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On Separating Sets of Words I1.
VACLAV FLASKA, TOMAS KEPKA and JUHA KORTELAINEN
Praha

Received 15. October 2008

Special replacement relation in free monoids is studied with particular interest in antisym-
metry and antitransitivity.

1. Introduction

This article is an immediate continuation of [1]. References like 1.3.3 lead to the
corresponding section and result of [1] and all definitions and preliminaries are taken
from the same source.

2. More results on separated pairs of words

Throughout this section, let u,v € A* be such that « # v, |u| = |v| and both the
pairs (u,v) and (v, u) are separated. According to 1.3.3, these two pairs are strongly
separated (clearly, u # € # v).

Lemma 2.1 wvx = xuv iff x = (uv)™ for some m > 0.

Proof. We will proceed by induction on [x|. If x = &, then m = 0. If x| < |u|, then
u = xr,v = sx,and so x = ¢ and m = 0 again. Finally, if |u| < |x|, then up = x = gv,
uvgy = uvx = xuv = upuv,vq = pu, p = vt, g = tuand uvt = up = x = qv = tuy. If
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[t = |x|, then u = & = v, a contradiction. Thus [7] < |x|, 7 = (uv)™ by induction and
x=uvt = (uv)",m=m; + 1. O

Lemma 2.2 If pux = xvq and |x| < |pul, then just one of the following two cases
takes place:

() p

@) p

vt, ¢ = tu and x = vtu (then |x| = |pu| = |vql);
xvt and g = tux (then |x| < |p| = |ql).

Proof. We have pu = xz and vq = zx. If |z] < |ul, then u = u,z, v = zv|, and hence
z = &. Consequently, pu = x = vq and it follows that p = vt, ¢ = tu and x = vtu, so
that (1) is true. On the other hand, if |u| < |z, then wou = z = vwa, us = vt, vy = tu
and z = vru. From this, pu = xz = xvtu, p = xvt, vqg = zx = vtux, ¢ = tux and
x| < |pl. a

Lemma 2.3 pux = xvq iff p = yvt, ¢ = tuy and x = (yvtu)"y (= y(vtuy)"), m > 0.
q

Proof. Only the direct implication needs a proof and we will proceed by induction
on |x].
If |x| < |pul, then either 2.2 (1) is true and we puty = &, m = 1, or 2.2 (2) is true
and we puty = x, m = 0.
If |pu| < |x|, then pux; = x = xjvg, 1 < |x;] < |x], and we use induction hypothesis.
O

Lemma 2.4 puyv = uyvq iff at least one (and then just one) of the following two
cases takes place:
() p=e=q;
(2) p=uzvt, g =tuzvandy = (zvtu)"z, m > 0.

Proof. Again, only the direct implication needs a proof

If |p| < |ul, then u = pr,v = sq, ryv = uys and, by [.3.7, r = uu;, s = viv. Now,
u=puu,v=vivgand p = £ = q.

If lu| < |pl, then p = uu,, g = vov and yvv, = wouy. It remains to use 2.3 m]

Lemma 2.5 Let p,q,x,y € A* be such that |x| < |p|. Then puyvx = xuyvq iff at
least one (and then just one) of the following two cases takes place:

() p=x=q
(2) p = xuzvt and q = tuzvx and 'y = (zvtu)"z, m = 0.

Proof. As usual, only the direct implication needs a proof. We have p = xp,
q = q1x, |p1l = lqi| and pyuyv = wyvq,. The rest follows from 2.4. a

Lemma 2.6 Let p,q,x,y € A* be such that |p| < |x|. Then puyvx = xuyvq iff x =
= puzvt = tuzvqg and y = (zvtu)"z, m > Q.

Proof. Standard (use 2.4). O
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3. Auxiliary results (a)

Throughout this section, let Z be a strongly separating set of words, Z # {&}, and
let p,q,r, s,t,w,z € A" be such that ptg = w = rzs, z € Z and p, q are (Z-) reduced.

Lemma 3.1 Just one of the following nine cases takes place:

(al) r=pg t=gh, g=ks,z=hk, g# e+ h k+¢candh, k, s are reduced;

(a2) r=pg, t=gz q=s, g # eand s is reduced;

(a3) r=pg, t=gzh,s=hq, g+e+h;

(ad) r=p,z=th,qg=hs, h# eandh, s, r, t are reduced;

(a5) r=p,z=t s=qandr, sare reduced;

(a6) r=p,t=zh, s =hq, h # € and r is reduced;

@7y p=rgz=ght=hf, s=fqg+ec+ f, h#eandr, g hare reduced;

(a8) p=rgz=gt,q=s g+ c+tandr, g t, sarereduced;

(@9 p=rgz=gh=gtf,h=1tf,q=fs, g+e+ fandr, g h t f, sare
reduced;

Proof. It will be divided into three parts:

(1) Let [p| < |rl. Thenr = pg, g # &, ptq = pgzs and tqg = gzs. Since g
is reduced, we have |g| < 1|, t = gh, h # &, ghq = gzs, hg = zs and
pt = pgh = rh.

If |h] < |z|, then z = hk, k # &, hq = zs = hks, ¢ = ks and (al) is fulfilled.
If |h] = |z], then h = z, ¢ = 5, t = gz and (a2) is satisfied.
If |h| > |z], then h = zhy, hy # €, hyq = s,t = gzh) and (a3) is true.
(i1) Let|p| =|r]. Then p = rand tq = zs.
If 1| < |z, thenz = th, h # €, tq = zs = ths, ¢ = hs and (a4) is valid.
If 7| = |z, then z = 1, ¢ = s and (a5) holds.
If |t| > |z|, thent = zh, h # &, zhq = tq = zs, hqg = s and (a6) follows.

(ii1) Let |p| > |r]. Then p = rg, g # &, rgtq = ptq = rzs and gtq = zs. Since g
is reduced, we have |g| < |z|, z = gh, h # €. Moreover, gtq = zs = ghs and
tq = hs.

If |h] < |tl, thent = hf, f # &, hfq=1tq = hs, fqg = s and (a7) is clear.
If (il = |7, thent = h, ¢ = 5, z = gt and (a8) is evident.
If|h] > |t], then h = tf, f # &, tfs =tq = hs, g = fsand (a9) is visible.
O

Lemma 3.2 Assume that (al) is true. Then:
(1) w = pgzs = pghks, z=hk, t =gh, q=ks,g#+ec+h k+¢ |z =2t =2,
h, k, s, p, ks are reduced and the pair (t,z) is not separated.
(1) If pg is reduced, then tr(w) = 1.
(111) Ift is reduced, then g is reduced.
(iv) If g is reduced and pg is not reduced, then p = pyu, g = vqy, t = vqh,
W= piuvqzs, u # € # v, uv € Z, p1, qy, u, v are reduced and tr(w) = 2.



Proof.
(1) The assertion follows easily from (al).
(11) Combine (i) and 1.5.4.
(iii) Obvious from t = gh.
(iv) Since p, g are reduced and pg is not, we have pg = p1z1q1, p = p1u, g = vq,,
=u ez, u+e+v,p,q reduced and |z;| > 2. Thus w = pyuvq,zs and
tr(w) = 2 by 1.5.4.
m}

Lemma 3.3 Assume that (a2) is true. Then:
() w=pgzs,t =gz, qg=s5,8#¢& |l 22, sisreduced and t is not reduced.
(1) If pg is reduced, then tr(w) = 1.
(i11) If g is reduced and pg is not reduced, then p = pyu, g = vq,, t = vq,2,
W = pLuvgzs, U # € # v, uv € Z, py, qi, u, v are reduced and tr(w) = 2.

Proof. We can proceed similarly as in the proof of 3.2. o

Lemma 3.4 Assume that (a3) is true. Then:
(i) w= pgzs = pgzhq, t = gzh, s =hq, g #+ € # h, || = 3 and t is not reduced.
(i1) If pg and s are reduced, then tr(w) = 1.

Proof. Similar to the proof of 3.2. o

Lemma 3.5 Assume that (a4) is true. Then:
(W) w=pzs=pths,z=th,g=hs,t #e+# h, |zl = 2and h, s, t, hs are reduced.
(1) tr(w) = L.

Proof. Easy. O

Lemma 3.6 Assume that (a5) is true. Then:
(1) w=pzs=pts,z=1,q=s, sisreduced and t is not reduced.
(i) tr(w) = 1.

Proof. Easy. o

Lemma 3.7 Assume that (a6) is true. Then:
(i) w=pzhg t =zh, s =hqg, h # ¢ |t| = 2 and t is not reduced.
(11) If hq is reduced, then tr(w) = 1.
(iit) If his reduced and hq is not reduced, then w = pzpuvqy, h = piu, q = vq,
t=zpiu, u €+ v, uv € Z, p1, qi, u, vare reduced and tr(w) = 2.

Proof. Similar to the proof of 3.2. O

Lemma 3.8 Assume that (a7) is true. Then:
(W) w=rzfq=rghfg z=ght=hf,s=fqg e#+ec+f,h+eld>2 || =2,
h, g, r, rg are reduced and the pair (z,t) is not separated.
(it) If fq is reduced, then tr(w) = 1.
(i11) Iftis reduced, then f is reduced.



(iv) If f is reduced and fq is not reduced, then f = pyu, ¢ = vqy, t = hpu,
W =rzpiuvqy, U # € # v, uv € Z, py, qi1, u, v are reduced and tr(w) = 2.

Proof. Similar to the proof of 3.2. O

Lemma 3.9 Assume that (a8) is true. Then:
() w=rgts,z=gt,q=s,g#€e#t |zl =2andr, g 1, s, rg are reduced.
(i) tr(w) = 1.

Proof. Easy. O

Lemma 3.10 Assume that (a9) is true. Then:
(W) w=rgtfs,z=gtf,q=fs,g#e#+ f,ld=2andr, g t, f, s tf, rg, fsare
reduced.
(i) tr(w) = 1.

Proof. Easy. O

Lemma 3.11 Iftr(w) > 2, then just one of the five conditions (al), (a2), (a3), (a6)
and (a7) holds.

Proof. Combine the preceding lemmas of this section. O

Lemma 3.12
(1) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not reduced.
(11) Iftis reduced, then just one of (al), (a4), (a7), (a8), (a9) holds.
(ii1) If t is reduced and tr(w) > 2, then just one of (al), (a7) holds and tr(w) = 2.

Proof. Combine the preceding lemmas of this section. O

Lemma 3.13
(1) Iftis reduced then tr(w) < 2.

(1) Ift = g, then (a9) is satisfied.

(1) If t € A (i.e., |t]| = 1), then just one of (a4), (a5), (a8), (a9) is true (if (a5) is
true, then z =t € A) and tr(w) = 1.

(iv) Iflt] < 1, then tr(w) = 1.

(v) Ifz€ A (i.e, |zl = 1), then just one of (a2), (a3), (a5), (a6) is true (if (a5) is
true, then't = z € A).

(vi) Ifz € A and tr(w) > 2, then either (a2) or (a6) holds and t is not reduced.

Proof. Combine the preceding lemmas of this section. =]

4. Auxiliary results (b)

In this section, let Z be a strongly separating set of words, Z # {&} and let py, gy, p2,
G2, 11, t,wi, w2 € A" and 21,22 € Z be such that pyz1q) = wy = pahaqa, prtig) = wy =
= p2z22¢g> and py, q are (Z-) reduced.
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Lemma 4.1 Assume that |p,| = |pal. Then p\ = p2, 2191 = t2q2 and t,qy = 22qa.
Moreover:
(1) If 1] <|z1l, then zy = thry, ty = 221y, g2 = 11qy, 1) # € |61l =2 2 and ty is not
reduced.
(i) If |l = |z, then zy = 1, ty = 22 and q) = q.
(1) If ] > |z1l, then ty = 2151, 22 = 1181, q1 = S1¢42, $| # & || = 2 and t, is not
reduced.

Proof. Easy. m]

Lemma 4.2 Assume that |p\| < |pal. Then py = piuy, 2191 = uitaqa, t1q, =
=wu122q,u; # & |ug| < ||, 1 = wuy, bq) = 22qs, ) # €, || = 2. Moreover:
(1) If lq1| < |qal, then g2 = raqy, 1y = 2212, 1y = w221 and ty is not reduced.

(1) Iflgil > |qal, then gy = viqa, vy = U122, 21V = Ul 22 = UaVy, V) # € and
us, vy are reduced.

(i) Iflgil > g2l and |z1] < iy, then wuy = 2152, vy = $2t2, 1) = 21 $2102, 22 = U2 5212
and neither uy nor p, nor ty is reduced.

@v) If lq1l > gzl and |z)| > luyl, then zy = wyva, to = vavy, vy # &€ and v, is
reduced.

Proof. Easy. O

Lemma 4.3 Assume that |p)| > |pal. Then py = pous, thqga = u3z1qy, 22q> =
= w3zt qy,u3 # € and p,, uy are reduced. Moreover:
() If 6] < lusl, then g = r3z1q1, uz = trs, p1 = palars, b3ty = 2pr3z; and b,
ry are reduced Further, || < |22), 20 = ths3, s3 # & 3ty = s31321, 121 < |4l
1 = kzy, ik = sy, k # & || = 2 and ty is not reduced.
(i1) If 2| > |us), then ty = usuy, 21q; = usqa, ug # € and |t2| > 2.
(1) If|a] > |us| and |gs| < |q1l, then neither uy nor t, is reduced.
(iv) Iflta] > |usl and |qo| > |q1|, then g2 = v3qy, 21 = wavs, uzty = 23v3, v3 # &, 13,
uy are reduced, |uz| < |25, 22 = uzvy, 1) = vava, va # € and vy is reduced.

Proof. Easy. o

Lemma 4.4 Assume that either |t|| < | or t is reduced and the same is true for t.
Then at least one of the following three cases takes place:
() z1 =0, 22=1, p1 = prand q; = q.

(i) 21 = wyvy, 22 = Wavy, 11 = Uy, Ly = Vavy, P2 = piiy, g = Vigo,
uy, iy, vi,va € AY and all uy, us, vy, v> are reduced.
(il)) 21 = ugvs, 2o = U3vy, 11 = V4V3, b = U3lly, P = Pz, g2 = Viqy,

Uy, iy, v3, vy € A" and all us, uy, v3, vy are reduced.

Proof. Tt follows from 4.1, 4.2 and 4.3 that only the cases 4.1 (ii), 4.2 (iv) and
4.3 (iv) come into account. a
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5. Disturbing pairs

Let Z be a strongly separating set of words, Z # {¢}, and let ¢ : Z — A" be
a mapping. Consider the relations o, p, A, 7, &, v and p defined in 1.6 and 1.7.

An ordered pair (z1,22) € Z x Z will be called disturbing if there exist words
u,v,r,s € A" such that z; = ur, z; = sv, Y(z1) = us and Y(z,) = rv.

An ordered pair (z,22) € Z x Z will be called paradisturbing if y(z;) = z; and
Y(22) = 21

Lemma 5.1 Let (z1,22) € Z X Z be a disturbing pair, z; = ur, 2o = sv, Y(z1) = us,
U(z) =rv, u,v,r,s € A*. Put wy = urv and wo = usv. Then:
() lz1l = 2, |22l 2 2, [Y(z)l = 2, [Y(22)] = 2.
(11) The words u, v, r and s are reduced.
(1i1) (wy,wp) € .
(v) tr(wy) = 1 = tr(wy).
(v) Both wy and w, are pseudoreduced.
(vi) wy =wy iffr=s.
(vil) If wy = wy, then wy is strongly pseudoreduced.

Proof. Easy. O

Lemma 5.2 Let (z1,22) € Z X Z be a paradisturbing pair. Then:
(1) (z1,22) €.
(1) tr(zy) = 1 = tr(z2).
(111) Both zy and z; are weakly pseudoreduced.

Proof. Obvious. ]

Proposition 5.3 There exist no disturbing pairs, provided that either Z C A or
Y(Z) C A

Proof. Obvious. o

Proposition 5.4 Suppose that for every z € Z, either |y(z)| < 1 or y(z) is reduced.
Then the following conditions are equivalent:
(1) There exist no disturbing and no paradisturbing pairs in Z X Z.
(i) Every pseudoreduced meagre word is reduced.

Proof.

(i) implies (i1). Let, on the contrary w; be weakly pseudoreduced with tr(w;) = 1.
Then wy = p1z1q1, where z; € Z and py, g; are reduced (use 1.6.6). If w, = p 114,
ty = Y(zy), then (wy,wz) € p, and hence (w2, w;) € p, since w; is weakly pseudore-
duced. Consequently, wa = p222q2, 22 € Z, and wy = patrqa, 1 = W(z3). Now, 4.4
applies If 4.4 (i) is true, then (z;, z) is paradisturbing. If 4.4 (ii) is true, then (z;, 27)
is disturbing. Finally, if 4.4 (iii) is true, then (z3, z;) is disturbing.

(i1) implies (1). See 5.1 and 5.2. |
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6. Meagre and pseudomeagre words

Let Z be a strongly separating set of words such that Z # {g} (except for 6.9) and
lety : Z — A* be a mapping. Consider the relations o, p, A, 7, &, v and u defined in
[.6 and I.7.

A word w is called meagre if tr(w) < 1.

A word w is called pseudomeagre if (w, x) € p for at most one x € A*.

Lemma 6.1 Every meagre word is pseudomeagre.
Proof. Obvious. O

Lemma 6.2 Let z € Z be such that y(z) € {g,z}. Then the word 7", n > 2, is
pseudomeagre but not meagre

Proof. It follows from 1.6.6 that tr(z") = n > 2, and so 7" is not meagre. On the
other hand, if (z*, x) € p, then x = 2"~ for Y(z) = £ and x = 7" for Y(2) = z. u]

Lemma 6.3 Letzy,25,z€ Z and u,v,x € A* be such that zyxz> = uzv.
(1) Ifu =g, thenz =z andv = xz,.
() Ifv=¢ thenz =z, andu = z;x.
(i) Ifu# e # v, then u = zyu;, v=vizo and x = u zv.

Proof.
(1) Easy to see.
(11) Easy to see.
(i) If |u| < |zy], then z; = wy, y # €, uyxz, = z1x25 = uzv, yxz, = zv, a contradic-
tion. Thus |u| > |z;| and, similarly, [v| > |z2|. The rest is clear.
O

Lemma 6.4 Letz € Z and x € A* be such that y(z) = zxz. Then:

(1) tr(zxz) = 2 and zxz is not meagre.

(1) zxz is pseudomeagre iff Y(z1) = zivzuzy whenever z; € Z and x = uzyv (or
W(z) = zuz vz).

Proof.

(1) Obvious.

(i1) Clearly, (&,z, x2),(zx,z,&) € Tr(zxz), ey(z)xz = zxzxz = zxy(z)e and (zxz,
zxzxz) € p. If x is reduced, then tr(zxz) = 2 by 1.6.6, and hence zxz is
pseudomeagre (and the other condition is satisfied trivially).

Now, let (uy,zy,vy) € Tr(zxz), uy # € # v;. According to 6.3, u; = zu,

vi = vzand x = uzyv. We have zxz = zuzjvz and (zxz, zup(zy)vz) € p.

Consequently, zu(zy)vz = zxzxz iff wp(z))v = xzx = uzyvzuzyv and iff
Y(z1) = zyvzuzy. The rest is clear.

]

Lemma 6.5 Let 21,20 € Z and x,y € A* be such that y(z,) = yxz; and y(z2) =
= zoxy. Then:

22



(1) tr(zoxzy) = 2 and z2xz; is not meagre.
(i1) zpxzy is pseudomeagre iff W(z3) = z3vyuzs whenever zz € Z and x = uzzv (or
Y(z1) = yuzavzy or Y(z2) = zouz3vy).

Proof.

(1) Obvious.

(i) Clearly, (&, 22, x21), (z2x, 21, &) € Tr(zax21), e¥(z2)xz1 = 22Xyx21 = 22xY(2))€
and (z2x21, 22xyxz1) € p If xis reduced, then tr(zyxz)) = 2 by 1.6.6, and hence
zpxz; 1s pseudomeagre (and the other condition is satisfied trivially).

Now, let (uy,z3,v1) € Tr(zoxz1), u; # € # vy. According to 6.3, u; = z2,u,

vi = vzy and x = uzzv. We have z2xz; = zpuzzvzy and (22xzy, 22u(z3)vzy) €

€ p. Consequently, zouy(z3)vzy = zaxyxzy iff ug(z3)v = xyx = uzzvyuzzv and
iff Y(z3) = zzvyuzy. The rest is clear.

o

Proposition 6.6 Suppose that every pseudomeagre word is meagre. Then the fol-
lowing three conditions are satisfied:
(bl) € #y(2) # zforeveryz € Z;
(b2) Ifz1,22 € Z and x,y € A" are such that y(z,) = yxz; and y(z2) = zxy, then
X # & # yand x is not reduced;
(b3) If z1.22,23 € Z and u,v,y € A, then either y(z)) # yuzzvzy or Y(zp #
# 20UZ3Vy) or Y(23) # Z3Vyuzs

Proof. The condition (bl) follows from 6.2. Further, if ¥/(z;) = yxz; and ¢(z;) =
= 72Xy, then x is not reduced due to 6.5, and hence x # £. Moreover, if y = &, then
2271 1s pseudomeagre, but not meagre, and therefore x # £ # y and we have shown
(b2). Finally, (b3) follows from 6.5. O

Proposition 6.7 Suppose that the following two conditions are satisfied:
(cl) e# () # zand Y(z) # zxzforall z € Z and x € A*;
(c2) If z1,22 € Z and x,y € A" are such that y(z1) # Y(z2), then either y(z;) #
# yxzy or Y(z2) # 22X).
Then every pseudomeagre word is meagre.

Proof. Let, on the contrary, w be pseudomeagre word, but not meagre. Then
tr(w) > 2, and therefore pz1q = w = rzps, where (p,z1,q9) # (r,z2,5) and 21,2, € Z;
we will assume |rzz| < |pz1l, the other case being similar.

Assume, for a moment, that z; = z = z,. Then |r| < |p| and we get a contradiction
by easy combination of (c1) and 3.11. Consequently, z; # z» and it follows easily that
[rl < |pl. Then ¥(z;) # ¥(z2) and we get a contradiction with (c2). a

Proposition 6.8
(i) Suppose that y(z) # € and that 7 is neither a prefix nor a suffix of y(z) for
every z € Z. Then every pseudomeagre word is meagre.
(11) Suppose that \y(2)| < |z| for every z € Z. Then every pseudomeagre word is
meagre if and only if € # Y(z) # z for every z € Z.
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Proof. See 6.6 and 6.7 O

Remark 6.9 Let Z = {&}. Then ¢ is the only meagre word. Moreover:

(i) If y(g) = &, then all words are pseudomeagre (and hence there exist pseu-
domeagre words that are not meagre).

(1) If w(e) = tand |var(r)] = 1, ¢t = d", a € A, m > 1, then a word w is
pseudomeagre iff w = @", n > 0. Consequently, there exist pseudomeagre
words that are not meagre.

(it1) If w(e) = t and |var(r)] = 2, then ¢ is the only pseudomeagre word (and
hence all pseudomeagre words are meagre).

7. Disturbing triples

This section is an immediate continuation of the preceding one.
An ordered triple (z),22,23) € Z X Z x Z will be called disturbing if there exist
u,v,g,h € A* and p € A* such that z; = uv, z3 = gh and Y(z2) = vpg.

Lemma 7.1 Let (z1,22,23) € Z X Z X Z be a disturbing triple, z; = uv, z3 = gh,
W(z2) =vpg, u,v,g,he A", pe A*. Then:
() lz1l = 2, |23l = 2 and |y(z2)| = 2.
(i) The words u, v, g, h are reduced.
(111) (uy,vy) € p, tr(uy) = L and tr(vy) > 2, where 1y = uz2h and vy = uvpgh.

Proof. Easy (use 1.6.6). O

Proposition 7.2 There exist no disturbing triples, provided that either Z C A or
w(Z) € A.

Proof. Obvious. o

Proposition 7.3 Suppose that for every z € Z, either |y(z)| < | or y(z) is reduced.
Then the following conditions are equivalent:
(1) There exist no disturbing triples in Z X Z X Z.
(1) If (wy,wa) € p and tr(wy) = 1, then tr(w,) < 1.
(ii1) If (wy,wr) € p and wy is meagre, then w, is meagre.
(v) If (wy,wp) € Tand tr(wy) = 1, then tr(w;) < 1.
(v) If (wy,w») € & and wy is meagre, then w, is meagre.

Proof.

(i) implies (i1). We have w| = pzaq, 22 € Z, p, g reduced, and w, = ptq, t = Y(z2).
Now, assume that wy = rzzs and 3.1 applies. If [7] < 1, then tr(w,) = 1 by 3.13 (iv),
and therefore we will assume that 7| = 2. Then ¢ is reduced and, according to 3.12
(ii1) we can assume that (al) holds, the case (a7) being similar.

By 3.2 wy = pghks, z3 = hk,t = gh, g = ks, g # € # h, k # & and, moreover, g 1s
reduced, since tis so. If pgis reduced, then tr(w,) = 1 by 3.2 (i1). If pg is not reduced,
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then, by 3.2 (iv), pg = p1z191, 21 = uv, p = p1u, g = vqy, t = vq\h, u # € # v and the
triple (z1, 22, z3) is disturbing.

(i1) implies (iii), (iii) implies (iv), (iv) implies (v). Obvious.

(v) implies (1). See 7.1 (ii1). O

8. On when the relation p is antisymmetric

As usual, let Z be a strongly separating set of words such that Z # {g} (except for
8.7,9.11) and let y : Z — A” be a mapping.

Proposition 8.1 The relation p (= pzy) is irreflexive if and only if y(z) # z for
every z € Z.

Proof. Obvious from the definition of p. m]

Proposition 8.2 The relation p is antisymmetric (i.e., u = v, whenever (u,v) € p
and (v,u) € p) if and only if the following three conditions hold:

(1) If 21,22 € Z and x,y € A* are such that z; = xy/(zy)y and Y(z2) = xz1y, then
W(z2) = 22 (and hence y(zy) = z; as well);

(2) If 21,22 € Z and x,y € A" are such that z; = yxy(z2) (z2 = Y(z2)xy, resp.)
and U(zy) = z1xy (W(z1) = yxzy, resp.), then x = € = y (and hence y(z;) = zy,
W(z2) = 22);

3) If 21,22 € Zand x,y,u,v € A* are such that zy = uy, z; = xv, Y(zy) = vy and
W(z2) = xu, then u = v (and hence y(zy) = z1, Y(22) = 22).

Proof. Use 1.5.4. a

Corollary 8.3 Assume that for every z € Z,either Y(z)| < | or Y(z) is reduced.
Then:
(1) The relation p is antisymetric if and only the following two conditions hold:
(1) If(z1,22) € (Z X Z)N (A X A) is a paradisturbing pair, then z; = z5;
(12) There exist no disturbing pairs in Z X Z.
(11) The relation p is both irreflexive and antisymmetric if and only if there exist
no disturbing nor paradisturbing pairs in Z X Z.

Proposition 8.4 The following conditions are equivalent:
(1) If (u,v) € pand (v,v) € p, then u = v.
(1) If (u,v) € p and (u,u) € p, then u = v.
(ii1) Either y(z) # z for every z € Z or yi(z) = z for every z € Z.

Proof. Easy to check. o

Proposition 8.5 Assume that |z,| — Y(z))| # W(z2)| = |z2] for all zy,z, € Z. Then
the relation p is both irreflexive and antisymmetric (i.e., it is strictly antisymmetric).

Proof. Use 1.5.4. m]
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Proposition 8.6 The relation p is weakly antisymmetric (i.e., u = v, whenever
(u,v) € p, (v,u) € p, (u,u) € p) if and only if y(z) = zy, whenever zy,z,,23 € Z and
P.q, 1,8, X,y € A* are such that pz1q = rzas = x((z3)y and py(z1)q = xz3y.

Proof. Obvious. o

Remark 8.7 Let Z = {g}. If y(e) = ¢, then p = idy-, and hence p is antisym-
metric, but not irreflexive. If y(g) # &, then p is both irreflexive and antisymmetric.
Moreover, 8.4 is true in both cases.

9.0n when the relation p is antitransitive

This section is an immediate continuation of preceding one.

Proposition 9.1 The relation p is weakly antitransitive (i.e., (w,v) ¢ p, whenever
u,v,w € A" are such that u # v # w # u, (w,u) € p and (u,v) € p) if and only if the
following condition is satisfied:

(D) If z1,220 € Z and x,y,k € A" are such that y(z)) # z1, Y(22) # z2 and
21k(z2) # Y(z1)kzz, then (u,v) & p and (v,u) ¢ p, where u = xz1ky(z,)y and
v = x(z1)kz2y

Proof. Seel.7.1. o

Lemma 9.2 Letz € Z and k € A*. Then zky(z) # w(2)kz iff y(z) # z and either
U(z) =ecand k # 7" foreveryn > 0 or € # Y(z2) # (zuw)"z for all u € A* and m > 1 or
U(z) = (zv)'zand k # (v2)"v for some v € A*, t > 1 and every n > 0.

Proof. Easy. O

Lemma 9.3 Let z € Z be such that y(z) is reduced and let k € A*. Then zky(z) #
# W(Dkz iff either y(2) # € or Y(z) = € and k # 7" for every n > 0.
Proof. This follows from 9.2. ]
Lemma 9.4 Letz),20 € Z, 21 # 22, and k € A*. Then z1ky(22) # W(z1)kz iff at
least one of the following three conditions is satisfied.:
(1) Y(z1) # 21 and Y(22) = 227
(2) Y(z2) # z2, Y(zy) = zyuv for some u,v € A" and either y(z;) # vuz, or
W(z2) = vuzy and k # (uv)'u for every n = o;
(3) W(z2) # 22, W(zy) # zyxy forall x,y € A*.

Proof. Easy. O

Lemma 9.5 Ler 21,2 € Z be such that zy # z; and both y(zy), W(z,2) are reduced.
Then z1ky(z5) # W(z1)kzo for every k € A™.

Proof. This follows easily from 9.4. O
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Proposition 9.6 Assume that for every z € Z, either |y(z)| < 1 or y(z) is reduced.
Then the relation p is weakly antitransitive if and only if (u,v) ¢ p and (v,u) ¢ p,
whenever u = xz1ky(z2)y, v = x¢(z1)kzay and zy, zp are such that:

(1) If z1,4(z1) € ANZ, then y(zy) # zy;
(2) If 22,(z2) € ANZ, then Y(22) # z2;
(3) Ifz1 =z =zand Yy(z) = &, then k # 7" for every n > Q.

Proof. Combine 9.1, 9.2 and 9.4. 0

Corollary 9.7 Assume that for every z € Z, y(z) # z and either ()| < 1 or Y(z)
is reduced (equivalently, either y(z) is reduced or y(z) = € or y(z) € A and Y(z) # z).
Then the relation p is weakly antitransitive if and only if (u,v) ¢ p and (v,u) ¢ p (i.e.,
u, v are incomparable in p), whenever u = xz1ky(z2)y, v = x¢(z))kzoy and 21,2, € Z
are such that either z; # zo or zy = zp and y(z1) # € or z; = 22 and Y(zy) = € and
k # 2| for every n 2 0.

Proposition 9.8 Assume that y(zg) # zo for at least one zo € Z. Then the following
conditions are equivalent:

(1) The relation p is irreflexive and weakly antitransitive.
(i1) The relation p is strictly antitransitive (i.e., (w,v) ¢ p whenever (w,u) € p
and (u,v) € p).
(iii) The relation p is antitransitive (i.e., u = v = w, whenever (w,u) € p,
(u,v) € pand (w,v) € p).
(iv) The condition 9.1 (1) is satisfied and y(z) # z for every z € Z.

Proof.

(1) implies (i1). Let (w, ), (i, v), (w,v) € p. Since p 1s weakly antitransitive, either
w =uoru = vorw = v. On the other hand, since p is irreflexive, we have w # u #
# v # w, a contradiction.

(i1) implies (ii1). Obvious.

(iii) implies (iv). Clearly, p is weakly antitransitive, and hence 9.1 (1) follows from
9.1. Moreover, ¥(z) # z follows from 8.4.

(iv) implies (i). Use 8.1 and 9.1. m]

Proposition 9.9 Assume that |z1| + |z2] = |z3] # [W(z)| + W (z2)] = [W(z3)| for all
21,22,23 € Z. Then the relation p is strictly antitransitive.

Proof. Let (w,u), (u,v),(w,v) € p. Then pziqg = w = rzzs, p(z1)q = u = x22y,
ry(z3)s = v = xif(z2)y. Consequently, [w| — [u| = |zi| = [ (z1)l, Wl = V| = lz3| = [¥(z3)l,
[ul = [Vl = lz2| = ¥ (z2)I. From this we get |z3| = [¥(z3)l = Wl = V| = [w| = |u| + |u| = [v| =
= |z =D+ |22l = (z2)l and |z1[+]z2] = |z3] = [Y(z)I+|(z2)|=[¥(z3)], a contradiction.

O

Remark 9.10 The condition from 9.9 is satisfied e.g. if |z| — [/(z)| is odd for every
zeZ.
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Remark 9.11 Let Z = {¢}. If (e} = ¢, then p = 1d4-, and hence p is antitransitive,
but not strictly antitransitive. If ¢(g) # &, then p is strictly antitransitive.

Proposition 9.12 Assume that € ¢ Z and for every z € Z zx # y(2) # yz, x,y € A™.
Then p is antitransitive.

Proof. According to 1.7.1, we have to prove that for all z;,z0 € Z and w € A*
such that zywi(z2) # Y(z))wza we have (zywi(z2), Y(z1)wz2) ¢ p and (Y(z))wza,
2w (z2)) ¢ p. Suppose, for a contradiction, that there are z;,z0 € Z and w € A*
such that (z;w¢/(z2), ¥(z1)wza) € p (the other case is similar). This means that there
exist u,v € A® and z € Z such that zywy(z2) = wzv and Y(z))wzo = wp(z)v. If
u = ¢gthen z = z;, v = wi(22) and Y(z)wza = Yz)wy(z2), thus 2 = Y(22),
a contradiction. Hence we may assume that u = z;u’ and hence wy(zx) = u'zv
and Y(z1)wza = i’ Y(z)v. Since z1x # ¥(z1), z1 = Y(z)s for a proper s € A* (s is
a suffix of z), wiy(zz) = u'zv and wz, = su’y(z)v. Now, let w = s"w’, 1’ = s"u”, w’,
u’" be such that s is not a prefix of either one of them. Then s"w'¥(z;) = s"u’’zv and
Wz = Sy, I n < mthen w'zy = s 1 y(z)v and (s is not a prefix of
w’) there exists a suffix of z; which is a prefix of z,, a contradiction. If n > m then
S""MW(z2) = 1”zv and (s 1s not a prefix of u”’) there exists a suffix of z; which is
a prefix of z, a contradiction again. O
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