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Szdsz-Hdjek groupoids (shortly SH-groupoids) are groupoids containing just one non-
associative (ordered) triple of elements. These groupoids were studied by G. Szdsz in [10]
and [11], P. Hajek in [2] and [3] and later in [6], [7], [8] and [9].The present paper is
a continuation of [12]. SH-groupoids of type (a, a, @) having infinite countable underlying
set and an arbitrary given finite semigroup distance are constructed.

1. Preliminaries

A groupoid E(-) is called SH-groupoid if the set {(a,b,c) € E® |a - bc # ab - ¢} of
non-associative triple contains just one element.

Let H(-) be a subgroupoid of an SH-groupoid E(-) having the non-associative
triple (a, b, ¢). Then either {a, b,c} € H and H(-) is an SH-groupoid having the non-
associative triple (a, b, ¢), or H(-) is a semigroup in the opposite case.

Let « be a congruence on SH-groupoid E(-). If (a, b, ¢) is the corresponding non-
associative triple then either (a - bc,ab - ¢) € k and then E/k(-) is a semigroup, or
(a-bc,ab - c) ¢ k and then E/k(-) is an SH-groupoid.

An SH-groupoid G() is called SH-groupoid of type (a, a, a) if there exists an ele-
ment @ € G such that (a,a,a) is the corresponding non-associative triple of the
groupoid G(+).

1.1 Szasz’s theorem. Let E(-) be an SH-groupoid and let (a, b, ¢) be the only non-
associative triple of E(). If x,y € E are such that x -y € {a,b,c} then x -y € {x, y}.
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Let G(o) and G(*) be groupoids having the same underlying set G. Then dist(G(¢),
G()) denotes card{(x,y) € G’ |x oy # X * y}.

Let G(-) be a groupoid. Let sdist(G(-)) be the minimum of cardinal numbers
dist(G(-), G(x)), where G(*) runs through the set of all semigroups having the un-
derlying set G. The number sdist(G(-)) is called semigroup distance of the groupoid
G().

1.2 Definition. Let G(-) be an SH-groupoid. A semigroup G(*) having the same
underlying set G is called nearest semigroup of G(-) if dist(G(x), G(-)) = sdist(G(-)).

1.3 Definition. A groupoid G(-) is called primitive extension of its subgroupoid
H(-) if there exists an element p € G, p ¢ H such that G(-) is generated by the set
HU{p}.

1.4 Lemma. Let G(-) be a primitive extension of a subgroupoid H(-) generated by
the set HU {p}. Then p ¢ H and the groupoid P(-) generated by the one-element set
{p} is a semigroup.

1.5 Lemma. Let G(-) be an SH-groupoid of type (a,a,a). Then G(-) contains at
least four different elements a, b = aa, c = a-aa and d = aa - a. Furthermore, G(-)
satisfies just one of the following two conditions:

(1) a(a.aa) = a(aa.a) = aa.aa = (aa.a)a = (a.aa)a,
(1) a(a.aa) = aa.aa = (aa.a)a # a(aa.a) = (a.aa)a.

1.6 Definition. Let E(-) is an SH-groupoid having the non-associative triple
(a,a,a). E(-) will be called SH-groupoid of the first kind if it satisfies the condition
(1). In the opposite case E(-) will be called SH-groupoid of the second kind.

1.7 Definition. A groupoid G(-) will be called stratified groupoid if there exists
a mapping o of the G to the set of natural numbers satisfying the condition

o(x-y)=0o(x) +o(y)

forevery x,y € G.

In this case the mapping o will be called stratifying function on G(-). Finally, for
each natural number n consider the set S, = {x € G;o(x) = n}. Each non-empty set
S, will be called n-th stratification of the set G.

1.8 Definition. Let G(-) be a stratified groupoid and let o be the corresponding
stratifying function. A congruence x on G(-) will be called stratified congruence if
forall x,y € G (x,y) € k implies o(x) = o (y) .

2. Minimal SH-groupoids and their nearest semigroups

From now on, we will deal only with SH-groupoids of type (a,a,a). An SH-
groupoid G(-) of type (a, a, a) is called minimal if it is generated by the one-element
set {a}.
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2.1 Construction. For each natural number k > 5 consider pair-wise different
elements a°,...,a", a**"',.... Consider another six different elements a,b,c,d,e, f
and put G = {a,b, c,d,e, f, a5 Lak ettt o)

Further, denote by A a mapping of the set G to the set of natural numbers such that
Ala) =1, A(b) = 2, Ac) = 3 = Ad), A(e) = 4 = A(f) and A(d") = k for every natural
number k > 5.

Finally, define on G a binary operation - in the way that the condition A(xy) =
= A(x) + A(y) for every x,y € G is satisfied.

Especially, put at first:

(i) b=a-a;
(1) c=a-bandd =b-a,

() e=a-c=b-b=d-aand f=c-a=a-d,

(ivia@®=a-e=a-f=b-c=b-d=c-b=d-b=e-a=f-a,

V)ya®=b-e=b-f=c-c=c-d=d-c=d-d=e-b=f-b;

(viya'=c-e=c-f=d-e=d-f=e-c=e-d=f-c=f-d,
8

(vil) a®=e-e=e-f=f-e=f-f.
Further, for each natural number k > 5 put:
(viii) b-a* =d* - b=d"*?,
(ix) c-ad*=d-d*=d*"-c=d"-d=d?",
(x) e-adb=f-a*=d'-e=d"-f=ad""
Finally, for all natural numbers k,m > 5 put:
(Xi) ak amt = ak+m'

Then G becomes a groupoid which will be further denoted as G(-).
2.2 Lemma. G(-) is a minimal free SH-groupoid of the second kind.

Proof. It is obvious that G(-) is generated by one-element set {a} and it holds
c=a-b=a-aa#+aa-a=b-a=d.

If x,y,z € G are such that A(x) + A(y)+ A(z) = k > Sthen x-yz = a* = xy-z. There
is only a finite number of ordered triples (x, y, z) having A(x) + A(y) + A(z) = 4 and it
is easy to check that each of such triples is associative. It is proved in [6] that G(-) is
a minimal free SH-groupoid of type (a, a, a).

Further, e = aa - aa # a - (aa - a) = f . Therefore G(-) is an SH-groupoid of the
second kind and the condition A(xy) = A(x) + A(y) is satisfied for every x,y € G. It
means that G(-) is a stratified groupoid. Moreover, A(x) denotes just the length of the
corresponding element x € G.

2.3 Lemma. Let G(-) be a minimal free SH-groupoid of the type (a,a,a). Then
the set k = {(x,x); x € G} U {(e, f), (f,e)} is a stratified congruence on G(-) and the
corresponding groupoid G /k(-) is a minimal free SH-groupoid of type (a, a, a) and it
is the only infinite SH-groupoid of the first kind.

Proof. 1t is easy to see, that « is a congruence on G(.) and, so, G/« is an SH-
groupoid having the only non-associative triple (a, a, a). The rest is obvious.
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2.4 Remark. Let G(-) be the SH-groupoid from 2.1 and « the congruence from 2.3.
Put a* = {(e, f),(f,e)} and denote by H the set {a,b,c,d,a*,a>,... d* "', ...}
Then H is the underlying set of G/«(:) and the SH-groupoid G/«(-) will be shortly
denoted as H(-) in the sequel.

2.5 Lemma. sdist(H(:)) = 1.

Proof. Define on H new binary operations A and V in the following way:
(1) aab =d # a-band xAy = x -y whenever (x,y) # (a,b);
(i) bVa = ¢ # b-a and xVy = x -y whenever (x,y) # (b, a).
It is obvious that A(xay) = A(x) + A(y) = A(xVy) for every x,y € H. Further,
(ara)ra = (a-a)ra = bora=b-a=d=anb = an(anra) and (aVa)Va = (a-a)Va =
=bVa =c=a-b=aVb = aV(a-a) = aV(aVa). Therefore, H(»), H(V) are
semigroups. Obviously, dist(H(-), H(a)) = 1 = dist(H(-), H(V)) .
Furthermore, if H(¢) is an arbitrary semigroup having dist(H(-), H(¢)) = 1 then
a o a = a-a. Indeed, in the opposite case we have y = aoaandy-b =yo b =
=acaob=aoc=ac=a".Itfollows from this that A(y) = 2. Therefore, we obtain
y = b, a contradiction.

2.6 Lemma. The SH-groupoid H(-) has only two nearest semigroups and they are
H(a) and H(V).

Proof. 1t follows immediately from 2.3 and 2.5.
2.7 Lemma. sdist(G()) = 2.

Proof. Define on G a binary operation < such that @ <b = ¢,c<a =e¢and x<«y =
= x -y in the remaining cases.

Then we have:

(1) a<(a<a)=a<b=a-b=c=b<a=(a<a)«a,
(1) a<(b<a)=a<c=a<c=a-c=e=c<a=(a-b)sa=(a<b)«a,
(1) a<(a<b)=a<(a-b)=a<c=a-c=e=b-b=>b<b=(a-a)<b=(a<a)<b,
(iv) b<a(a<a)=b<(a-a)y=b<b=e=c<a=(b<a)<a,
(v) x<a(y<z) =a* = (x<y)<zwhenever A(x) + A(y) + A(z) = k > 5.
It means that G(<) is a semigroup and therefore sdist(G(-)) < dist(G(-), G(<)) = 2.

Suppose that sdist((G(-)) = 1. Then there is a semigroup G(¢) such that dist(G(-),
G(0)) = 1. Then just one of the conditions a¢a # a-a, adb # a- b, bda # b - a has to
be satisfied. Further, sdist(G(-)) is finite and therefore there exists natural number m
such that x¢y = x -y whenever A(x) + A(y) > m. For any natural number k > m and
each x € G it holds (¢¥)ox = a1 = x0(db).

Suppose first that y = a¢a # a - a. Then a**? = (a**1)0a = (a*0a)oa = d*0(ava) =
= (d)oy = a* -y = d**10). Tt follows from this that A(y) = 2. But this takes place
only if y = @ - a, a contradiction.

Suppose further that y = a<b # a-b. Then we have a*** = k"1 ab = (dk <a)<b =
=d“ a(a<b) = (d) ey =dy=ad""Y It follows from this that A(y) = 3. It means
that y = b-a = d and x <y = x -y holds for every (x,y) # (a,b). Then we obtain
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f=ad=a<d=a<(b-a)=a<(b<a)=(a<b)<a =d<a=d-a=e,acontradiction
again.

The remaining case y = b <a # ba is similar to the last one. It follows from this
that 1 # sdist((G(+)) and the rest is clear.

2.8 Theorem. There exist just only two infinite minimal SH-groupoids having
non-associative triple (a,a,a). This is either the SH-groupoid H(-) of the first kind
having sdist(H(-)) = 1, or it is the SH-groupoid G(-) of the second kind having
sdist(G(+)) = 2.

Proof. 1t follows immediately from 2.5 and 2.7.

3. Primitive extensions of minimal SH-groupoids

Suppose that F(-) is an arbitrary SH-groupoid of type (a, a, a) generated by a two
element set {a, p}. Then F(-) contains proper subgoupoids H(-) and P(-). Denote by
W the setF' \ (H U P)

If p-x#a# x-pthenp-xy=px-yforevery x,y € F.

The corresponding element is determined by the ordered triple (p, x,y) and it can
be understood as the word pxy. Similarly, xp -y = x - py and also xy - p = x - yp for
every x,y € F. Therefore, the corresponding element can be described as the word
xpy or the word xyp, respectively..

Suppose that n > 3 and xy, x2, ..., x,, X,41 € F. If there exists at least one natural
number | < k < n+ 1 such that x; = p then we have also

X - X2X3 . XXy ] = XX - X3 XXy ] = 500 = XX Xy Xy ] -

It means that the corresponding element is described by the word x| x,x,,%,+1 contain-
ing at least once the element p.

3.1 Construction. Consider the SH-groupoid H(-) of the first kind constructed in
2.1 and 2.3. Let p ¢ H and let P(-) be the free semigroup generated by one-element
set {p}. Suppose that infinte countable sets H = {a,b,c,d,a*,...,a*,d", ...} and
P={p,p*....p"% p"", ... }are disjoint.

Further, for every two natural numbers i, j consider all natural numbers & such that
| <k< (ifj?‘ Let w; jx be pair-wise different elements and for given natural numbers
i, j denote by W, ; the set containing all these elements. Of course, each of these
elements can be understood as the word containing just i-times the element a and
Jj-times the element p. Consider the lexicographic order on the set W; ; and suppose
that the number k denotes just the place of the word w; j, in this order.

For each natural numbern > 2 put W, = W;,.; U W,, o, U---U W,_;; and let
W=W,UWrU-—-UW,UW,, U... .

Finally, suppose that the sets H, P and W are pair-wise disjoint and put £ =
=HUPUW.
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Define a mapping A of the set £ to the set of all natural numbers in the following
way: Aa) = 1 = A(p),A(b) = 2,A(c) = 3 = A(d) and A(a") = k for each natural
number k > 4. Further, put A(p™) = m for each natural number m. Finally, for each
A(w; jx) put A(w; jx) = i + j for every two natural numbers i, j.

Define on E a binary operation - in the way that the following two conditions are
satisfied:

(1) both groupoids H(-) and P(-) have to be proper subgroupoids of the constructed
groupoid E(-);

(i1) each product x - y of element x,y € E such that x € W ory € W has to be
equal to the word w; ;x which is constructed form the words x and y in this order.
The corresponding number k is determined by the placement of the word xy with the
respect to the lexicographic order of the set Wi, ;.

Then E(-) becomes an SH-groupoid with non-associative triple (a,a,a) and it is
generated by the set {a, p}.

3.2 Lemma. The groupoid E(-) is a stratified SH-groupoid of type (a,a,a) ge-
nerated by two-element set {a, p} and it is the only free primitive extension of the
SH-groupoid H(-).

Proof. Tt follows from 3.1 that the condition A(x - y) = A(x) + A(y) is satisfied
for every x,y € E. There is only finite number of ordered triples (x,y,z) having
A(x) + A(y) + A(z) = 3 and it holds:

a-(a-a)y=a-b=c+d=b-a=(a-a)-a;

a-(a-p)=wyi1=(a-a) p;

(pra)y=waia=(a-p)a
(a-a)=wyi3=(p-a) a;
“(p-p)=wig1=(a-p)-p;
(a-p)=wip2=(p-a)p;
(pra)=wipz=(p-p)a

p(p-p)=p*=p-p)p

Further, it is easy to check that each triple (x,y, z) having A(x) + A(y) + A(z) > 4 is
associative. It follows immediately from the definition because both products x-(y-z)
and (x - y) - z represent the same element w; j; which is described by the word xyz
whenever at least one of x,y,zisin W.

TT /T R

3.3 Lemma. sidst(E()) = 1 = sdist(H(-)).

Proof. Define on E a binary operation * suchthatc =bxa # b-a,e=c*xa+#c-a
and x * y = x - y whenever x,y € E are such that (b,a) # (x,y) # (¢, a).

It is easy to see that £(x) is a semigroup and the condition A(x *y) = A(x) + A(y) is
satisfied for every x,y € E. The rest follows immediately from the construction and
from sdist(H(-)) = 1.

It is obvious that there are congruences on E(-) satisfying the condition a - a =
= p" for an arbitrary given natural number n. If « is one of such congruences then
(x-b,x-p"yexand (b-y,p"-y)e«kforevery x,y € E.
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Suppose, furthermore, that « is a stratified congruence on E(-) and let o~ be the
corresponding stratifying function on E. Then o(a - b) = o(a - p") and o(b - a) =
= o(p" - a). It follows from this that 2 X o(a) = n X o(p).

3.4 Construction. Let n > 2 be an arbitrary given natural number and consider
the SH-groupoid E(-) from 3.1. Define, at first, a stratifying function o on the set E.

Put, for the simplicity, o(p) = 2 and o(a) = n. Then o(b) = 2n, o(c) = 3n = o(d)
and o(a™) = m x n for each natural number m > 4, o(p*) = 2k for each natural
number k, o-(w; j,n) = i X n + 2j for each w; j,, € W.

Define, further, a binary relation « on the set £ in the way that (x, x) € « for each
x € E and (x,y) € konly if o(x) = o(y). It follows from this that (x,y) € « if and only
if (v, x) € k forevery x,y € E, (b, p") € k and (a, x) ¢ k for each x € E.

Especially, put at first (x,y) € « if and only if x = y for each x € E such that
o(x) < 2n. Further, put (x,y) € « for each natural number k > 3n + | and every
x,y € E suchthato(x) =k =0(y).

It follows from this that there is only a finite number of the remaining ordered pairs
(x,y) € E? having o(x) = o(y) < 3n.

Define, finally, the relation « step by step for the remaining x,y € E. There is
E = HUPUW and the set W contains disjoint subsets W; ;. Suppose that x # y,
o(x) = o(y) and let 2n < o(x) < 3n.

(1) If o(x) = 2n and x € H U P then either x = b, or x = p" and we have (b, b) € «,
(b,p") €k, (p",b) € kand (p",p") € k. If n =2m+ 1 then x ¢ W. If n = 2m then
x € {ap™, p™a} and we put (x,y) € « in that case if and only if x = y.

(i) If o(x) = 2n+kand 1 < k < n, then x ¢ H. If x € P then bp* = p*** =
= p-p*l = pppkt = p? . p?tkt = plhph? = ... = pkb. Therefore, we put
(x,y) € kif x,y € (bp*, pbp*=1, ..., p*"'bp, p*b, p?***} and for the remaining x,y € E
having o(x) = 2n + k = o(y) we put (x,y) € « if and only if x = y.

(i) If o(x) = 3nand n = 2m + 1 then x ¢ P. We have either x € {c,d} or x € W. For
x=cwehavea-b=a-p" If c # ythen(c,y) € kif and only if y = ap”. Similarly,
if x =dandd # ythen (d,y) € kif and only if y = p"a. Of course, (¢,d) ¢ «. Finally,
if x,y € Wthen x,y € W, and we put (x,y) € kif and only if x = y.

Let o(x) = 3nand n = 2m. If x € H then we put again (c¢,d) ¢ «, (c,y) € k if
y € {c,ap™} and (d,y) € « if y € {d, p"a}. Further, if x € P then we put (x,y) € «
if x,y € {(bp", pbp™',....p" 'bp, p"b, p>**"} similarly as in (ii). Finally, in the
remaining cases if x,y € W and o(x) = 2n + 2m = o(y) we put (x,y) € « if and only
if x = y.

3.5 Lemma. The binary relation « is a stratified congruence of the groupoid E(-).

Proof. Suppose, at first, that x,y,z € E are pair-wise different elements such that
(x,y) € kand (y,2) € k.

It is obvious that (x,z) € « whenever o(x) > 3n+ 1. It follows from x # y that
2n < o(x) < 3n. Therefore, o(x) = o(z) and it follows from the contruction of « that
(x,2) € k.
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Further, let r,s,7,u € E and be such that (r,s), (t,u) € k. If o(r)+ o(t) > 3n+ 1
then obviously (rt, su) € k. Suppose that r # s and o(r) + o(t) < 3n. Then o(r) > 2n.
Thus o(r) < n and t = u. It follows from the construction of « that (rz, su) € « in
this case. In the remaining cases we have r = s, t = u and the rest follows from the
construction 3.4.

3.6 Lemma. E/k(:) is a groupoid containing (up to isomorphism) the SH-groupoid
H(-) as a proper subgroupoid and it is generated by two element set {a, p}.

Proof. 1t follows immediatelly from 3.4 and 3.5.

3.7 Construction. Let n > 3 be an arbitrary given natural number. Consider the
groupoids E(-) from 3.1 and E/«(-) from 3.6. For every two natural numbers i, j such
that 1 < i+ j < 2n consider pair-wise different elements u; ; of the set W such that
u;j = p'ap’. Denote by Us, the set of all such elements u; ;. For every three natural
numbers i, j, k such thati + j + k < nand | < j consider pair-wise different elements
vi jx of the set W such that v; jx = p'ap’ap*. Denote by Vs, the set of all such elements
Vi jk-

Further, if n = 2m then put Ey,, = {a} U P U Us, U V3, and denote by E,,(-) the
corresponding isomorphic image of the groupoid E/«(-).

Finally, for each natural number n = 2m + 1 consider pair-wice different elements
qr and denote as Q the set {341, @3n+2, - - - }- Put Eppyy = {a} U P3, U Us, U V3, U Q.
Denote E,,+1(-) the corresponding isomorphic image of the constructed groupoid

E /().
3.8 Lemma. sdist(E,, () < n.

Proof. Define on E, a new binary operation * in the following way:
(]) [lp" — pn *xa=p* (pn—la) — p’l *(pn—za) - pn—l * (p(l) + pna;
(ii) x#*y = x-ywhenever (x,y) # (a,a), p",a),(p""", pa),...,(p,p" la).
It is obvious that o(x) * y) = o(x) -y) for every x,y € E,. Therefore, x *(y xz) =
= (x *y) * z whenever o-(x) + o(y) + 0(z) = 3n + 1.

We have a x(axa) = a=(p") = ap" = p" *a = (a *a) +a. Further, it is pos-
sible to check that if (x,y,2) € {(p""!, p,a), (p" %, p, pa).....(p, p, p" *a) then also
xx(y*z)=(x*y)*z.

There is a finite number of remaining triples (x, y, z) having o(x) + o(y) + 0(2) <
< 3n+ 1. In these cases, either xy # p* and z # p"*a, or x # p* and yz # p"*a.
Therefore, x * (y * z) = (x * y) * z again.

It was proved above that E,(*) is a semigroup having dist(E,(*), E,(-)) = n and the
rest is clear.

3.9 Lemma. sdist(E>;,1, () = 2m + 1.

Proof. Let E,,, (%) be an arbitrary semigroup such that
dist(Eoms1 (%), Eoms1(4) = sdist(Eopyi(-). Of course, at least one of the conditions
axa+ p2m+]’ a *p2m+l + ap2m+1’ pn *xa# p2m+la has to be satisfied.
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It follows from 3.8 that there exists a natural number k such that x xy = x-y
whenever o(x) + o(y) > k. Ift =a x athent-p* =t x pF =ax(ax p*) =a-ap* =
= aa - p*. It follows from this that o-(t) = 4m + 2. There is only one element ¢ having
o(r) = 4m + 2 and this is just the element p*"*! = a - a.

Therefore, either a x p*™*!' # a - p*™*! or p*"*! % a # p2m + 1 - a. In both cases
dist(Eopms1(%), Eopne1(+)) = 2m + 1. Thus dist(Eops (%), E2m + 1(-)) > 2m + 1 and
the rest follows immediately from 3.8.

3.10 Proposition. sdist(Exp(+)) = 2m.

Proof. Let E,,(%) be a semigroup having dist(Ezn, (%), Exn(+)) = sdist(Exp(¢). It
is obvious that at least one of the conditions a * a # p*", a x p*" # ap™, p" x a #
# p*"a has to be satisfied.

Suppose, at first, that t = a*a # a-a = p*™. It follows from 3.8 that there is
a natural number k such that x x y = x-y whenever o(x) + o(y) > k. Especially,
t-pf=txpf=(axa)xp=ax(axp)=ax(ap’) =a-(ap") = (aa)- p~.
Therefore, o(f) = 4m and hence ¢ € {ap™, pap™", ..., p" 'ap, p"a}. It means that
t = u;,-; for suitable natural number i < m in this case.

Further, (a x a) x a = a % (a % a), and sO a@ * Ujm-i = Ujm—i * a. But a-u;,,—; =
= V0im—i F Vim-io = Uim-i - a. It follows from this that either a x u;,,—; # a - u; u—;, Or
Ujm—i * A F Uiy d.

Let, for example, a x u;m—i—a - u;,,—; and suppose that

(i) p/ % p* = p/- p*forevery j+k < 3m,
(i) a = p/ = a- p’ for each j < 2m,

(iii) a % (ap*) = a - (ap®) for each k < m.

It is easy to check that then p*"*™*/ = q-a-p'*/ = axax p™*/ = uj,_i*x p'*/ =
= Uip-i* P = Ujme;. This is a contradiction with the construction 3.4. It follows
from this that at least one of the conditions (1),(ii), (iii) cannot be valid and therefore,
there are at least m ordered pairs (x,y) such that x x y # x - y.

The similar assertion could be proved also for products p’ * u;,,_;. But then we
obtain dist(Eyy,(%), Eom(-)) = 2m + 1, a contradiction. Therefore,a x a = p*" =a-a
and either a x p*™ # a - p*", or p*" % a # p™" - a.

Suppose, for example, that s = p*" xa # p*"a. Then o(s) = 6m, and hence
s =ap™™,ors = ujgm—jand j > 1, 0r s = v jomi-,; and j > 1. It is tedious but
possible to check that dist(Ey, (%), Eon(+)) = 6m in each of these cases.

3.11 Theorem. For each natural number n there exists at least one SH-groupoid
E,(-) of type (a, a,a) such that:
(1) E, is an infinite countable set;
(1) E,(-) is generated by a two-element set {a, p};
(i11) sdist(E,(+)) = n.

Proof. 1t follows immediatelly from 3.4, 3.5, 3.6 and 3.7.
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3.12 Corollary. For each natural number n there is a finite SH-groupoid F,(.)
such that sdist(F,(+)) = n.

Proof. The construction 3.4 can by modified by the following conditions:
(1) if (x,y) € k and o(x) > 3n then o(x) = o (y);
(11) (x,y) € k whenever o(x) =2 3n+ 1 and o(y) > 3n + 1.
It follows from the condition (ii) that the set £/« has to be finite in this case.

4. Comments and open problems

4.1 The groupoids E,(-) of type (a,a,a) are SH-groupoids of the first kind. Is
it possible to construct also SH-groupoids of type (a,a,a) satisfying the condition
a(aa - a) # aa - aa and having sidst(E,(-)) = n?

4.2 The condition o(x - y) = o(x) + o(y) is important for proofs. Are there also
primitive extensions of minimal SH-groupoids E,(-) such that this condition is not
satisfied?
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