Acta Universitatis Carolinae. Mathematica et Physica

Milan Trch
Groupoids and the associative law VIIA. (SH-groupoids of type (A, B, A) and their semigroup distances)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 48 (2007), No. 1, 43--54

Persistent URL: http://dml.cz/dmlcz/142761

Terms of use:

© Univerzita Karlova v Praze, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Groupoids and the Associative Law VIIA. (SH-Groupoids of Type (A, B, A) and their Semigroup Distances)

MILAN TRCH

Praha

Received 4. October 2006

Szász-Hájek groupoids (shortly SH-groupoids) are those groupoids that contain just one non-associative (ordered) triple of elements. These groupoids were studied by G. Szász (see [10] and [11]), P. Hájek (see [2] and [3]) and later in [6], [7], [8] and [9]. In this paper, which is a continuation of [12], SH-groupoids of type (a, b, a) having an arbitrary large semigroup distance are constructed.

1. Preliminaries

A groupoid G is called an SH-groupoid if the set $\left\{(a, b, c) \in G^{(3)} \mid a \cdot b c \neq a b \cdot c\right\}$ of non-associative triples contains just one element. Let G be an SH-groupoid and let (a, b, c) be the only non-associative triple. We shall say that G is of type:
$-(a, a, a)$ if $a=b=c$;

- (a, a, b) if $a=b \neq c$;
- (a, b, a) if $a=c \neq b$;
- (a, b, b) if $a \neq b=c$;
- (a, b, c) if $a \neq b \neq c \neq a$.

Furthermore, G will be called minimal if G is generated by the set $\{a, b, c)$. The following two assertions are easy:
1.1 Proposition. Let G be an SH-groupoids and let $a, b, c \in G$ be such that $a \cdot b c \neq a b \cdot c$. Then:

[^0](i) G is of exactly one of the types $(a, a, a),(a, a, b),(a, b, a),(a, b, b)$ and (a, b, c).
(ii) If H is a subgroupoid of G, then either $\{a, b, c\} \subseteq H$ and H is an SH-groupoid (of the samy type as G) or $\{a, b, c\} \nsubseteq H$ and H is a semigroup.
(iii) The subgroupoid $\langle a, b, c\rangle_{G}$ is a minimal $S H$-groupoid.
(iv) If $u, v \in G$ are such that $u v \in\{a, b, c\}$, then $u v \in\{u, v\}$.
1.2 Proposition. Let G be an SH-groupoid of type (a, b, a). Then:
(i) Either $c=a b \neq a$, or $d=b a \neq a$ and either $c=a b \neq b$ or $d=b a \neq b$.
(ii) If $u=a b=b a$ then $a u \neq u a$.
(iii) If $a b=a$ and $b a=b$ then $a^{2} \neq a$.
(iv) If $b a=a$ and $a b=b$ then $a^{2} \neq a$.
(v) If $G(\cdot)$ is a minimal SH-groupoid then G contains at least three elements.

Let $G(*)$ and $G(\circ)$ be two groupoids having the same underlying set. We put $\operatorname{dist}(G(*), G(\circ))$ denotes card $\left.\left\{(u, v) \in G^{(2)} \mid u * v \neq u \circ v\right\}\right)$.

Let G be an SH-groupoid. The sdist (G) denotes the minimum of dist $(G, G(*))$, where $G(*)$ is running through all semigroup with the same underlying set G.

If G is a groupoid containing a subgroupoid H then G is also called an extension of H. If $p \in G \backslash H$ then the subgroupid $H(p)$ generated by the set $H \cup\{p\}$ is said to be a primitive extension of the groupoid H. In this case p will be called a primitive element (with respect to the groupoid H).
1.3 Proposition. Let G be an SH-groupoid containing a minimal SH-groupoid H as a proper subgroupoid. Then there exists an element $p \in G$ and a primitive extension $H(p)$ of the groupoid H such that $H(p)$ is an SH-groupoid of the same type as G and H.

Proof. Obvious.

2. Minimal SH-groupoid and its nearest semigroups

2.1 Construction. Let $A=\left\{a, a^{2}, a^{3}, \ldots, a^{k}, a^{k+1}, \ldots\right\}$ be a semigroup generated by one-element set $\{a\}$ and let $M=\left\{b, b^{2}, c, e, f, g\right\}$ be a six-element set disjoint with A. Put $G=A \cup M$. Define a mapping λ of the set G into the set of natural numbers such that $\lambda(a)=1=\lambda(b), \lambda\left(a^{k}\right)=k$ for each natural number k, $\lambda(c)=\lambda\left(b^{2}\right)=2$ and $\lambda(e)=\lambda(f)=\lambda(g)=3$. Finally, define on G a binary operation in such a way that $A(\cdot)$ is a subgroupoid of $G(\cdot)$ and in the remaining cases put:
(i) $a b=c, b a=a^{2}, b b=b^{2}$;
(ii) $a b^{2}=c b=e, a c=b c=a^{2} b=f, b a^{2}=b b^{2}=b^{2} a=b^{2} b=a^{3}, c a=g$;
(iii) $a e=a f=a g=b e=b f=b g=b^{2} b^{2}=b^{2} c=c b^{2}=c c=e a=a b=$ $=f a=f b=g a=g b=a^{4} ;$
(iv) $b^{2} e=b^{2} f=b^{2} g=c e=c f=c g=e b^{2}=f b^{2}=g b^{2}=a^{5}$;
(v) $e e=e f=e g=f e=f f=f g=g e=g f=g g=a^{6}$;
(vi) $a^{k} b=b a^{k}=a^{k+1}, a^{k} b^{2}=a^{k} c=b^{2} a^{k}=c a^{k}=a^{k+2}, a^{k} e=a^{k} f=a^{k} g=$ $=e a^{k}=f a^{k}=g a^{k}=a^{k+3}$ for every $k>1$.
Then $G(\cdot)$ becomes a groupoid satisfying the condition $\lambda(x y)=\lambda(x)+\lambda(y)$ for all $x, y \in G$.
2.2 Lemma. $G(\cdot)$ is a minimal SH-groupoid of type (a, b, a).

Proof. (i) If $x, y, z \in G$ are such that $k=\lambda(x)+\lambda(y)+\lambda(z)>3$ then $x . y z=a^{k}=x y . z$.
(ii) If $x, y, z \in G$ are such that $\lambda(x)+\lambda(y)+\lambda(z)=3$ then (x, y, z) is one of $(a, a, a),(a, a, b),(a, b, a),(b, a, a),(b, b, a),(b, a, b),(a, b, b),(b, b, b)$ and $a . a a=a a^{2}=a^{3}=a^{2} a=a a . a, \quad a \cdot a b=a c=f=a^{2} b=a a . b, \quad a \cdot b a=$ $=a^{3} \neq g=c a=a b \cdot a, \quad b . a a=b \cdot a^{2}=a^{3}=a^{2} a=b a \cdot a, \quad b b \cdot a=a^{2} a=$ $=a^{3}=b a^{2}=b . b a, \quad b \cdot a b=b c=f=a^{2} b=b a . b, \quad a . b b=a b^{2}=e=$ $=c b=a b . b, b . b b=b b^{2}=a^{3}=b^{2} b=b b . b$.
(iii) It is obvious that $G(\cdot)$ is generated by the two element set $\{a, b\}$ and the rest is clear.
2.3 Lemma. $\operatorname{sdist}(G(\cdot))=1$.

Proof. Define on G a binary operation * such that $c * a=a^{3} \neq g=c a$ and $x * y=x y$ if $(x, y) \neq(c, a)$. It is easy to see that $\lambda(x * y)=\lambda(x)+\lambda(y)$ for every $x, y \in G$. Therefore $x *(y * z)=a^{k}=(x * y) * z$ whenever $k=\lambda(x)+\lambda(y)+$ $+\lambda(z)>3$. Further, $c * a=a b * a=(a * b) * a=a^{3}=a * a^{2}=a * b a=a *(b * a)$ and it is easy to check that also in the remaining cases $x *(x * z)=(x * y) * z$. Thus dist $(G(\cdot), G(*))=1$ and $\operatorname{sdist}(G(\cdot))=1$.
2.4 Lemma. If $G(*)$ is a semigroup having the same underlying set as the SH-groupoid $G(\cdot)$ then just one of the following conditions takes place:
(i) $a * b \neq a b$ and $b * a \neq b a$,
(ii) $a * b \neq a b$ and $b * a=b a$,
(iii) $a * b=a b$ and $b * a \neq b a$,
(iv) $a * b=a b=c, b * a=b a=d$ and $a * d=a d=c * a \neq c a$,
(v) $a * b=a b=c, b * a=b a=d$ and $a d \neq a * d=c * a=c a$,
(vi) $a * b=a b=c, b * a=b a=d$ and $a d \neq a * d=c * a \neq c a$.

Proof. Suppose the opposite and let $a * b=a b=c, a * d=a d=f, b * a=$ $=b a=d, c * a=c a=g$. Then $a *(b * a)=a * b a=a * d=a d=f \neq g=$ $=c a=c * a=a b * a=(a * b) * a$, a contradiction.
2.5 Lemma. Let $G(*)$ be a semigroup having the same underlying set as the SH-groupoid $G(\cdot)$ and such that $\operatorname{sdist}(G(\cdot))=\operatorname{dist}(G(\cdot), G(*))$. Then:
(i) if $x=a * b \neq a b$ then $\lambda(x)=2$,
(ii) if $z=b * a \neq a b$ then $\lambda(z)=2$,
(iii) if $a * b=a b=c, b * a=b a=d$ and $y=c * a \neq c a$ then $\lambda(y)=3$,
(iv) if $a * b=a b=c, b * a=b a=d$ and $y=a * d \neq a d$ then $\lambda(y)=3$.

Proof. According to 2.3 , $\operatorname{sdist}(G)(\cdot))$ is finite and therefore there exists a natural number m such that $x * y=x y$ whenever $\lambda(x)+\lambda(y)>m$. In particular, $x * a^{k}=x a^{k}$ for every $x \in G$ and $k>m, k>3$. Suppose that $x=a * b \neq a b$. Then $x a^{m}=x * a^{m}=(a * b) * a^{m}=a * b a^{m}=a \cdot b a^{m}$. It follows from this that $\lambda\left(x a^{m}\right)=\lambda(x)+\lambda\left(a^{m}\right)=\lambda(x)+m=\lambda\left(a \cdot b a^{m}\right)=2+m$ and therefore $\lambda(x)=$ $=2$. The rest is similar.
2.6 Proposition. There exists only one semigroup $G(*)$ having the same underlying set as the groupoid $G(\cdot)$ and satisfying the condition $\operatorname{dist}(G(*), G(\cdot))=$ $=\operatorname{sdist}(G(\cdot))$.

Proof. With the respect to 2.3 and 2.4 just one of the following four conditions holds: $a * b \neq a b, b * a \neq b a, d=b a$ and $a * d \neq a d, c=a b$ and $c * a \neq c a$.
(i) Suppose that $x=a * b \neq a b$. Then $\lambda(x)=2$ and therefore $x \notin\left\{a^{2}, b^{2}\right\}$. For $x=a^{2}$ we have $f=a^{2} b=a a * b=(a * a) * b=a * a^{2}=a a^{2}=a^{3}$, a contradiction. Similarly, for $x=b^{2}$ we have $f=a^{2} b=a a * b=$ $=(a * a) * b=a *(a * b)=a * b^{2}=a b^{2}=e$, again a contradiction.
(ii) Suppose that $z=b * a \neq b a$. Then $\lambda(z)=2$ and therefore $z \in\left\{b^{2}, c\right\}$. For $z=b^{2}$ we have $a^{3}=b^{2} b=b^{2} * b=(b * a) * b=b *(a * b)=b * a b=$ $=b * c=b c=f$, a contradiction. If $z=c$ then $g=c a=c * a=$ $=(b * a) * a=b *(a * a)=b * a a=b \cdot a a=b a \cdot a=a^{2} a=a^{3}$, again a contradiction with 2.3.
(iii) Suppose that $c=a b=a * b$ and $b * a=b a=a^{2}$. If $y=a * d \neq a d=$ $=a \cdot b a=a a^{2}=a^{3}$ then $a y=a * y=a *(b * a)=(a * b) * a=a b * a=$ $=c * a=c a=g$. However, the equation $a y=g$ has no solution in $G(\cdot)$.
(iv) If $a * b=c, d=b a=b * a$ and $y=c * a \neq c a$ then $y=c * a=$ $=(a * b) * a=a *(b * a)=a * b a=a * a^{2}=a a^{2}=a^{3}$ and the rest follows from 2.3.
2.7 Remark. The semigroup $G(*)$ constructed in 2.3 is the nearest semigroup to the groupoid $G(\cdot)$ among all semigroup having the same underlying set G.

3. Primitive extension and its semigroup distance

3.1 Construction. Consider the SH-groupoid $G(\cdot)$ constucted in 2.1. Let the set $M=\{p, u, v, w\}$ be disjoint with G and put $E=G \cup M$. Further, put $\lambda(p)=1$ and $\lambda(u)=\lambda(v)=\lambda(w)=2$. Define on E a binary operation in such a way that $G(\cdot)$ is a subgroupoid of $E(\cdot)$ and also the condition $\lambda(x y)=\lambda(x)+\lambda(y)$ for all $x, y \in E$ is satisfied. To this end, put:
(i) $a p=c, b p=u, p a=v, p b=w$ and $p p=a^{2}$ (thus $x y$ is defined for all x, y satisfying $2=\lambda(x)+\lambda(y))$;
(ii) $e=a w=b v=b w=p c=p u=u a=u b=v b=v p=w p, f=a^{2} p=$ $=b u=b^{2} p=p a^{2}=p b^{2}=p w=v a=w a=w b, g=a v$ and $a^{3}=$ $=a u=c p=p v=u p$ (thus $x y$ is defined for all x, y satisfying $3=\lambda(x)+\lambda(y)) ;$
(iii) $a^{k}=x y$ whenever $4 \leq k=\lambda(x)+\lambda(y)$.

Then $E(\cdot)$ becomes a groupoid containing the miniml SH-groupoid $G(\cdot)$ as a proper subgroupoid.
3.2 Lemma. $E(\cdot)$ is an SH-groupoid of type (a, b, c) generated by the three-element set $\{a, b, p\}$.

Proof. $E(\cdot)$ contains the minimal SH-groupoid $G(\cdot)$ as a proper subgroupoid. It is obvious that each triple $(x, y, z) \in E^{(3)}$ satisfying $\lambda(x)+\lambda(y)+\lambda(z) \geq 4$ is associative. We will check that every triple $(a, b, c) \neq(x, y, z) \in E^{(3)}$ having $\lambda(x)+$ $+\lambda(y)+\lambda(z)=3$ is associative. In particular, we have $a \cdot a p=a c=f=$ $=a^{2} p=a a \cdot p, a \cdot b p=a u=a^{3}=c p=a b \cdot p, a \cdot p a=a v=g=c a=a p \cdot a$, $a \cdot p b=a w=e=c b=a p=b, a \cdot p p=a a^{2}=a^{3}=c p=a p \cdot p, b \cdot a p=b c=$ $=f=a^{2} p=b a \cdot p, b \cdot b p=b u=f=b^{2} p=b b \cdot p, b \cdot p a=b v=e=u a=$ $=b p \cdot a, \quad b \cdot p b=b w=e=u b=b p \cdot b, \quad b \cdot p p=b a^{2}=a^{3}=u p=b p \cdot p$, $p \cdot a a=p a^{2}=f=v a=p a \cdot a, p \cdot a b=p c=e=v b=p a \cdot b, p \cdot a p=p c=$ $=e=v p=p a \cdot p, p \cdot b a=p a^{2}=f=w a=p b \cdot a, p \cdot b b=p b^{2}=f=w b=$ $=p b \cdot b, p \cdot b p=p u=e=w p=p b \cdot p, p p \cdot a=p v=a^{3}=a^{2} a=p p \cdot a, p \cdot p b=$ $=p w=f=a^{2} b=p p \cdot b, p \cdot p p=p a^{2}=f=a^{2} p=p p \cdot p$. Finally, $a \cdot b a=$ $=a \neq g=c a=a \cdot b a$.

3.3 Lemma. $\operatorname{sdist}(E(\cdot)) \leq 2$.

Proof. Define on E a binary operation * such that $c * a=a^{3}=a * v$ and $x * y=x y$ whenever $(c, a) \neq(x, y) \neq(a, v)$. Then $x * y=c$ only if either $(x, y)=$ $=(a, b)$ or $(x, y)=(a, p)$. Furthermore, $x * y=v$ only if $(x, z)=(p, a)$ and $x * y \neq a$ for all $x, y \in E$. Suppose that (r, s, t) satisfies the conditions $(a, p) \neq(r, s) \neq(a, b)$ and $(s, t) \neq(p, a)$. Then $r *(s * t)=r * s t=r s \cdot t=r s * t=$ $=(r * s) * t$. In the remaining cases we have $(a * b) * a=a b * a=c * a=a^{3}=$ $=a \cdot a^{2}=a * b a==a *(b * a),(a * p) * a=a p * a=c * a=a^{3}=a * v=$ $=a * p a=a *(p * a)$. It means that $E(*)$ is a semigroup having dist $(E(\cdot)$, $E(*))=2$ and therefore $\operatorname{sdist}(E(\cdot)) \leq 2$.
3.4 Lemma. $\operatorname{sdist}(E(\cdot)) \neq 1$.

Proof. Suppose that sdist $(E(\cdot))=1$ and let $E(\circ)$ be a semigroup satisfying the condition $\operatorname{dist}(E(\cdot), E(\bigcirc))=1$. Then there exist a natural number m such that $x \circ a^{m}=x a^{m}$ for every $x \in E$.
(i) Suppose first that $z=a \circ b \neq a b$. Then $z a^{m}=z \circ a^{m}=(a \circ b) \circ a^{m}=$ $=a \circ\left(b \circ a^{m}\right)=a \circ b a^{m}=a \cdot b a^{m}$. Therefore, $\lambda\left(z a^{m}\right)=\lambda\left(a \cdot b a^{m}\right)$ and it follows from $\lambda(z)+m=2+m$ that $\lambda(z)=2$. It means that
$c \neq z \in\left\{a^{2}, b^{2}, c, u, v, w\right\}$. Moreover, $z \notin\left\{a^{2}, b^{2}, c\right\}$ with respect to 2.6. For $a \circ b=u$ we have $a \circ(a \circ b)=a \circ u=a u=a^{3}$ and $(a \circ a) \circ b=$ $=a a \circ b=a^{2} b=f$, a contradiction. For $a \circ b=v$ we obtain $a \circ(a \circ b)=$ $=a \circ v=a v=g$ and $(a \circ a) \circ b=a a \circ b=a^{2} b=f$, a contradiction. For $a \circ b=w$ we have $a \circ(a \circ b)=a \circ w=a w=e$ and $(a \circ a) \circ b=$ $=a a \circ b=a^{2} b=f$, again a contradiction. Therefore $a \circ b=a b$.
(ii) Suppose that $z=b \circ a \neq b a$. There exists a natural number m such that $x \circ a^{m}=x a^{m}$ for every $x \in E$. In particular, $z a^{m}=z \circ a^{m}=(b \circ a) \circ a^{m}=$ $b \circ\left(a \circ a^{m}\right)=b \circ a a^{m}=b \cdot a^{m+1}$. It follows from this that $\lambda\left(z a^{m}\right)=$ $=\lambda\left(b \cdot a^{m+1}\right)$. Therefore $\lambda(z)=2$, and so $z \in\left\{a^{2}, b^{2}, c, u, v, w\right\}$. Of course, $z \notin\left\{a^{2}, b^{2}, c\right\}$ (in that case $G(O)$ is semigroup and a subgroupoid of $E(O)$, a contradiction with 2.6). If $z=u$ then we obtain $a \circ u=a \circ(b \circ a)=$ $=(a \circ b) \circ a=a b \circ a=c \circ a=c a=g \neq f=a u$, a contradiction. If $z=v \quad$ then $b \circ v=b \circ(b \circ a)=(b \circ b) \circ a=b b \circ a=b b \cdot a=a^{3} \neq$ $\neq e=b v$, again a contradiction. If $z=w$ then $a \circ w=a \circ(b \circ a)=$ $=(a \circ b) \circ a=a b \circ a=c \circ a=c a=g \neq e=a w$, a contradiction.
(iii) Suppose that $a \circ b=a b=c, b \circ a=b a=a^{2}$ and $c \circ a=c a=g$. Then $g=c \circ a=a b \circ a=(a \circ b) \circ a=a \circ(b \circ a)=a \circ b a=a \circ a^{2}=$ $=a a^{2}=a^{3}$, a contradiction.
(iv) Suppose that $a \circ b=a b, b \circ a=b a, z=c \circ a \neq c a$. Then $z=c \circ a=$ $=a b \circ a=(a \circ b) \circ a=a \circ(b \circ a)=a \circ b a=a \circ a^{2}$ and, further, $a^{3}=c \circ a=a p \circ a=(a \circ p) \circ a=a \circ(p \circ a)=a \circ p a=a \circ v=$ $=a v=g$, a contradiction.
3.5 Lemma. $\operatorname{sdist}(E(\cdot))=2$.

Proof. It follows immediately rom 3.2, 3.3 and 3.4.
3.6 Proposition. Let $H(\cdot)$ be an SH-groupoid of type (a, b, a) containing the SH-groupoid $E(\cdot)$ as a subgroupoid and let $H(*)$ be a semigroup having the same underlyin set as $H(\cdot)$. Then at least one of the following conditions takes place:
(i) $x * p \neq x p$ or $p * x \neq p x$ for some $x \in G$;
(ii) $x * u \neq x u$ or $u * x \neq u x$ for some $x \in G$;
(iii) $x * v \neq x v$ or $v * x \neq v x$ for some $x \in G$;
(iv) $x * w \neq x w$ or $w * x \neq w x$ for some $x \in G$.

Proof. Suppose that the opposite takes place. Let $H(*)$ be a semigroup having the underlying set H (i.e., $H \supseteq E \supseteq G$) and satisfying the conditions $x * p=x p$, $x * u=x u, \quad x * v=x v, \quad x * w=x w, \quad p * x=p x, \quad u * x=u x, \quad v * x=v x$, $w * x=w x$ for each $x \in G$. It is obvious that either $a * b \neq a b$, or $b * a \neq b a$, or $a * b=a b=c, b * a=b a=d$. If $a * b=a b=c, b * a=b a=d$ then $a * d=$ $=a d=c * a \neq c a$ or $a d \neq a * d=c * a=c a$, or $a d \neq a * d=c * a \neq c a$.

Consider the triples $(a, p, a),(a, p, b),(a, p, p),(b, p, p),(p, p, a\}$ and (p, p, b). Then $c * a=a p * a=a * p * a=a * p a=a * v=a v=g, c * b=a p * b=a * p * b=$
$=a * p b=a * w=a w=e, \quad a * a^{2}=a * p p=a * p * p=a p * p=c * p=$ $=c p=a^{3}, b * a^{2}=b * p p=b * p * p=b p * p=u * p=u p=a^{3}, a^{2} * a=$ $=p p * a=p * p * a=p * p a=p * v=p v=a^{3}, a^{2} * b=p p * b=p * p * b=$ $=p * p b=p * w=p w=f$. Further, consider the triples $(p, a, a),(p, b, a),(p, b, b)$ and denote $x=a * a, y=b * a, z=b * b$. Then the following three conditins have to be valid in $E(\cdot): p x=p * x=p * a * a=p a * a=v * a=v a=f$, $p y=p * y=p * b * a=p b * a=w * a=w a=f, \quad p z=p * z=p * b * b=$ $=p b * b=w * b=w b=f$. However, the corresponding equation has just three solutions in $E(\cdot)$ and therefore $x, y, z \in\left\{a^{2}, b^{2}, w\right)$. Finally, denote $t=a * b$ and consider the triple (a, b, p). Then the equation $t p=t * p=a * b * p=$ $=a * b p=a * u=a u=a^{3}$ must be satisfied in $E(\cdot)$. It follows from this that $t \in\{c, u\}$. Thus there is only a finite number of acceptable values for elements t, x, y, z and each of these situations has to be investigated in more detail. Moreover, if $t \in\{c, u\}$ and $x, y, z \in\left\{a^{2}, b^{2}, w\right\}$ is an acceptable choices of elements t, x, y, z then the following eight conditions have to be valid: $a * x=$ $=a * a * a=x * a ; x * b=a * a * b=a * t ; t * a=a * b * a=a * y ; t * b=$ $=a * b * b=a * z ; y * a=b * a * a=b * x ; y * b=b * a * b=b * t ; z * a=$ $=b * b * a=b * y ; b * z=b * b * b=z * b$.
(i) Suppose $a * b=c$. If $b * a=a^{2}$ then $g=c * a=a * b * a=a * a^{2}=a^{3}$, a contradiction. If $b * a=w$ then $e=a e=a * w=a * b * a=c * a=$ $=g$, again a contradiction. Therefore $b * a=b^{2} \neq a^{2}$. Now, if $b * b=a^{2}$ then $e=a w=a * w=a * p b=a p * b=c * b=a * b * b=a * a^{2}=$ $=a^{3}$, a contradiction. If $b * b=w$ then $f=w b=w * b=b * a * b=$ $=a^{2} * b=p p * a=p * p a=p * v=p v=a^{3}$, again a contradiction. Thus $b * b=b^{2}$. Finally, if $a * a=b^{2}$ then $a^{3}=u p=u * p=b p * p=$ $=b * p p=b * a^{2}=b^{2} * a=b * b * a=b * b^{2}=b * b * b=b^{2} * b=$ $=b * a * b=b * c=b * a p=b * a * p=b^{2} * p=b^{2} p=f$, a contradiction. If $a * a=w$ then $e=a w=a * w=a * a * a=w * a=w a=f$, a contradiction. It follows from this that $a * a=a^{2}$. Now, $f=b^{2} p=$ $=b^{2} * p=b * a * p=b * a p=b * c=b * a * b=b^{2} * b=b * b * b=$ $=b * b^{2}=b * b * a=b^{2} * a=b * a * a=b * a^{2}=b * p p=b p * p=$ $=b p * p=u * p=u p=a^{3}$, a contradiction. Therefore, $c \neq a * b$.
(ii) Suppose that $b * a=u$. If $b * a=a^{2}$ then $e=u a=u * a=a * b * a=$ $=a * a^{2}=a^{3}$, a contradiction. If $b * a=w$ then $e=u a=u * a=$ $=a * b * a=a * w=a w=f$, a contradiction. It means that $b * a=$ $=b^{2} \neq b a$. If $b * b=a^{2}$ then $e=u b=u * b=a * b * b=a * a^{2}=a^{3}$, a contradiction. If $b * b=w$ then $e=b w=b * w=b * b * b=w * b=$ $=w b=f$, again a contradiction. It follows from this that $b * b=b^{2}$. Suppose that $a * a=a^{2}$. Then $a^{3}=a u=a * u=a * a * b=a^{2} * b=$ $=p p * b=p * p b=p * w=p w=f$, a contradiction. If $a * a=w$ then $e=a w=a * w=a * a * a=w * a=w a=f$, again a contradiction. Now only the case $a * a=a^{2}$ remains and then $f=p w=p * w=$
$=p * p b=p p * b=a^{2} * b=a * a * b=a * u=a u=a^{3}$, a contradiction.
3.7 Propositon. There exists only one semigroup $E(\bigcirc)$ having the underlying set E and such that $\operatorname{sdist}(E(\cdot))=\operatorname{dist}(E(\circ), E(\cdot))$.

Proof. Let $E(\circ)$ be a semigroup satisfying sdist $E(\cdot))=\operatorname{dist}(E(\circ), E(\cdot)=2$. There is a natural number m such that $x \circ y=x y$ whenever $\lambda(x)+\lambda(y) \geq$ $\geq m \geq 4$. In particular, $x \circ a^{m}=x a^{m}$ and $a^{m} \bigcirc y=a^{m} y$ for all $x, y \in E$. It follows from 3.6 that just one of the conditions $x \circ p \neq x p, p \circ x \neq p x, x \circ u \neq x u$, $u \circ x \neq u x, x \circ v \neq x v, v \circ x \neq v x, x \circ w \neq x w$ and $w \circ x \neq w x$ holds for some $x \in G$. It is obvious that also just one of the conditions $a \circ b \neq a b=c$, $b \circ a \neq b a=a^{2}, a \circ d=a \cdot a^{2}=a^{3}=c \circ a \neq c a$ and $a^{3} \neq a \circ a^{2}=c \circ a=$ $=c a=g$ is true.
(i) Suppose that $y=a \circ b \neq a b$. It follows from $y \circ a^{m}=a \circ b \circ a^{m}$ that $\lambda(y)=2$. Thus $y \in\left\{a^{2}, b^{2}, u, v, w\right\}$ and $y \circ z=y z$ for every $y, z \in G$, $(y, z) \neq(a, b)$. Now, if $y=a^{2}$ then $f=a^{2} \circ b=a \circ b \circ b=a \circ b b=$ $=a \circ b^{2}=a b^{2}=e$, a contradiction. Similarly, if $y=b^{2}$ then $e=a b^{2}=$ $=a \circ b^{2}=a \circ a \circ b=a^{2} \circ b=a^{2} b=f$, again a contradiction. If $y=u$ then either $a u=a \circ u$ or $a u \neq a \circ u$. In the first case, $a^{3}=a u=$ $=a \circ a \circ b=a a \circ b=a^{2} b=f$, a contradiction. In the second case, $b \circ p=b p=u$ and $u \circ p=u p$. Therefore $a \circ u=a \circ b \circ p=u \circ p=$ $=u p=a^{3}=a u$, again a contradiction. Further, if $y=v$ then either $a \circ v=a v$ or $a \circ v \neq a v$. In the first case, $g=a v=a \circ v=$ $=a \circ b \circ a=a \circ b a=a \circ a^{2}=a^{3}$, a contradiction. In the second case, from $a \circ v \neq a v$ it follows that $p \circ a=p a$ and $p \circ a=p a$ and $a \circ p=a p$. But then $a \circ v=a \circ p \circ a=a p \circ a=c \circ a=g=a v$, again a contradiction. Finally, let $a * b=w$. If $a \circ w=a w$ then $e=a w=a \circ w=a \circ a \circ b=a a \circ b=a^{2} b=a^{3}$, a contradiction. If $a \circ w \neq a w$ then $p \circ b=p b$ and $a \circ p=a p$. But then $a \circ w=$ $=a \circ p \circ b=a p \circ a^{2}=c \circ b=c b=e=a w$, again a contradiction. We have proved that $a b=a \circ b$.
(ii) Suppose that $x=b \circ a \neq b a$. It follows from $x \circ a^{m}=b \circ a \circ a^{m}$ that $\lambda(x)=2$. Thus, $x \in\left\{b^{2}, c, u, v, w\right)$. If $b \circ a=b^{2}$ then $e=a b^{2}=a \circ b^{2}=$ $=a \circ b \circ a=a b \circ a=c \circ a=c a=g$, a contradiction. Similarly, if $b \circ a=c$ then $g=c a=c \circ a=b \circ a \circ a=b \circ a a=b \circ a^{2}=b a^{2}=$ $=a^{3}, \mathrm{a}$ contradiction. Further, let $b \circ a=u$. If $a \circ u=a u$ then $a \circ b=a b$ and $c \circ a=c a$, but then $a^{3}=a u=a \circ u=a \circ b \circ a=$ $=a b \circ a=c \circ a=c a=g$, a contradiction. If $a \circ u \neq a u$ and $u=$ $=b \circ a \neq b a$ then $a \circ u=a \circ b \circ a=a b \circ a=c \circ a=c a=g$. Now, if $c \circ p \neq c p$ then $a^{3}=a a^{2}=a \circ p p=a \circ p \circ p=a p \circ p=c \circ p=$ $=a b \circ p=a \circ b \circ p=a \circ b p=a \circ u=g, \quad \mathrm{a}$ contradiction. Thus $c \circ p=c p$. Further, if $b \circ p=b p$ then $g=a \circ u=a \circ b p=$
$=a \circ b \circ p=a b \circ p=c \circ p=c p=a^{3}$, a contradiction. Therefore, we have $b \circ p \neq b p$. Finally, if $u \neq y=b \circ p$ then $p y=p \circ y=p \circ b \circ p=$ $=p b \circ p=w \circ p=w p=e$. The equation $p y=e$ has in $E(\cdot)$ only two solutions, namely, c, u. However, if $b \circ p=c$ then $f=a c=a \circ c=$ $=a \circ b \circ p=a b \circ p=c \circ p=c p=a^{3}$, a contradiction. Similarly, if $b \circ a=v$ then either $a \circ v=a v$ or $a \circ v \neq a v$. In the first case it follows from $b \circ a \neq b a$ that $a \circ a=a a$ and $a^{2} \circ a=a^{2} a$. Therefore, $g=a v=a \circ v=a \circ a \circ b=a a \circ b=a a \cdot b=f$, a contradiction. In the second case, it follows from $a \circ v \neq a v$ that $p \circ b=p b$ and $a \circ p=a p$. But then $a \circ v=a \circ p b=a \circ p \circ b=a p \circ a=c a=g=$ $=a v$, a contradiction. Finally, suppose that $b \circ a=w$. Then either $a \circ w=a w$ or $a \circ w \neq a w$. In the first case, it follows from $b \circ a \neq b a$ that $a \circ a=a a$ and $a^{2} \circ a=a^{2} a$. Then $e=a w=a \circ w=a \circ a \circ b=$ $=a a \circ b=a^{2} b=f$, a contradiction. In the second case, it follows from $a \circ w \neq a w$ and $b \circ a \neq b a$ that $p \circ b=p b, a \circ p=a p, c \circ b=c b$. But then $a \circ w=a \circ p \circ b=a p \circ b=c \circ b=c b=e=a e$, a contradiction. We have proved that $b \circ a=b a$.
(iii) Suppose that $a \circ b=a b, b \circ a=a^{2}$ and let $y=a \circ a^{2} \neq a^{3}$. It follows from $y \circ a^{m}=a \circ a^{2} \circ a^{m}$ that $\lambda(y)=3$ and thus $y \in\{e, f, g\}$. Suppose first that $y=e$. Then $e=a \circ a^{2}=a \circ b \circ a=a b \circ a=c \circ a \neq c a$. Now, $a \circ a^{2} \neq a^{3}$ and $c \circ a \neq c a$. It follows from $\operatorname{dist}((E(\cdot), E(\circ))=2$ that $x \circ y=x y$ for all $x, y \in E$ such that $\left(a, a^{2}\right) \neq(x, y) \neq(c, a)$. But then $a^{3}=a^{2} \circ a=a \circ a \circ a=a \circ a^{2}=e$, a contradiction. Similarly, if $y=f$ then $f=a \circ a^{2}=a \circ b \circ a=a b \circ a=c \circ a \neq c a$ and therefore $x \circ y=x y$ whenever $x, y \in E$ are such that $\left(a, a^{2}\right) \neq(x, y) \neq(c, a)$. Therefore, $a^{3}=a^{2} \circ a=a \circ a \circ a=a \circ a^{2}=f$, a contradcition. Finally, suppose that $y=g$. As $\operatorname{dist}\left((E(\cdot), E(\circ))=2\right.$, at least one of $a \circ a=a^{2}$ and $b \circ b=a^{2}$ takes place. If $a \circ a=a^{2}$ then $g=a \circ a^{2}=a \circ a \circ a=$ $=a^{2} \circ a \neq a^{3}$. Now, $x \circ y=x y$ whenever $x, y \in E$ are such that $\left(a, a^{2}\right) \neq(x, y) \neq\left(a^{2}, a\right)$. But then also $g=a \circ a^{2}=a \circ b \circ b=a b \circ b=$ $=c \circ b \neq c b=e$, a contradiction. If $b \circ b=a^{2}$ then $g=a \circ a^{2}=$ $=a \circ b \circ b=a b \circ b=c \circ b \neq e$. Now, it follows from dist $((E(\cdot), E(\circ))=$ $=2$ that $x \circ y=x y$ for all $x, y \in E$ such that $\left(a, a^{2}\right) \neq(x, y) \neq(c, b)$. Therefore also $a \circ a=a^{2}$ and $g=a \circ a^{2}=a \circ a \circ a=a a \circ a=a^{2} a=$ $=a^{3}$, a contradiction. We have proved that $a^{3}=a \circ a^{2}$.
(iv) Finally, let $a \circ b=a b, a \circ b=a^{2}$ and $y=c \circ a \neq c a$. It follows from $y a^{m}=y \circ a^{m}=c \circ a \circ a^{m}=c \cdot a a^{m}$ that $\lambda(y)=3$. Therefore $y \in\left\{a^{3}, e, f\right\}$. Suppose first that $a \circ p=a p$ and $a \circ v=a v$. Then $y=c \circ a=$ $=a p \circ a=a \circ p \circ a=a \circ p a=a \circ v=a v=g$, a contradiction. Therefore either $a \circ p \neq a p$ or $a \circ v \neq a v$. Suppose that $x=a \circ p \neq a p$. Then $x a^{k}=a \circ p \circ a^{k}=a \circ p a^{k}=a \cdot a^{k+1}$ for some natural number k. Therefore $\lambda(x)=2$ and $x \in\left\{a^{2}, b^{2}, u, v, w\right\}$. It follows from $c \circ a \neq c a$ and
$a \circ p \neq a p$ that $x \circ y=x y$ if $x, y \in E$ are such that $(c, a) \neq(x, y) \neq(a, p)$. In particular, if $x=a^{2}$ then $a^{3}=a^{2} \circ a=a \circ p \circ a=a \circ p a=$ $=a \circ v=g$, a contradiction; if $x=b^{2}$ then $a^{3}=b^{2} a=b^{2} \circ a=$ $=a \circ p \circ a=a \circ p a=a \circ v=a v=g$, a contradiction; if $x=u$ then $e=u a=u \circ a=a \circ p \circ a=a \circ p a=a \circ v=a v=g$, a contradiction; if $x=v$ then $f=v a=v \circ a=a \circ p \circ a=a \circ p a=a \circ v=$ $=a v=g$, a contradition; if $x=w$ then $f=w a=w \circ a=a \circ p \circ a=$ $=a \circ p a=a \circ v=a v=g$, a contradiction. Therefore, $a \circ p=a p$ and let $z=a \circ v \neq a v$. It follows from $z a^{k}=z \circ a^{k}=a \circ v \circ a^{k}=a \cdot v a^{k}$ that $\lambda(z)=3$ and therefore $z \in\left\{a^{3}, e, f\right)$. Further, it follows from $c \circ a \neq c a$ and $a \circ v \neq a v$ that $x \circ y=x y$ whenever $(a, v) \neq(x, y) \neq$ $\neq(c, a)$. Now, if $z=e$ then $a^{3}=a^{2} a=a b \circ a=a \circ b \circ a=a b \circ a=$ $=c \circ a=a p \circ a=a \circ p \circ a=a \circ p a=a \circ v=e$, a contradiction. If $z=f$ then $a^{3}=a^{2} a=a b \circ a=a \circ b \circ a=a b \circ a=c \circ a=a p \circ a=$ $=a \circ p \circ a=a \circ p a=a \circ v=f$, a contradiction. Thus $z=a^{3}$ and we have proved that there exists only one semigroup $E(\circ)$ having the underlying set E and satisfying the given conditions. This is just the semigroup $E(*)$ constructed in 3.3.

4. SH-groupoids having large semigroup distance

4.1 Construction. Let $A=\left\{a, a^{2}, a^{3}, \ldots, a^{k}, a^{k+1}, \ldots\right\}$ be a semigroup generated by one-element set $\{a\}$ and let $M=\left\{b, b^{2}, c, e, f, g\right\}$ be a six-element set disjoint with A. Let I be an arbitrary index set and for each $i \in I$ consider the sets $P_{i}=\left\{p_{i}, u_{i}, v_{i}, w_{i}\right\}$ such that A, M, P_{i}, P_{j} are pairwise disjoint sets for all $i, j \in I, i \neq j$. Consider the SH -groupoid $G(\cdot)$ constructed in 2.1. Put $G \cup P_{i}=E_{i}$ for each $i \in I$ and for every $i \in I$ consider the SH-groupoid $E_{i}(\cdot)$ constructed according to 3.1. Put $E_{I}=\bigcup E_{i}$ and define on E_{I} a binary operation in such a way that each of SH-groupoids $E_{i}(\cdot)$ is a subgroupoid of $E_{I}(\cdot)$. Finally, for every $i, k \in I$ put:
(i) $p_{i} p_{k}=a^{2}$;
(ii) $p_{i} u_{k}=p_{i} v_{k}=p_{i} w_{k}=u_{i} p_{k}=v_{i} p_{k}=w_{i} p_{k}=a^{3}$;
(iii) $u_{i} u_{k}=u_{i} v_{k}=u_{i} w_{k}=v_{i} u_{k}=v_{i} v_{k}=v_{i} w_{k}=w_{i} w_{k}=w_{i} v_{k}=w_{i} w_{k}=a^{4}$.

Then $E_{I}(\cdot)$ becomess a groupoid containing the minimal S-groupoid $G(\cdot)$ as a subgroupoid. It is obvious that $E_{I}(\cdot)$ is generated by the set $\{a, b\} \cup\left\{p_{i} \mid i \in I\right\}$.
4.2 Lemma. $E_{I}(\cdot)$ satisfies the condition $\lambda(x y)=\lambda(x)+\lambda(y)$ for every $x, y \in E_{I}$.

Proof. Obvious.
4.3 Lemma. $E_{I}(\cdot)$ is an S-groupoid of type (a, b, a).

Proof. (i) If $x, y, z \in E_{I}$ are such that $\lambda(x)+\lambda(y)+\lambda(z)=k>3$ then $x \cdot y z=a^{k}=x y \cdot z$.
(ii) If $x, y, z \in E_{I}$ are such that $(a, b, a) \neq(x, y, z)$ and $\lambda(x)+\lambda(y)+\lambda(z)=3$ then $x, y, z \in\{a, b\} \cup\left\{p_{i} \mid i \in I\right\}$. Let $i, j, k I$ and consider the triples (x, y, z) containing at least two elements p_{i}, p_{k}. Then $a p_{i} \cdot p_{k}=c p_{k}=a^{3}=a a^{2}=$ $=a \cdot p_{i} p_{k}, p_{i} a \cdot p_{k}=v_{i} p_{k}=e=p_{i} c=p_{i} \cdot a p_{k}, p_{i} p_{k} \cdot a=a^{2} a=a^{3}=p_{i} v_{k}=$ $=p_{i} \cdot p_{k} a, \quad b p_{i} \cdot p_{k}=u_{i} p_{k}=a^{3}=b a^{2}=b \cdot p_{i} p_{k}, \quad p_{i} b \cdot p_{k}=w_{i} p_{k}=e=$ $=p_{i} u_{k}=p_{i} \cdot b p_{k}, p_{i} p_{k} \cdot b=a^{2} b=f=p_{i} w_{k}=p_{i} \cdot p_{k} b, p_{i} p_{j} \cdot p_{k}=a^{2} p_{k}=$ $=a^{3}=p_{i} a^{2}=p_{i} \cdot p_{j} p_{k}$. The remaining triples $(x, y, z) \neq(a, b, a)$ are associative because for each $i \in I$ the groupoid $E_{i}(\cdot)$ is an SH-groupoid of type (a, b, a).
4.4 Lemma. $\operatorname{sdist}\left(E_{I}(\cdot) \leq 1+\operatorname{card}(I)\right.$.

Proof. Define on E_{I} a new binary operation $*$ such that $a * v_{i}=a^{3}=c * a$ for every $i \in I$ and $w * y=x y$ whenever $x, y \in E_{I}$ are such that $\left(a, v_{i}\right) \neq(x, y) \neq(c, a)$ for every $i \in I$. It follows from the construction that $E_{I}(*)$ is a semigroup and it is obvious that $\operatorname{dist}\left(E_{I}(\cdot), E_{I}(*)\right)=1+\operatorname{card}(I)$. The rest is clear..
4.5 Lemma. $\operatorname{dist}\left(E_{I}(\cdot), E_{I}(*)\right) \geq 1+\operatorname{card}(I)$.

Proof. Suppose that $E_{I}(*)$ is a semigroup having the same underlying set as the SH-groupoid $E_{I}(\cdot)$. It is obvious that at least one of the following conditions takes place:
(i) $a * b \neq a b$ or $b * a \neq b a$;
(ii) if $a * b=a b=c$ and $b * a=b a=a^{2}$ then $c * a \neq c a$ or $a * a^{2} \neq a^{3}$.

Finally, let $i \in I$ and consider the elements $p_{i}, u_{i}, v_{i}, w_{i}$. According to 3.6, at least one of the following conditions has to be valid:
(i) $x * p_{i} \neq x p_{i}$ or $p_{i} * x \neq p_{i} x$ for some $x \in G$;
(ii) $x * u_{i} \neq x u_{i}$ or $p_{i} * u \neq p_{i} u$ for some $x \in G$;
(iii) $x * v_{i} \neq x v_{i}$ or $v_{i} * x \neq v_{i} x$ for some $x \in G$;
(iv) $x * w_{i} \neq x w_{i}$ or $w_{i} * x \neq w_{i} x$ for some $x \in G$;

Therefore $\operatorname{dist}\left(E_{I}(\cdot), E_{I}(*)\right) \geq 1+\operatorname{card}(I)$.
4.6 Lemma.sdist $\left(E_{I}(\cdot)\right)=1+\operatorname{card}(I)$.

Prof. It follows immediately from 4.4 and 4.5.
4.7 Theorem. Let κ be an arbitrary cardinal number. Then there exists an SH-groupoid $H(\cdot)$ of type (a, b, a) such that $\operatorname{sdist}(H(\cdot))=\kappa$.

Proof. If $\kappa=1$ then it follows from 2.1 and 2.3. If $\kappa=2$ then it follows from 3.1 and 3.5. The rest follows 4.5 . If κ is finite and $\kappa \geq 3$ then it is needed to use index set I having $\operatorname{card}(I)=\kappa-1$. If $\kappa-1$. If κ is infinite then it is needed to use index set I having card $(I)=\kappa$

5. Conclusion

It was proved above that there exist SH -groupoid of type $(\mathrm{a}, \mathrm{b}, \mathrm{a})$ having an arbitrary large semigroup distance. It seems that it is true also for SH -groupoids of type ($\mathrm{a}, \mathrm{a}, \mathrm{b}$). Furtermore, it seems that it can be proved in a similar way.

References

[1] Drápal, A. and Kepka, T., Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-261.
[2] HÁJEK, P., Die Szászschen Gruppoiden, Matem.-fyz. časopis SAV 15/1 (1965), 15-42.
[3] HÁJEK, P., Berichtigung zu meiner Arbeit „Die Szászschen Gruppoide", Matem.-fyz. časopis SAV 15/4 (1965), 331.
[4] Kepka, T. and Trch, M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carolinae Math. Phys. 33/1 (1991), 69-86.
[5] Kepka, T. and Trch, M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carolinae Math. Phys. 34/1 (1993), $67-83$.
[6] Kepka, T. and Trch, M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carolinae Math. Phys. 36/1 (1995), 69-86.
[7] Kepka, T. and Trch, M., Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a, b, c)), Acta Univ. Carolinae Math. Phys. 35/1 (1994), 31-42.
[8] Kepka, T. and Trch, M., Groupoids and the associative law V. (Szász-Hájek groupoids of type (a, a, b)), Acta Univ. Carolinae Math. Phys. 36/1 (1995), 31-44.
[9] Kepka, T. and Trch, M., Groupoids and the associative law VI. (Szász-Hájek groupoids of type (a, b, c)), Acta Univ. Carolinae Math. Phys. 38/1 (1997), 13-21.
[10] SzÁsz, G., Unabhängigkeit der Assoziativitätsbedingungen, Acta Sci. Mat. Szeged 15 (1953-4), 20-28.
[11] SzÁsz, G., Über Unabhägigkeit der Assoziativitätsbedingungen kommutativer multiplikativer Strukturen, Acta Sci. Math. Szeged 15 (1953-4), 130-142.
[12] Trch, M., Groupoids and the Associative Law VII. (Semigroup Distances of SH-groupoids), Acta Univ. Carolinae - Math. Phys. 47/1 (2006), 57-63.

[^0]: Department of Mathematics, ČZU, Kamýcká 129, 16521 Praha 6-Suchdol, Czech Republic
 2000 Mathematics Subjet Classification. 20N05.
 Key words and phrases. Groupoid, non-associative triple, semigroup distance.
 The author was supported by the Grant Agency of Czech Republic, grant \# 201/05/0002.
 E-mail: trch@tf.czu.cz

