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If R £= S is an integrál extension of commutative rings, where R is fmitely generated, 
and if M is a fmitely generated 5-module whose additive group is not torsion, then 
pM # M for almost all prime numbers p. 

Je-li R c 5 celistvé rozšíření komutativních okruhů, kde R je konečně generovaný, 
a je-li M konečně generovaný 5-modul, jehož aditivní grupa není torzní, pak pM Ť-= M 
pro skoro všechna prvočísla p. 

1. Introduction 

Throughout this note, all rings are notrivial, associative, commutative and with 
unit element. All modules are left and unitary. 

A ring R is said o be uniform if Ra n Rb ^ 0 for all a, b e R, a # 0 7-= b. 
Let & be a set of prime numbers. An abelian group A is said to be a ^-group 

if it is torsion and pa ^ 0 for every nonzero element a e A and every prime 
number p such that p $ 0. 

An abelian group A is sai to be a free-by-^-group if it contains a free subgroup 
E suchh that A/E is a ^-group. 

Lemma 1.1. Let A be a free-by-&-group such that pA = A for a prime p$0>. 
Then A is a SP-group. 

Proof. If u e A is such that pu e E, then p (u + E) = 0 in A/E, and hence u e E. 
Thus pE = E n pA = E and E = 0. 
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2. j^-by-^-modules 

Let R be a ring and si, 0S two classes of modules satisfying the following four 
conditions: 

(Al) Both si, 3S are abstract and all zero modules are in si n 0S\ 
(A2) si is closed under direct sums of countably many summands; 
(A3) 5 e ^ , provided that there is a sequence 0 = B0 =" Bx = B2... of submo-

dules of B such that \JB( = B, and Bi + l/Bi e 0S for every i > 0; 
(A4) All modules from si are projective. 
Now, denote by # the class of modules C containing a submodule A = C such 

that A e si and C/A e $&. The modules from # will be called j^-by-^-modules in 
the sequel. 

Lemma 2.1. Let M be a module possessing a sequence 0 = M0 =" M{ =" 
£= M2 ^ ... of submodules such that {JMt = M and M/ + 1 / M , e # for every 
i > 0. Fhen Me<€. 

Proof. For every / > 0, there exists a submodule iV, of Ml + 1 such that 
Mi = jV,- = MI + 1, Ni/Mtesi and Mi + l/Nte^S. Since EV^/M,- are projective 
modules by (A4), there are submodules X, of IV, such that M, n K0 = 0 and 
Mi + Kt = Nt. Then K, ^ AtyM,- e j . / . 

For every /c > 0, put Lk = £K l? 0 < i < k. We have N0_lNl = jY2 = ... and 
hence Lk 91 Nk _l Mk + i. Further Kk + lnLk_l Kk + ln Mk+l = 0, and so Lk + i = 
= Lfc + Kk + { = Lfc © Kfc + 1 is a direct sum. We have L<)_lLl_lL1_l ..., 
L = (jLfe = ^K , and L = K0 © Kx © K2 © ... is a direct sum (we use induc
tion). Since Kt e si for every / > 0, we have L e si by (A2). 

Let k > 0 and m > k + 1. We have Kk + l © ... © Km_x = Mw, Mw n 
n Km = 0, Mm n (K* + 1 © ... © Km) = Kfc + 1 © ... © Xw_1, and therefore 
Mk + l n(Kk + l © ... © Km) = Kk + l © ... © Km_h since Mfc + 1 __ Mw. Now, 
by induction, Mk + { n (Kk + l © ... © Km) = Mk + 1 n Kk + { = 0. It follows ea
sily that M, + 1 n ( K , + 1 © K f e + 2 © . . . ) = 0 and Mk + 1 n L = K0 © K{ © 
© ... © Xk. Of course, K0 © ... © Kk_, = M„ and so M, + (Mk + l n L) = 
= Mk + Kk = jVfc. Consequently, we get the isomorphism (Mk + l + L)/(Mk + 
+ L) ~ Mfc + 1/(Mk + (Mk + 1 n L)) = Mk + l/Nke$S. 

Finally, M/L is the union of the sequence of submodules 0 = (M0 + L)/L =" 
= (M2 + L)/L = (M2 + L)/L = ..., where ((M/ + 1 + L)/L)/((M, + L)/L) -
c_ (Mi + l + L)/(Mt + L) - Mi + l/Nie3S and we get M/LeSS by (A3). Thus 
M E # . • 

3. «£/-by-^7-modules (A) 

In this section, let R be a uniform noetherian ring. Further, let si and 0Sh I 
any nonzero ideal of R, be classes of modules such that the conditions (Al), 
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(A2), (A3), (A4) are satisfied ad, moreover, the following three conditions are also 
true: 

(A5) RR e st\ 
(A6) For every nonzero ideal I, the factor module RR/I is an .sZ-by-^/-module. 
(A7) 381 _= 38 5 whenever I and J are non-zero ideals such that J _= I. 

Proposition 3.1. Let n > 0 and let P = R [xl5 ..., xn] denote their polynomial 
ring in n (commuting) indeterminates xl5 ..., xn over the ring R. If PM is a finitely 
generated P-module, then there exists a non-zero ideal I of R such that the 
corresponding R-module RM is an s/-by-3Sj-module. 

Proof. It is divided into two parts. 
(i) Assume that PM is a cyclic P-module. In fact, assume that PM = PP/K for 

an ideal K of the ring P. Now, we will proceed by induction on n. The first case 
n = 0 is clear from (Al), (A5) and (A6). Hence, assume n > 1 and put S = R [xb 

..., x„_i] _= P, x = xn. Then P = S [x] and every element from P can be viewed 
as a polynomial in the single indeterminate x over the ring S. 

Put _o = 0 and Lk = {OQ + axx + ... + ak_{x
k~l | ate S} for every k > 1. 

Clearly, Lk are S-submodules of SP and Lo _= L- _= L^ _= ..., [jLk = P. Now, if 
Kk = K + Lk, k > 0, then Kk are S-submodules of SP, K0 _: Kx _= K2 _; ... 
and, again, (JKfc = P. Moreover, Kk + l/Kk ~ Lk + l/(Lk + (K n Lfc + 1)) is an iso
morphism of the S-modules for every k > 0. 

Put J0 = 0, J{ = S n K and J* = {ae S | Oo + ^ I * + ... + ak_2x
k~2 + 

+ x axk~1 6 K for some a0, ..., a/c_2 e S} for every k > 2. Again, Jk are S-sub
modules of 5S, i.e., ideals of S, and we have (K n Lk + l) + L+ = Jk + lx

k + Lk and 
Sx* n Lk = 0 for every k > 0. Consequently, Kk + l/Kk _. Lk + J(Lk + Jk + \Xk) cz 
c_ (Sxk + Lk)/(Jk + lx

k + Lk) ~ Sxk/Jk + lx
k _.. S/Jk + 1 are S-module isomor

phisms for every fc > 0. 
Since xK _= K, we have J0 _= Ji _= J2 _= ... . But S is a noetherian ring, and 

therefore Jm = Jm + l = ... for some m > 0. This means that each among the 
S-factormodules Kk + l/Kk, k > 0, is S-isomorphic to at least one of the cyclic 
S-modules SS/J0, ..., sS/Jm. 

By induction hypothesis, for every j , 0 < j < m, there exists a nonzero ideal Ij of 
R such that ^S/J.- is an j^-by-^^-module. Since R is uniform, we have I = 
= I0n ... n 7m 7- 0 and it follows from (A7) that all the /^-modules RS/Jj are j^-by-
^/-modules. Consequently, the same is true for the i?-modules RKk + l/RKk, K > 0. 

Finally, 0 = RK0/RK _= RKX/RK _= ^K2/RK c ..., [jRKk/RK = RP/RK ~ RM 
and RM is an ^-by-^-module by 2.1. 

(ii) Now the general case. The P-module PM is finitely generated and we have 
PM = Pt^ + ... + Pvm, m > 1. Let PM0 = 0 and PMk = Pvx + ... + Pvk, 
k > 1. Then all the factors PMJPM0, PM2/PMU ..., PMJPMm_x are cyclic 
P-modules and PMm = PM. Using (i) for these cyclic P-modules, the uniformity 
of R and 2.1, our result easily follows. • 
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Corollary 3.2. Let R be a subring of a ring S such that S = R [T] for a finite 
subset T. If SM is a finitely generated S-module, then there exists a nonzero ideal 
I of R such that the corresponding R-module RM is an s/-by-&rmodule. 

4. j^-by-^-modules (B) 

Let R be a noetherian domain. Let si denote the class of free R-modules and, 
for every nonzero ideal I of R, let S6X denote the class of R-modules RM such that 
for every ueM there is a positive integer m (u) with Im^ • u = 0. 

Lemma 4.1. All the conditions (Al), ..., (A7) are satisfied. 

Proof. Easy to see. • 

Proposition 4.2. Let Rbe a subring of a ring S such that S = R [T] for a finite 
set T. If SM is a finitely generated S-module, then there exist a free R-submodule 

RE of the R-module RM and a non-zero ideal I of R sch that for every ue M 
there exists a positive integer m (u) with Im^ - u = E. 

Proof. Combine 4.1 and 3.2. • 

Remark 4.3. The preceding result is, in fact, a generalization of a partial 
version of a well known result due to P. Hall (see [1] for more details). 

5. Finitely generated rings 

Throughout this section, let R be a finitely generated ring. 

Proposition 5.1. Let RM be a finitely generated R-module. Then there exists 
a finite set 8P of primes such that the additive group M (+) is a firee-by-SP-group. 

Proof. The result is clear if nR = 0 for an integer n > 2. If not, then the prime 
subring of I? is a copy of the ring of integers and we use 4.2. • 

Proposition 5.2. Let RM be a finitely generated R-module such that pM = M 
for infinitely many prime p. Then there existss a finite set 3P of primes such that 
M ( + ) is a 3P-group. 

Proof. By 5.1, there are a free subgroup E of M ( + ) and a finite set & of primes 
such that M/E is a ,^-group. Clearly, pM = M for a prime p such that p $ 2P and 
1.1 applies. • 

Theorem 5.3. Let R c S be an integral extension of rings and let SM be 
a finitely generated S-module such that M ( + ) is not torsion. Then pM 7-= M for 
almost all prime numbers p. 
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Proof. We have M = Sux + ... + SUn, n > 1, and we put IV = RUl + 
+ ... + RUn. Clearly, jV( + ) is not torsion. By 5.1, there are a nonzero free 
subgroup £( + ) of IV( + ) and a finite set 2P of primes such that (IV/£)( + ) is 
a ^-group. We are going to show that pM ?- M for every prime p ^ - # . 

Assume, on the contrary, that pM = M. Then ut = pi;,- for some vt e M and, 
since M is generated by the set {wb ..., un}, there is a finite subset Vof S such that 
{% ..., vn) c K = FU! + ... + TM ,̂ T = J { [ F ] c S . We have K = pK and pK 
is a finitely generated i?-module. The same is true for RL = RK/pN. 

Denote by A the torsion part of L( + ). Then A is a submodule of RLand, since 
RA is noetherian, -4( + ) is of finite exponent. Then the group L( + ) splits, and 
hence pA = A and -4( + ) has no elements of order p. It follows easily that 
pIV = IV and N is torsion by 1.1, a contradiction. • 
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