-compact regular (more generally 'subfit') locales are spatial ([32], 2.1). 
On the other hand, spatiality is hard to preserve in the products of locales. We 
postpone the constructive definition of localic products to the last section where we 
prove our main result. We simply note here that the category of locales has products, 
denoted here with the symbol IIioc. (Similarly, the category of frames has 
ea-pitjdueu.) One always has the equality (to^legteal homeomorpmsm). 



Pt(niocL,)sIIrt (Li). 

Even assuming that the Lt come from spaces, i.e., Lt = T(Xt) and the spaces 
Xi are * sober' so that Pt(L,) is homeomorphic to X„ this is still not enough. (A 
topological space is called sober if its every irreducible non-empty closed subset 
is the closure of a unique singleton subset.) We can only infer that 

Pt(nlocT(Xl))^UXi, 

and this does not say anything about the pointless part of the localic product. We 
need to establish that the spaces Xt are preserved under the localic product, i.e., 
IIiocT^,) = T(YIXt). We often replace such an isomorphism with an equality. 

The following section seeks to show the relation of the studies (mainly in the 
1980's) on the locally fine coreflection of product uniformities to the thesis of T. 
Plewe. 

4. Product theorems 

Detailed studies on the behaviour of X on complete metric and other uniform 
spaces were carried out by the author and J. Pelant in the 1980's. Let us first 
consider supercomplete spaces. The questions considered were mainly related to 
product spaces, a topic directly connected with (and in the metrizable case 
equivalent to) the spatiality of localic products (Plewe's thesis [41]). If the 
topological spaces X, Y are paracompact (and Hausdorff), then the fine uniform 
spaces 3F{X\ !F(Y) are supercomplete. The condition for the product to be 
supercomplete is that it is (topologically) paracompact and the equation 

X(&(X) x &(Y)) = 3F(X x Y)) 

holds. In the infinite case, he corresponding equation has the form Xn^(Xt) = 
= & (YIXt). The main results proved in the series On Supercomplete Spaces I - V 
are listed below. A space X is called Jf-scattered with respect to a class Jf of 
spaces if every non-empty closed subspace of X contains a point with a closed 
neighbourhood which belongs to Jf. In the sequel, # (resp. $) denotes the class 
of compact (resp. Cech-complete) spaces. 

Theorem 1. ([21, [24]): A binary product ^(X) x 3F\y) is supercomplete for 
every paracompact space Y if and only if X is paracompact and <6-scattered. 

This characterization was partially obtained in [21], and completed in [24]. The 
paper [21] ([17]) contained the result that 3F{X) x 3F{y) is supercomplete for 
every paracompact Y whenever X is C-scattered and paracompact. Furthermore, 
a partial converse obtained stated that if X is a paracompact p-space (of 
Arhangel'skii), then 3F{X) x &(S) is supercomplete for every separable metri
zable S iff X is C-scattered. Therefore, a mtiiitiAt &j3dfce X i* ft Multiplier hi the 
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class of supercomplete (topologically) metrizable spaces iff it is C-scattered. This 
result implies one of the results obtained in Pie we [41], namely that for metrizable 
spaces, the locale X x ^Y is spatial for all Y if and only if X is completely 
metrizable and does not contain a closed copy of the irrationals. (See below for 
a discussion on the spatiality of metrizable products.) Indeed, for metrizable 
spaces, the properties of 1) being C-scattered and 2) being completely metrizable 
and not containing a closed copy of the irrationals are equivalent. (If X is 
C-scattered, then by [48], Theorem 1.7, it is an absolute G& space, and hence 
completely metrizable. The space X cannot contain a closed copy of the irrationals 
J, because J is nowhere locally compact. On the other hand, if X is not 
C-scattered, then X contains a closed subspace F which is nowhere locally 
compact. Then by [15], p. 157 (or ([41], 2.1), if X is completely metrizable, 
F contains a closed copy of J.) 

We note here that Isbell ([33], Th. 4) proved that in the class of completely 
regular spaces, X x ioc Yis spatial for all Y if, and only if, X is C-scattered. 

Theorem 2. ([26]): If X is paracompact and <&-scattered, then the countable 
power ^(X)N is supercomplete. 

Indeed, if X is assumed to be merely a countable union of closed ^-scattered 
subspaces, then the so-called metric-fine coreflection m ($F (X)N) is supercomplete. 
This gave a new topological corollary for paracompact spaces, made possible by 
the Noetherian tree technique (see below) related to the operation X. Well-known 
topological cases known previously (the locally compact paracompact case in 
Arhangels'kii [2] and Frolik [11], ^-scattered Lindelof spaces (Alster, [1]), 
scattered paracompact spaces (Rudin, Watson [44]) and paracompact ^-scattered 
spaces (Friedler, Martin, Williams [10])) all follow from the uniform case by 
suitably choosing the uniformity considered. The result of [26] was extended to 
^-scattered paracompact spaces by the author and Yun Ziqiu in [27], first 
announced in 1990 (conferences in Dubrovnik and Tsukuba). This time the 
topological corollaries were new: The product theorem holds for ^-scattered 
Lindelof, paracompact, and ultraparacompact spaces. 

Theorem 3. ([27]): If X is a <%-scattered paracompact space, then the countable 
power $F (AT)N is supercomplete. 

On the other hand, the autor proved 'omitting' theorems for supercompleteness 
in products. The method was based on the notion of n-cardinality, due to T. 
Przymusinski and van Douwen, who gave similar applications to topological 
spaces (cf. [43]). 

Theorem 4. ([22]): For each n e {1,2, 3,...} there is a subset X c K such that 
&(Xf is supercomplete for k = 1, ..., n but &(Xf + l is not, in other words 
X(F(Xf) = P(Xn) but X(P(X)n + l) * &(Xn + '). 
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In the same paper, it was also established that the set X can be chosen so that 
all finite powers of 3F (X) are supercomplete, while the countable power is not. As 
mentioned in [22], the sets X were constructed as Bernstein sets. One of the 
corollaries in Plewe's thesis ([41]) is a result that follows from the above theorem, 
and is in fact directly equivalent to it: 

Theorem 4'. (Corollary 5.6 in [41]): For each ne {2, 3, ... co} there exist 
Bernstein sets whose mth localic power is spatial for each m < n, while the nth 
localic power is not. 

Indeed, the equivalence of spatiality and supercompleteness was pointed out 
already by Isbell in 1972 ([32], Theorem 3.12): The product locale of supercom
plete spaces Xt is the locale underlying the hypercompletion (as a locale) of their 
product space. Thus, the product locale is the locale derived from the product space 
(and hence the product is spatial) if, and only if, the product space itself is 
hypercomplete. As countable products of metrizable spaces are always paracom-
pact, the product of at most countably many metrizable Xt is spatial (as locale) if, 
and only if, k(Yl^(X)) = ^(UXt). 

This equivalence is not, however, the end of the story. In his thesis Plewe listed 
two unanswered questions, of which the first is directly related to Theorems 4 - 4 ' : 
Do there exist non-complete spaces with spatial countable localic powers? He 
proved that the question has a positive answer in case one assumes a set-theoretical 
hypothesis consistent with the ZFC, namely that |R| > c02 and the unions of cOi first 
category subsets is again of the first category (this is implied by Martin's Axiom). 
However, the author had extended the technique of n-cardinality and published 
a solution to the equivalent problem for uniform spaces in 1988: 

Theorem 5. ([23], 3.2): There is a non-analytic subset X cz [0, 1] such that 
k(3?(XY) = &(Xm). 

As a corollory ([23], 3.3), one directly obtains from Gleason's factorization 
theorem (cf. [32], p. 130) that the equality in the above theorem is valid for any 
power. For definiteness, let us give here the corollary to Theorem 5 for spatiality: 

Theorem 5': There is a non-analytic and hence non-complete subset X cz [0, 
1] such that the countable localic power of T(X) is spatial. 

The original notion of n-cardinality was used to extend the validity of the CH 
for Borel sets (Alexandroff) to the n-cardinality version of the CH for subsets of 
finite products. Let X be an arbitrary set and let A cz Xn. Consider finding a set 
Y cz X, as small as possible, such that the codimension 1 'hyperplanes' nrl(y), 
yeY cover the set A. Accordingly, we define the n-cardinality of A, written \A\„ 
as the minimum cardinality of a subset Y cz X such that 

A cz Y x Xn~l u X x Y x Xn~2 u ... u Xn~l x Y, 
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or equivalently, / 4 c u {T^~{ [Y] : 1 < i < n}.The result proved by Przymusinski 
in [43] states that if X is a Polish space and A cz Xn is an analytic subset with 
\A\n > co, then the n-cardinality equals 2W. 

For dealing with infinite powers, the author defined in [23] the notion of relative 
co-cardinality: The co-cardinality of a subset A cz Xl° with respect to a subset 
S c I , written \A, S\w, is the minimum cardinality of a subset Y cz S (if such a set 
exists) such that 

A cz u { 7 i r l [ Y ] : ; e c O } . 

In case there is no such Y cz S, we define \A, S\w = \X\. Due to the relativity 
condition, this is a non-trivial extension of the notion of n-cardinality. (On the 
other hand, a similar notion of relative n-cardinality permits a simple proof of the 
basic result: For a Polish space X, and an analytic subspace A cz Xn, \A, S\n > a> 
implies \A, S\n = 2W for any S cz X; for details, see [23], 2.1.) The main principle 
in the inductive proof of Theorem 5 was the result that if X is a Polish space, 
S cz X is arbitrary, and A cz Xw is analytic, then \A, S\w > co implies \A, S|w = 2W. 

Remark 1: A basic example of a non-spatial product is given by Q x Q, where 
Q denotes the rationals as the subspace of the real line. This example was 
explicitly handled by Johnstone in his book ([34], II 2.14), which appeared in 1982. 
Coincidentally, in the same year, the author had shown as a particular corollary to 
his results on supercompleteness that X(3FQ x FQ) ^ ^(Q x Q). This follo
wed from the following result: Given Tychonoff spaces X, Y such that X x Y is 
Lindelof, then l(F(X) x 3F(Y)) = F(X x Y) if, and only if, for each compact 
K cz ((3X x /}Y)\(K x Y) there are Cech-complete paracompact subspaces M, 
TV of PX, pY, respectively, such that I c M , Y cz jV and K n (M x jV) = 0. 
(See [21], 3.5). For a subset X of the unit interval I, there is an easier way of 
paraphrasing this result: 3FX x 3FX is supercomplete if, and only if, for each 
compact K cz I2\X2 there is a first category subset A cz I \ X such that 

Kc(AxI)u(Ix A). 

However, there is an entire geometric circle C c J 2 \ Q2, and it cannot be covered 
by the projection pre-images ni~l [A], i = 1, 2 of any first category set A. 

If was also shown that 3F (J) x OF (Q), where J denotes the irrationals, is not 
supercomplete. Thus, it follows that whenever a Tychonoff space X contains 
a closed copy of the irrationals, then 3F (X) x 3F (Q) is not supercomplete, and 
the localic product X x locQ) is not spatial. • 

5. Noetherian trees. 

The method used in proving the positive countable product theorems 2 - 3 was 
based on trees with only finite branches. The application of the locally fine 
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condition in the successive constructions of the covers in the derivatives / / leads 
to such 'Noetherian' covering trees. In such a tree, the immediate successors of an 
element form its uniform cover, and the collection End(F) of all maximal elements 
of the tree T cover the space. This technique was first used in Pelant's proof 
([40])4 of Isbell's conjecture that every locally fine space is 'subfine' (a subspace 
of a fine space). Pelant showed that the 6X equation' considered above, 
X (IL^ (M,)) = !F (TIM) holds for any collection of completely metrizable spaces 
Mi. (See below for a current extension of this result.) Noetherian trees were used 
to represent the recursive construction of covers in the consecutive derivatives /iH 
The essential lemma used by Pelant states (in our formulation) that °U e X\i if, and 
only if, there is a Noetherian tree T of subsets of the underlying space such that 
1) T satisfies the uniform covering condition with respect to \i (i.e., the immediate 
successors of a non-maximal element form its uniform cover); 2) the maximal 
elements End(T) form a cover which refines Ql and 3) T has X as its root. Each 
cover ^ e \£^ can be refined by such a Noetherian tree and vice versa. This enables 
one to replace the consecutive derivatives and transfinite induction by arguments 
based on well-foundedness. It should be noted that general (localic) products of 
completely metrizable spaces (not being paracompact) are not spatial; the equation 
X(UF(M,)) = F(HM,) is not sufficient alone but must be complemented with 
the condition that each open cover of the product is normal. We will give a more 
general result in the last section. 

Remark 2: Noetherian trees have well-defined ranks, and complete metric 
spaces of a finite or countable rank were studied by the author in [20]. (We say 
the rank of a complete metric space QX is the least a such that gM = 3F (X), the 
existence of which is quaranteed by [12], 4.2.) Among other results, it was proved 
that for a finite or countable a, the rank of QX equals a if, and only if, X has 
a compact set K such that outside of any neighbourhod of K, X is uniformly 
locally of a strictly lesser rank. This naturally led the author to recursively 
constructed decompositions of such spaces into Noetherian trees of closed subspa-
ces in which the maximal elements are compact. The extended results obtained in 
[25] by the author and Pelant have to be bypassed here. 

6. A game-theoretical characterization. 

Noetherian trees can be used to give a direct motivation to a game-theoretical 
characterization of supercompleteness introduced - but not studied - by the author 

4 Z. Frolik had an interesting interpretation of this result: The fine spaces (i. e., Tychonoff 
topologies) form the smallest coreflective class such that all subspaces are locally fine. Thus, Tychonoff 
spaces are obtained from the locally fine spaces through a purely categorical construction. 
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in 1983 [19]. The are two players I and II. For each game we choose an open 
cover If of the given uniform space jiX. Player I begins by choosing a uniform 
cover ^o e AL If possible, Player II responds by selecting an element U0 e ^o 
such that Uo cz V for no V e if. Then Player I continues by choosing a uniform 
cover °UX of C/0. Player II again selects - if possible - an element U\e(JU\ 
such that no member of if contains this U\. Inductively, after the choice Un by 
Player II, Player I chooses a uniform cover tfln + \ of Un and Player II selects, 
whenever possible, an element Un + \etf/n + \ such that Un +1 c: V for no 
V e if. Otherwise, the play stops at Un. If this play of the game G(\iX, if) has 
infinitely many moves, then Players II wins, otherwise Player I wins. Then we may 
state the following characterization of supercompleteness in terms of the games 
G(iiX, r): 

Theorem 6. ([19], Theorem 5'): A uniform space ptX is supercomplete if and 
only if for any open cover if of X, Player I has a winning strategy in the game 
G(IIX, r). 

Proof. If \xX is supercomplete, then if e X\x, and there is a Noetherian tree T 
with Root(T) = X, T satisfies the uniform covering condition and End(T) -< If. 
By proceeding along the branches of T, and using the uniform covering condition, 
Player I has a (stationary) winning strategy in the game G (\iX, if). 

On the other hand, suppose that Player I always has such a winning strategy. 
Given an open cover if of X, it is enough to produce a Noetherian tree T as in 
the preceding paragraph. As Player I has a winning strategy in G (fiX, if), one is 
able to find a uniform cover °U of X such that Player I knows how to win every 
play following Player II selecting elements U e 6U. The construction of T stops at 
every U e°U which is contained in some member of If. (Those are choices that 
Player II cannot make). On the other hand, we will continue with all other members 
of 6U. Player I chooses, for each such member a uniform cover, and the definition 
of T is inductively continued. By taking the union of all the inductive steps, we 
get a Noetherian tree T, because each branch corresponds to a play of G (fxX, if) 
in which Player I wins. By the construction of T, we have End(T) -< If, as 
required. • 

Thus, the winning strategy in the game G (\xX, if) is directly obtained from the 
Noetherian tree associated with any refinemenent of if in Â , Each particular play 
can be won by Player I by following a particular branch of such a tree. 
A game-theoretical characterization of spatiality in localic products X x loc Y was 
given by Plewe in [41], likewise related to trees ([41], p. 647). 

By applying the above theorem to products of uniform spaces, we immediately 
obtain a characterization of their supercompleteness as follows. It is enough to 
consider the case in which the factors X, Y are fine paracompact spaces. In the 
gane G (X, Y, Hf), we are given an open cover Hf of X x Y We may assume - if 
necessary - that iV consists of open rectangles W\ x W2. Player I chooses open 
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covers tfto, Y0 of X ad Y, respectively, claiming that the rectangular cover 
<%o x YQ refines TJT. Player II selects, if possible, a rectangle U0 x Vo, [/0 e ^o, 
K> 6 i^o, such that U x V is not contained in any member of iV. Then Player 
I chooses open covers °lt\, Y\ of [/0 and K), respectively, obtained by restricting 
open covers of Kand Y, and claims that * i x f i refines the restriction of iV* to 
t/o x K). The rest of the play is defined inductively, and Player I wins, if it only 
involves finitely many moves; otherwise, Player II wins. Again, the product is 
supercomplete if Player I has a winning strategy in G (X, Y, Y) for each open cover 
Y. 

It is not directly possible to change the rules of the games G (X, Y, Y) so that 
Player I would choose simple rectangles [/,- x Vt, instead of choosing covers. The 
crux of the rules is to guarantee that the choices of Player I are 'rectangular' in 
the sense that once an open set [/,- c: X is selected, all choices Vt c Y would then 
have to be combined into products I/,- x Vt, and similarly for the other factor. In 
Plewe's game ([41], p. 645) (we switch the players to follow our original notation) 
this is obtained by letting the other player choose points x, e X, yt e Y in 
alternative steps. In our situation, Player I would choose, in alternative steps, open 
sets C/j<= X, Vi cz Y with x, e Ut, yt e Vt. Consider a set of choices x, by Player II 
large enough so that the corresponding sets t/I)X|, selected by using a winning 
strategy, form a cover. Then for each such t/,,x., consider a similarly formed cover 
by sets of the form VUXhyi. The cover consisting of all rectangles of the form 
UUXi x ViiXhyi is in the first derivative of the product uniformity ^(X) x ^ (Y). 
Thus, the corresponding game G' (X, Y, Y) is related to G (X, Y, Y) in the sense 
that while Player I chooses rectangular uniform covers in the latter, the covers 
chosen in the former are uniformly locally uniform. 

In Plewe's game, the players start from an open cover of an open rectangle of 
the product. However, as noted in his article ([41], p. 646), for regular spaces this 
is tantamount to taking the entire product as the initial rectangle. Therefore, it is 
now easy to see that for uniform spaces, his game is equivalent to ours with respect 
to supercompleteness. Thus, for paracompact factors we may state the following 
characterization of the spatiality of the localic product: 

Theorem 6': Let X, Y be paracompact spaces. Then the localic product 
T(X) x \ocT(Y) is spatial if and only if Player I has a winning strategy in the 
game G (X, Y, Y) for each open cover Y of X x Y • 

However, it is to be noted that the game in [41] is more general than the ones 
described above, because they are not restricted to uniform spaces or paracompact 
products, which always are completely regular. Nevertheless, our characterization 
can be extended to products of general regular spaces by using the main result of 
this paper to be given in the last section. We obtain a deeper connection between 
spatiality and the locally fine operation by moving to 'covering monoids' of 
spaces. 
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7. Formal spaces 

Motivated by locales, Fourman and Grayson [9] introduced in 1981 a 'formal 
space' of a theory, based on four conditions of an entailment relation in 
a propositional language, a pre-ordered set. (A pre-ordered set is defined here as 
a set with a binary relation < that is reflexive and transitive.) These conditions 
were taken up by Sambin in 1987 (cf. [45]) who developed a theory of formal 
spaces from a 'pure' standpoint in the spirit of the intuitionistic type theory of 
Martin-L6f. Accordingly, intuitionistic versions of classical theorems for topologi
cal spaces have been proved by several authors (see, e.g., Tychonoff s Theorem in 
Negri and Valentini [38] and Coquand's version of van der Waerden's theorem on 
arithmetic progressions [4].) Formal spaces were used in 1990 by Sigstam to give 
an effective theory of spaces in her thesis [46]. The approach is opposite 
('top-down') to the traditional ('bottom-up') constructive approaches to say, real 
numbers: While the same recursive constructions are used, one applies them to 
given parts of a space, rather than to an assumed collection of (computable) points. 

Definition 7.1: Given a pre-ordered set (P, <), a covering relation is a subset 
Cov <= P x 2P satisfying the following axioms: 

CI) if a e U, then Cov (a, U). 
C2) if a < b, then Cov (a, {b}). 
C3) if Cov (a, U) and Cov (a, V), then Cov (a, U A V). Here U A V denotes 

the set of elements bounded by both U and V. 
C4) if Cov (a, U) and Cov (u, V) for all ueU, then Cov (a, V). 

It is the last axiom5 which is directly connected with our discussion. It corresponds 
to the Heyting axiom of right distributivity (characterizing locales) and also to the 
locally fine condition. Indeed, for a pre-uniformity fi (recall that in this paper, 
a pre-uniformity is a filter of coverings of a set) on a set X, we define a relation 
R c p(X) x P(P(X)) by setting (A, %) e R if there is a cover f e / z such that 
the restriction of V to A refines %. Then R satisfies the above conditions 
CI) - C3). Indeed, to see this, CI) is obvious because if A is a member of tfl, then 
we may take the 'trivial' cover {X}e \i as %. Condition C2 is similar, and C3) 
follows from the requirement that ft be closed under finite meets. 

On the other hand, the transitivity condition C4) (called that of composition in 
[9]) is satisfied if, and only if, the pre-uniformity \i is locally fine, i.e., X\x = \i. 

5 In addition to the circle of notions represented by 1) the locally fine operation, 2) locales and 3) 
formal spaces, we may add 4) Grothendieck topologies, because the covering relation gives the 
conditions for a Grothendieck topology on a pre-ordered set. This may be followed by 5) modal logics 
(see [13]), closing the circle with the equivalence between the modal system S4 and the closure 
operation in topology, well known since the 1930's (see [36]). 
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To see this, suppose that I? satisfies Condition C4). Let {U^e ft, and for each i, 
let {\f} 6 \x. Thus, (X, {Ui})e R, and for each i, we have (Uh {[/, n V?})eR, by 
the definition of R. By the condition under consideration, we obtain that (X, 
{U( n Jf})e R. Thus, there is a member Y e \i which refines {[/,- n If}, whence 
the latter is a member of fi as well. Conversely, assume that \i is locally fine, and 
suppose (A, W) e R, and for all U e %, let (17, Y) e R. There is W e ju such that 
W \ A < W and for each U e * ' , there is ^ e \i such that ^ f (U n /l) -< TT. 
The cover iV = u {% \ U: U e ^r'} is in /z(1) = /i, and is easily seen that 
UT \ A< r . Therefore, (A, iT) e R, as desired. • 

The reader should note the Condition 4) above (transitivity) is the characteristic 
'topological condition', expressed in locales by the Heyting axiom and in classical 
topology by the idempotency of the Kuratowski closure operator (or by the 
transitivity of the corresponding relation between sets). In this sense, k corresponds 
to topology. 

Given only a set of generators G cz P x 2P, the associated covering relation 
CovG is obtained by closing G under the conditions CI) - C4). This means forming 
all Noetherian trees T such that for each element x of T, the immediate successors 
are derived by using one of the four conditions. This corresponds to the idea of 
using Noetherian trees to construct 'recursively defined' refinements of open 
covers of uniform spaces, in particular in the products of paracompact spaces. Such 
constructions start from the basis of uniform covers, which is a commutative 
monoid under the operation of meet, and closes the collection under the condition 
of transitivity, which we have seen to be equivalent to the locally fine condition. 
By the same token, formal spaces are often described by giving a 'formal base', 
a commutative monoid (5, •, 1) with unit, and the corresponding rules of inference 
equivalent to the above condition Cl)-C4). For example, they could could be 
given as the rules 

^aeU ^ I L .atUatV .aVUUtV 

We will call a pair (P, Cov) a covering monoid, if P is a pre-ordered set with 
a unique maximal element 1 and Cov c P x 2P is a relation closed under the 
conditions CI - C 3 . A homomorphism between covering monoids (P, Cov), (Q, 
Cov') is a map f'.P^Q such that (a, U) e Cov implies (f(a), f(U))e Cov'. With 
a covering monoid (P, Cov), we may associate a monoid (P, JUCOV) of covers of 
P under Cov, i.e., /xCov consists of all U cz P such that (1, U) e Cov. If / - as given 
above - preserves the maximal element, then / 'restricts' to a homomorphism (P, 
Mcov) -• (Q, Mcov )• We denote the closure of a relation R cz P x 2P under C4 by 
kR. This closure can be obtained by applying the following version of Gin-
sburg-Isbell derivation on Cov: Let Cov^0) = Cov, and given Cov(a), let Cov(a + 1) 

be the collection of all pairs (a, V) for which there is (a, U) e Cov such that for all 
ueU, (u, V) G CovM For limit ordinals j8, define Cov^ = u {Co\M : a < p}. The 
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first stable derivative is then ACov. This closure may also be described in terms of 
Noetherian trees: (a, V) e ACov if, and only if, there is a Noetherian tree T such 
that 1) the root of T is a; 2) for each element p of T, the immediate successors of 
p form a set 1/ cz 2P such that (p, U) e Cov and 3) V = End (T). 

As seen above, any pre-uniformity p on a set X is associated with a covering 
monoid (-P(-Y), CovM) in a natural way. Motivated by this relation, we will call 
pre-uniformities monoids of covers to emphasize their formal independence of 
actual pre-uniform spaces. Uniform spaces will correspond to normal monoids of 
covers p, i.e., in which for each u e p there is v e p with v2 < u. Corresponding to 
the fine uniformity (the filter of all normal covers of a Tychonoff space), we have 
the fine monoid of covers of a space X, written (9 (X)*, consisting of all covers of 
X with an open refinement. This should be contrasted with the fine covering 
monoid &(X) of X consisting of all pairs (U, $) where U is an open subspace of 
X and <3 is a cover of 17 with an open refinement. We will call a monoid of covers 
on a space X, written (X, p), (super)complete if Xp is fine. In the next section, we 
will obtain a product theorem which implies a far-reaching equivalence of locales, 
formal spaces and covering monoids (and extends our previous results on 
supercompleteness to non-paracompact spaces). Let us first give two essential 
lemmas on products of covering monoids. 

We note that the product of a family (P„ Cov,) of covering monoids is a pair (P, 
Cov), where P is the weak direct product of the P, consisting of all elements a of 
IIP, with a, = 1, for almost all i, and where (a, U) e Cov if, and only if, there is 
for each a{ ^ 1, a pair (ah U) e Cov, such that /\{(t/f),-: tf, ?-= 1,} refines U, where 
([/,), denotes the set of all u e IIP, such that u(e Ut and Uj = 1; for j ^ i. By 
considering only pairs of the form (1, U), this restricts to the usual product of 
pre-uniform spaces. Indeed, in the special situation in which the elements of P, 
are subsets of a set Xh we take the subbasis of IlCov, to consist of pullbacks 
n~\a, U) = (n~l [a], n~{ [U]), where 71,: YlXj -> X{ is a projection. In the general 
situation, we consider instead 'insertions' q{: P, -> IIP, given by qt(a) = (x,), 
where x, = a and x; = 1; for j 9-= i. However, in the following three lemmas we 
consider the (set-theoretical) situation of topological spaces. 

The following Observation is obvious. 

Observation 7.2: Let X be a topological space. Then (9(F) = (9(X) \ F for 
each closed subspace F cz X. • 

Lemma 7.3: Let (K,) be a family of topological spaces, and let (T(Kf), Cov,) be 
a corresponding family of covering monoids. Then AITCov, has a basis consisting 
of pairs (a, U), where U is a collection of basic open rectangles. 

Proof. An inductive proof can be obtained by using the consecutive derivatives 
CovH where Cov = ITCov,. The claim is clearly valid for a = 0. Thus, suppose 
it is valid for a and let (a, U) e Cov(a + 1). Then there is a cover V of a such that 
(a, V) e Cov, and for each v e V a cover Wv such that (v, Wv) e Cov(a). But V is 
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refined by a cover V consisting of open basic rectangles, and for each v G V, there 
is such a refinement Wv' of Wv. It is clear that the elements v' A W', V' G V, 
W e Wv form a refinement U' of U9 the elements of which are open basic 
rectangeles, and (a, U') e .ACov. The case of limit ordinals is obvious. • 

Theorem 7.4: Let (X^ be a family of regular topological spaces. Then (1, 
U) e m& (X) if and only if U e m(9 (X,)*. 

Proof. We will again proceed by induction. By the definition of the direct 
product of covering monoids, (1, U)efi = 11(9 (X^ if and only if U G v = 
= n$(X,)*. So, suppose (1, l/)G)U(a) iff [7ev(a) (taking \i9 v with respect to 
arbitrary regular spaces). To show that this is valid for a replaced with a + 1, it 
is sufficient to consider the right implication. Thus, let (1, U)e /i(a + 1). Thus, there 
is (1, V) e ft such that for each v e V, we have (v9 U) e jU(a). By the assumption of 
regularity, there is a cover JVof UX( by closures of basic open rectangles in \i and 
hence in v which refines V. For each w e W, there is an extension of U to a cover 
Uw of YlXi the restriction of which to w refines U. 

We may assume that Uw e v(a). Indeed, w is a (topological) product of regular 
spaces, and we may use the inductive hypothesis. Write w = /\{7iTl [wj : i e £}, 
where E is finite and w, is the closure of an open subset of Xt. Set X\ = w, for 
i G E and let X[ = Xt otherwise. Then consider the products \i = Yl(9 (XI), 
V = 11(9 (XI)*. The restriction U' of U to w satisfies (w, U') e (//)(a), and hence by 
the inductive hypothesis U' e (v')(a). By using the equations (9(X')* = (9(X)* \ w, 
for i G £, and recalling that the Ginsburg-Isbell derivatives preserve substructures 
(i.e., (£ \ A)W = (£)(a) \ A) it easily follows there is cover Uw e v(a) the restriction 
of which to w refines U\ as desired. 

But then the elements w A UW, UW G UW, form a cover U" such that U" G v(a+ J) 

and £/" refines [/, implying [/Gv(a + 1). As above, the limit ordinal case is 
obvious. • 

8. A general product theorem 

It can be seen from the previous section that the theory of formal spaces 
corresponds to that of locally fine covering monoids. In this section, we will use 
notions and lemmas developed above to link supercompleteness in products to 
spatiality in a general fashion. We extend the characterization of supercomplete
ness in a paracompact product 3FX x ^Yby the equation 

A{FX x &Y) = &(X x Y) 

to a similar one (8.6) characterizing spatiality, even without paracompactness. 
We will first describe the locale product simply as the locally fine (or A-) 

product. The product theorem given in this section grew out of the author's attempt 
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to understand the proof given by Dowker and Strauss ([6]) for their product 
theorem. The following definitions are well-known, see, e.g., [46]. 

Let Cov be a covering relation on a pre-ordered set P. For subsets 17, V c P, 
define U < V if for all u e 17, we have Cov (u, V). Then define an equivalence 
relation ~ by setting U ~ V if U < V and V < U. Denote the corresponding 
equivalence classes by [[7]. The locale associated with the covering relating Cov 
is the set 

^ C o v = { [ [7 ] : [7<=P } 

equipped with the lattice operations (recall the definition of U A V) 

[[7] A [V] = [17 A V], V l t y ] = [ u {Ut: *e '}]• 
16/ 

We say that the covering relation Cov (or more exactly the pair (P, Cov)) generates 
L. We extend this definition to covering monoids by stipulating that the locale 
associated with a covering monoid (P, ft) is the one generated by X\i. 

On the other hand, given a locale L, define a canonical covering relation CovL 

by setting CovL(a, U) o a < \JU. Then J2?Cov̂  = L. Thus, every locale has 
a canonical generating covering relation, and it follows from the right distributivity 
of the locale that this relation is locally fine, i.e., defines a formal space. If (P, 
Cov) generates L, then there is a canonical embedding (of covering monoids) (P, 
Cov) c; (2p, CovL) given by ai-» [a]; we will consider the generating monoid 
a submonoid of (2p, CovL). 

One says a subset U 9i L is a cover of a locale L if \/U = I. A subset Vis 
a refinement of U if for each v e V there is u e U such that u < v. We denote the 
monoid of all covers of L by Cov (L). Thus, Cov (L) is the collection of all U 9= L 
such that CovL(L, 17), and by transitivity, Cov (L) is locally fine. (Note that since 
1 e L, CovL(L, U) implies \/[7 = 1.) 

We will construct the co-product L, of given frames L,. (We remind the reader 
that the difference with locales is that morphisms go in the opposite direction. With 
the product of locales, we have projections iij: ILL, -> Lp whereas with the 
co-product of frames, we have 'insertions' qj: L7 -• IIL,.) 

Let (L,) be a family of frames, and consider the Cartesian product frame 
riL,. (This is a frame, but not the product of the L, in the category of locales!) 
Take a subframe B cz IIL, which consists of all b = (bt) such bt = 1, except for 
finitely many i (the direct product of monoids). We define a covering relation by 
first choosing a set G c (J5, 2B) of generators to consists of all (a, 17), where for 
some i, C7 has the form: For; 7-= i, ^[ [7] = {^}, and (ah nt[U~\) eCovL/. Thus, 
U has been obtained from a by 'spliting' it along exactly one coordinate direction 
with respect to the corresponding covering relation. (Notice that this condition 
corresponds to the 'coordinatewise derivation condition' from Section 2.) The 
associated covering relation CovG is obtained by closing G under the conditions 
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Cl)-C4) of covering relations. The frame L = o£?CovG will be our co-product. 
Recall that the elements of L are equivalence classes [17] of subset U <= B under 
the equivalence relation: U ~ V iff U < V and V < U. It follows that U is 
a cover of L, i.e., \/U = 1L, if (1, U)e CovG, where 1 denotes the maximal 
element of B. We will show that for each such U there is °U e AIl/z, with 
0(^) -< [/, where pt = Cov (L,) and <j): Cov (AII/J,) -• Cov (L) is an embedding of 
covering monoids. 

The product of the pt has a subbasis defined by the insertions qt: Lt -> B by 
setting qt(x) = (a,), where a, = x and a, = 1, for j 7-= i. It is obvious that (a, 
[/) e CovL, implies (g,(a), #,(£/)) G G, by the definition of G. By taking finite meets, 
it turns out that IT/*, has a basis J* contained in CovG. We note that Il/i, is obtained 
from 36 by applying the rules CI - C3. 

How are the elements (a, 17) e CovG obtained? By the definition, (a, U) belongs 
to CovG if, and only if, there is Noetherian tree T such that 1) the root of T is a; 
2) the immediate successors of an element p e T are obtained from p by applying 
G or one of the conditions CI -C4 and 3) U = End(F). It is clear that /HI/x, is 
closed under these conditions. Thus, it is contained in CovG. The opposite inclusion 
is clear, too, and hence CovG and Il/i, are the same covering relation. 

Let S be a cover of L Thus, \/S = 1L. Hence, there are sets £, cz B such that 
S = {[£J] : i e / } , and therefore 

1L= V M = [^f£.] 

It follows that (1, u /e/£,) e CovG, whhere 1 denotes the maximal element of B. 
Thus, % = u { £ i : i E / } is an element of /IIIR, such that \%\ = { [ u ] : « e * } 
refines <?. Denote the covering monoid associated with CovG by Cov(G). The 
mapping u 1—• \u\ defines a natural homomorphism (j): Cov (IT/i.) -• Cov (LIL,-) of 
covering monoids. However, the factors Lt are frames and hence partially ordered 
and so is the weak direct product B. It follows that u \—> [u] yields an embedding 
B -* U which extend to covers. Thus, we have proved the following result: 

Theorem 8.1: Let (L,) be a family of frames. Then there is an embedding (j) of 
covering monoids 

(*) A(nCovL i)^CovU L i 

where CovL. is the canonical covering relation on L, and the left-hand side of (*) 
is a locally fine generating covering monoid for 1IL,. Moreover, the mapping (j) is 
induced by the embedding u h-> [u\, and for each cover Y of TIL, there is 
me)X\ CovL/ such that (j)(<%) < TT. • 

For pre-uniform spaces (Xh /z,), the direct product is a pair (UXh Tip.), where Upt 
is generated by the basis of all finite meets of single pullbacks n^1 [<#], % e pt 
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('basic rectangular covers'). Moreover, .411/i, is generated by covers consisting of 
basic rectangles, which form a monoid. Lacking better notation, we denote this 
monoid of rectangles by [/HI^u,] .̂ Its covering relation is induced by the 
pre-uniform structure of the product: A collection of rectangles cover a rectangle 
if, and only if, they cover the latter as a (pre-)uniform cover. 

This is special case of the product of covering monoids (P„ JJL), in which the 
basic rectangular covers are finite meets of pullbacks of the form n~l(a, 
U) = (n~l [a], n~l [[/]), where n~l [a] is a basic open rectangle covered by the 
cover n~l [[/] consisting of basic rectangles. 8.1 implies the following result. 

Corollary 8.2: Let (X,) be a family of topological spaces. For each Xif let 0,(X,) 
denote the fine covering monoid induced by open-refinable covers. Then there is 
an embedding (j) 

[m(9(x)y zt mcowT[Xi) <~+co"UT{Xl), 

where T(X) is the topology of Xt.. Moreover, for any cover 'V of UT(Xl), there 
is a rectangular cover °U in )XV(9{ (X) such that <j> (tfl) •< i^. ~~\ 

Since >III Cov-r^.) generates the localic product of the T(X), we (ab)use the 
above corollary to say that XY1& (X) generates it, too. 

In [32], Isbell showed that the product of paracompact locales is paracompact. 
Dowker and Strauss [6] extended this result to include the cases of metacompact 
and Lindelof (regular) locales. These results (and an unlimited number of others) 
folow from Theorem 8.2. 

Indeed, for a topological space X, let ££3F(X) be the monoid of all covers 
which have an open, locally finite refinement. Let us call S£3F (X) the locally finite 
monoid of covers on X. Then !£2F (X) is locally fine, and X is paracompact if 
!£3F (X) is fine, i.e., contains (and thus equals) (S (X). It is easy to see that arbitrary 
direct products of locally finite monoids of covers is again locally finite. (We call 
/i on a space X locally finite if it contains S£3F (X).) This follows from the easy 
observation that any binary, and more generally finite, product of locally finite 
covers is again locally finite. Finally, X preserves local finiteness, so that 
)JV5£ 3F (X) is locally finite. The same is true of point-finite, locally countable, 
point-countable, Lindelof, and compact monoids of covers (call \i compact if every 
cover has a finite open refinement in \i). These considerations are valid for general 
covering monoids. Therefore, we obtain the following corollary: 

Corollary 8.3: If the members of a family (L) of locales are compact (resp. 
paracompact, metacompact, Lindelof para-Lindelof meta-Lindelof), then so is 
n locL, • 

In fact, we may use 8.2 to establish a relation between the spatiality of localic 
products and the locally fine condition. To this end, we might first give 
a game-theoretical characterization for the X of the product of fine monoids to be 
fine, and show its equivalence with Plewe's game-theoretical characterization of 
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spatiality in products. However, we will proceed directly. Let (X) be a family of 
sober spaces, i.e., Pt(T(X,) = X(. We will first show that the localic product 
nlocF(X/) is spatial, UXocT(Xt) = T(nX,) if, and only if, XYIG(X) is the fine 
monoid G (nX,). 

Theorem 8.4: The localic product of a family (Xt) of sober topological spaces 
is spatial if and only if kTlG(X) = G(T1X). 

Proof. Suppose that XUG(X) = G(TIX,). The locales T(X,) are generated by 
the fine covering monoids G(X). Hence, their localic product UXocT(X) is 
generated by kWG (X), which is by assumption the fine monoid of the topological 
product, and hence generates T(HX), as desired. On the other hand, suppose that 
TI]ocT(X) is spatial. 

Given an open cover U of a basic open rectangle a in HXh we may consider 
U a cover of a in L = nlocT(Xt). But L is generated by AXIG(X^ and hence there 
is, for each u e [/, collection Vu of open sets (basic rectangles) such that u = [VM] 
and hence (a, V) e XUG (X,), where V = v{Vu:ue U}. Therefore, V is a refinement 
of U in the locally fine closure of the product of the G (X,), which consequently 
refines the fine monoid of the topological product, i.e., it is itself fine. • 

Notice in particular that we have not assumed the factors to be regular. However, 
this result cannot be directly applied to spaces (via spatiality) along the lines of 
8.3, because the fine covering monoids G(X) carry - within their structure - all 
the open subspaces. As a consequence, after taking the locally fine coreflection, 
the corresponding products HG (X,) produce in general monoids of covers finer 
than the ones obtained from products of monoids G (X,)* of covers (as generalized 
pre-uniform spaces). In order to bridge the gap, we need to assume regularity. The 
following lemma provides a link between spatiality and A-covers. 

Lemma 8.5: Let (X,) be a family of topological spaces, and let % be 
a collection of basic open rectangles in FIX, such that °U' = {[u] : « e f } covers 
the points ofYlXocT(X). If <% belongs to mG(X)*, then W covers WXocT(X). 

Proof. This follows immediately from the result that )XYG (X) generates 
nIocr(X,). • 

The condition that XYIG (X,)* = G (FIX,)* is analogous to the condition - stu
died by the author - that X (Tl^ (X,)) contain all normal covers of FIX,. (In [40] 
this was shown to be true whenever the Xt are completely metrizable spaces; in 
[28], this result has been extended to paracompact spaces which are countable 
unions of closed, partition-complete subspaces.) 

Theorem 8.6: The localic product of a family (X) of regular topological spaces 
is spatial if and only if X(n&(X^)*) = G(Y\X)*. 

Proof. Suppose that YlXocT(X) is spatial. Then by 8.4, kUG (X) = G (nxt)9 and 
hence by 7.4 we have A(YIG(X?)*) = 0(nX,)*, as required. 

45 



On the other hand, suppose that this condition holds. We recall that a regular 
locale is spatial iff it does contain a non-empty, closed pointless sublocale. If 
IIl0C71(.X'l-) were not spatial, then there would exist such a sublocale F, and the 
collection % of all basic open rectangles u of I1X, such that [u] A F = 0 would 
form an open cover FIX, for which W = { [« ] :«€*} covers the points of the 
localic product. But by the assumption <% e XH(9 (X,)*, and hence (by the preceding 
lemma) W would cover the product locale, which is impossible. Hence, the 
product in question is spatial. • 
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