Acta Universitatis Carolinae. Mathematica et Physica

Marian Kechlibar; Tomáš Kepka; Juha Kortelainen
A note on finitely generated commutative rings

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. 1, 101--105
Persistent URL: http://dml.cz/dmlcz/142747

Terms of use:

© Univerzita Karlova v Praze, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A Note on Finitely Generated Commutative Rings

MARIAN KECHLIBAR, TOMÁŠ KEPKA AND JUHA KORTELAINEN

Praha, Oulu
Received 31. October 2004

Abstract

If $R \subseteq S$ is an integral extension of commutative rings, where R is finitely generated, and if M is a finitely generated S-module whose additive group is not torsion, then $p M \neq M$ for almost all prime numbers p.

Je-li $R \subseteq S$ celistvé rozšĩr̃ení komutativních okruhů, kde R je konečně generovaný, a je-li M konečně generovaný S-modul, jehož aditivní grupa není torzní, pak $p M \neq M$ pro skoro všechna prvočísla p.

1. Introduction

Throughout this note, all rings are notrivial, associative, commutative and with unit element. All modules are left and unitary.

A ring R is said o be uniform if $R a \cap R b \neq 0$ for all $a, b \in R, a \neq 0 \neq b$.
Let \mathscr{P} be a set of prime numbers. An abelian group A is said to be a \mathscr{P}-group if it is torsion and $p a \neq 0$ for every nonzero element $a \in A$ and every prime number p such that $p \notin \mathscr{P}$.

An abelian group A is sai to be a free-by- \mathscr{P}-group if it contains a free subgroup E suchh that A / E is a \mathscr{P}-group.

Lemma 1.1. Let A be a free-by- \mathscr{P}-group such that $p A=A$ for a prime $p \notin \mathscr{P}$. Then A is a \mathscr{P}-group.

Proof. If $u \in A$ is such that $p u \in E$, then $p(u+E)=0$ in A / E, and hence $u \in E$. Thus $p E=E \cap p A=E$ and $E=0$.

[^0]
2. \mathscr{A}-by- \mathscr{B}-modules

Let R be a ring and \mathscr{A}, \mathscr{B} two classes of modules satisfying the following four conditions:
(A1) Both \mathscr{A}, \mathscr{B} are abstract and all zero modules are in $\mathscr{A} \cap \mathscr{B}$;
(A2) \mathscr{A} is closed under direct sums of countably many summands;
(A3) $B \in \mathscr{B}$, provided that there is a sequence $0=B_{0} \subseteq B_{1} \subseteq B_{2} \ldots$ of submodules of B such that $\bigcup B_{i}=B$, and $B_{i+1} / B_{i} \in \mathscr{B}$ for every $i \geq 0$;
(A4) All modules from \mathscr{A} are projective.
Now, denote by \mathscr{C} the class of modules C containing a submodule $A \subseteq C$ such that $A \in \mathscr{A}$ and $C / A \in \mathscr{B}$. The modules from \mathscr{C} will be called \mathscr{A}-by- \mathscr{B}-modules in the sequel.

Lemma 2.1. Let M be a module possessing a sequence $0=M_{0} \subseteq M_{1} \subseteq$ $\subseteq M_{2} \subseteq \ldots$ of submodules such that $\bigcup M_{i}=M$ and $M_{i+1} / M_{i} \in \mathscr{C}$ for every $i \geq 0$. Then $M \in \mathscr{C}$.

Proof. For every $i \geq 0$, there exists a submodule N_{i} of M_{i+1} such that $M_{i} \subseteq N_{i} \subseteq M_{i+1}, N_{i} / M_{i} \in \mathscr{A}$ and $M_{i+1} / N_{i} \in \mathscr{B}$. Since N_{i} / M_{i} are projective modules by (A4), there are submodules K_{i} of N_{i} such that $M_{i} \cap K_{0}=0$ and $M_{i}+K_{i}=N_{i}$. Then $K_{i} \simeq N_{i} / M_{i} \in \mathscr{A}$.

For every $k \geq 0$, put $L_{k}=\sum K_{i}, 0 \leq i \leq k$. We have $N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \ldots$ and hence $L_{k} \subseteq N_{k} \subseteq M_{k+1}$. Further $K_{k+1} \cap L_{k} \subseteq K_{k+1} \cap M_{k+1}=0$, and so $L_{k+1}=$ $=L_{k}+K_{k+1}=L_{k} \oplus K_{k+1}$ is a direct sum. We have $L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \ldots$, $L=\bigcup L_{k}=\sum K_{i}$ and $L=K_{0} \oplus K_{1} \oplus K_{2} \oplus \ldots$ is a direct sum (we use induction). Since $K_{i} \in \mathscr{A}$ for every $i \geq 0$, we have $L \in \mathscr{A}$ by (A2).

Let $k \geq 0$ and $m>k+1$. We have $K_{k+1} \oplus \ldots \oplus K_{m-1} \subseteq M_{m}, M_{m} \cap$ $\cap K_{m}=0, M_{m} \cap\left(K_{k+1} \oplus \ldots \oplus K_{m}\right)=K_{k+1} \oplus \ldots \oplus K_{m-1}$, and therefore $M_{k+1} \cap\left(K_{k+1} \oplus \ldots \oplus K_{m}\right) \subseteq K_{k+1} \oplus \ldots \oplus K_{m-1}$, since $M_{k+1} \subseteq M_{m}$. Now, by induction, $M_{k+1} \cap\left(K_{k+1} \oplus \ldots \oplus K_{m}\right) \subseteq M_{k+1} \cap K_{k+1}=0$. It follows easily that $M_{k+1} \cap\left(K_{k+1} \oplus K_{k+2} \oplus \ldots\right)=0$ and $M_{k+1} \cap L=K_{0} \oplus K_{1} \oplus$ $\oplus \ldots \oplus K_{k}$. Of course, $K_{0} \oplus \ldots \oplus K_{k-1} \subseteq M_{k}$, and so $M_{k}+\left(M_{k+1} \cap L\right)=$ $=M_{k}+K_{k}=N_{k}$. Consequently, we get the isomorphism $\left(M_{k+1}+L\right) /\left(M_{k}+\right.$ $+L) \simeq M_{k+1} /\left(M_{k}+\left(M_{k+1} \cap L\right)\right)=M_{k+1} / N_{k} \in \mathscr{B}$.

Finally, M / L is the union of the sequence of submodules $0=\left(M_{0}+L\right) / L \subseteq$ $\subseteq\left(M_{1}+L\right) / L \subseteq\left(M_{2}+L\right) / L \subseteq \ldots$, where $\left(\left(M_{i+1}+L\right) / L\right) /\left(\left(M_{i}+L\right) / L\right) \simeq$ $\simeq\left(M_{i+1}+L\right) /\left(M_{i}+L\right) \simeq M_{i+1} / N_{i} \in \mathscr{B}$ and we get $M / L \in \mathscr{B}$ by (A3). Thus $M \in \mathscr{C}$.

3. \mathscr{A}-by- \mathscr{B}_{I}-modules (A)

In this section, let R be a uniform noetherian ring. Further, let \mathscr{A} and \mathscr{B}_{I}, I any nonzero ideal of R, be classes of modules such that the conditions (A1),
(A2), (A3), (A4) are satisfied ad, moreover, the following three conditions are also true:
(A5) ${ }_{R} R \in \mathscr{A}$;
(A6) For every nonzero ideal I, the factor module ${ }_{R} R / I$ is an \mathscr{A}-by- \mathscr{B}_{I}-module.
(A7) $\mathscr{B}_{I} \subseteq \mathscr{B}_{J}$ whenever I and J are non-zero ideals such that $J \subseteq I$.
Proposition 3.1. Let $n \geq 0$ and let $P=R\left[x_{1}, \ldots, x_{n}\right]$ denote their polynomial ring in n (commuting) indeterminates x_{1}, \ldots, x_{n} over the ring R. If ${ }_{P} M$ is a finitely generated P-module, then there exists a non-zero ideal I of R such that the corresponding R-module ${ }_{R} M$ is an \mathscr{A}-by- \mathscr{B}_{I}-module.

Proof. It is divided into two parts.
(i) Assume that ${ }_{P} M$ is a cyclic P-module. In fact, assume that ${ }_{P} M={ }_{P} P / K$ for an ideal K of the ring P. Now, we will proceed by induction on n. The first case $n=0$ is clear from (A1), (A5) and (A6). Hence, assume $n \geq 1$ and put $S=R\left[x_{1}\right.$, $\left.\ldots, x_{n-1}\right] \subseteq P, x=x_{n}$. Then $P=S[x]$ and every element from P can be viewed as a polynomial in the single indeterminate x over the ring S.

Put $L_{0}=0$ and $L_{k}=\left\{a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1} \mid a_{i} \in S\right\}$ for every $k \geq 1$. Clearly, L_{k} are S-submodules of ${ }_{s} P$ and $L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \ldots, \bigcup L_{k}=P$. Now, if $K_{k}=K+L_{k}, k \geq 0$, then K_{k} are S-submodules of ${ }_{s} P, K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots$ and, again, $\bigcup K_{k}=P$. Moreover, $K_{k+1} / K_{k} \simeq L_{k+1} /\left(L_{k}+\left(K \cap L_{k+1}\right)\right)$ is an isomorphism of the S-modules for every $k \geq 0$.

Put $J_{0}=0, \quad J_{1}=S \cap K$ and $J_{k}=\left\{a \in S \mid a_{0}+a_{1} x+\ldots+a_{k-2} x^{k-2}+\right.$ $+\times a x^{k-1} \in K$ for some $\left.a_{0}, \ldots, a_{k-2} \in S\right\}$ for every $k \geq 2$. Again, J_{k} are S-submodules of $S S$, i.e., ideals of S, and we have $\left(K \cap L_{k+1}\right)+L_{k}=J_{k+1} x^{k}+L_{k}$ and $S x^{k} \cap L_{k}=0$ for every $k \geq 0$. Consequently, $K_{k+1} / K_{k} \simeq L_{k+1} /\left(L_{k}+J_{k+1} x^{k}\right) \simeq$ $\simeq\left(S x^{k}+L_{k}\right) /\left(J_{k+1} x^{k}+L_{k}\right) \simeq S x^{k} / J_{k+1} x^{k} \simeq S / J_{k+1}$ are S-module isomorphisms for every $k \geq 0$.

Since $x K \subseteq K$, we have $J_{0} \subseteq J_{1} \subseteq J_{2} \subseteq \ldots$. But S is a noetherian ring, and therefore $J_{m}=J_{m+1}=\ldots$ for some $m \geq 0$. This means that each among the S-factormodules $K_{k+1} / K_{k}, k \geq 0$, is S-isomorphic to at least one of the cyclic S-modules ${ }_{s} S / J_{0}, \ldots,{ }_{s} S / J_{m}$.

By induction hypothesis, for every $j, 0 \leq j \leq m$, there exists a nonzero ideal I_{j} of R such that ${ }_{R} S / J_{j}$ is an \mathscr{A}-by- $\mathscr{B}_{I_{j}}$-module. Since R is uniform, we have $I=$ $=I_{0} \cap \ldots \cap I_{m} \neq 0$ and it follows from (A7) that all the R-modules ${ }_{R} S / J_{j}$ are \mathscr{A}-by-\mathscr{B}_{I}-modules. Consequently, the same is true for the R-modules ${ }_{R} K_{k+1} / /_{R} K_{k}, K \geq 0$.

Finally, $0={ }_{R} K_{0} / /_{R} K \subseteq{ }_{R} K_{1} / /_{R} K \subseteq{ }_{R} K_{2} /{ }_{R} K \subseteq \ldots, \bigcup_{R} K_{k} /{ }_{R} K={ }_{R} P /{ }_{R} K \simeq{ }_{R} M$ and ${ }_{R} M$ is an \mathscr{A}-by- \mathscr{B}_{I}-module by 2.1.
(ii) Now the general case. The P-module ${ }_{P} M$ is finitely generated and we have ${ }_{P} M=P v_{1}+\ldots+P v_{m}, \quad m \geq 1$. Let ${ }_{P} M_{0}=0$ and ${ }_{P} M_{k}=P v_{1}+\ldots+P v_{k}$, $k \geq 1$. Then all the factors ${ }_{P} M_{1} /{ }_{P} M_{0},{ }_{P} M_{2} /{ }_{P} M_{1}, \ldots,{ }_{P} M_{m} / P M_{m-1}$ are cyclic P-modules and ${ }_{P} M_{m}={ }_{P} M$. Using (i) for these cyclic P-modules, the uniformity of R and 2.1 , our result easily follows.

Corollary 3.2. Let R be a subring of a ring S such that $S=R[T]$ for a finite subset T. If ${ }_{S} M$ is a finitely generated S-module, then there exists a nonzero ideal I of R such that the corresponding R-module ${ }_{R} M$ is an \mathscr{A}-by- \mathscr{B}_{I}-module.

$$
\text { 4. } \mathscr{A} \text {-by- } \mathscr{B}_{I} \text {-modules (B) }
$$

Let R be a noetherian domain. Let \mathscr{A} denote the class of free R-modules and, for every nonzero ideal I of R, let \mathscr{B}_{I} denote the class of R-modules ${ }_{R} M$ such that for every $u \in M$ there is a positive integer $m(u)$ with $I^{m(u)} \cdot u=0$.

Lemma 4.1. All the conditions (A1), ..., (A7) are satisfied.
Proof. Easy to see.
Proposition 4.2. Let R be a subring of a ring S such that $S=R[T]$ for a finite set T. If ${ }_{S} M$ is a finitely generated S-module, then there exist a free R-submodule ${ }_{R} E$ of the R-module ${ }_{R} M$ and a non-zero ideal I of R sch that for every $u \in M$ there exists a positive integer $m(u)$ with $I^{m(u)} \cdot u \subseteq E$.

Proof. Combine 4.1 and 3.2.
Remark 4.3. The preceding result is, in fact, a generalization of a partial version of a well known result due to P. Hall (see [1] for more details).

5. Finitely generated rings

Throughout this section, let R be a finitely generated ring.
Proposition 5.1. Let R_{M} be a finitely generated R-module. Then there exists a finite set \mathscr{P} of primes such that the additive group $M(+)$ is a free-by- \mathscr{P}-group.

Proof. The result is clear if $n R=0$ for an integer $n \geq 2$. If not, then the prime subring of R is a copy of the ring of integers and we use 4.2.

Proposition 5.2. Let R_{M} be a finitely generated R-module such that $p M=M$ for infinitely many prime p. Then there existss a finite set \mathscr{P} of primes such that $M(+)$ is a $\mathscr{P}_{- \text {group }}$.

Proof. By 5.1, there are a free subgroup E of $M(+)$ and a finite set \mathscr{P} of primes such that M / E is a \mathscr{P}-group. Clearly, $p M=M$ for a prime p such that $p \notin \mathscr{P}$ and 1.1 applies.

Theorem 5.3. Let $R \subseteq S$ be an integral extension of rings and let ${ }_{s} M$ be a finitely generated S-module such that $M(+)$ is not torsion. Then $p M \neq M$ for almost all prime numbers p.

Proof. We have $M=S u_{1}+\ldots+S_{u_{n}}, n \geq 1$, and we put $N=R_{u_{1}}+$ $+\ldots+R_{u_{n}}$. Clearly, $N(+)$ is not torsion. By 5.1, there are a nonzero free subgroup $E(+)$ of $N(+)$ and a finite set \mathscr{P} of primes such that $(N / E)(+)$ is a \mathscr{P}-group. We are going to show that $p M \neq M$ for every prime $p \neq \mathscr{P}$.

Assume, on the contrary, that $p M=M$. Then $u_{i}=p v_{i}$ for some $v_{i} \in M$ and, since M is generated by the set $\left\{u_{1}, \ldots, u_{n}\right\}$, there is a finite subset V of S such that $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq K=T u_{1}+\ldots+T u_{n}, T=R[V] \subseteq S$. We have $K=p K$ and $p K$ is a finitely generated R-module. The same is true for ${ }_{R} L={ }_{R} K / p N$.

Denote by A the torsion part of $L(+)$. Then A is a submodule of ${ }_{R} L$ and, since ${ }_{R} A$ is noetherian, $A(+)$ is of finite exponent. Then the group $L(+)$ splits, and hence $p A=A$ and $A(+)$ has no elements of order p. It follows easily that $p N=N$ and N is torsion by 1.1 , a contradiction.

References

[1] Hall, P., 'On the finiteness of certain soluble groups', Proc. London Math. Soc. 9 (1959) 595-622.

[^0]: Department of Mathematics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic
 Department of Computer Science, University of Oulu, Linnanmaa, 90014 Oulu, Finland
 The work is a part of the research project MSM0021620839 financed by MSMT and partly supported by the Grant Agency of Czech Republic, grant \# 201/03/0937.

