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Groupoids and the Associative Law IIIA. 
(Primitive Extensions of SH-Groupoids 
and their Semigroup Distances) 

MILAN TRCH 

Praha 

Received 15. October 2003 

Szasz-Hajek groupoids (shortly SH-groupoids) are groupoids containing just one non-
associative (ordered) triple of elements. These groupoids were studied by G. Szasz in [10] 
and [11], P. Hajek in [2] and [3] and later in [6], [7], [8] and [9].The present paper is 
a continuation of [12]. SH-groupolds of type (afafa) having infinite countable underlying 
set and an arbitrary given finite semigroup distance are constructed. 

1. P r e l i m i n a r i e s 

A groupoid E(-) is called SH-groupoid if the set {(a, b, c) e EG) | a • he -£ ah • c) of 
non-associative triple contains just one element. 

Let //(•) be a subgroupoid of an SH-groupoid E(-) having the non-associative 
triple (aji.c). Then either \ajy,c\ £ H and //(•) is an SH-groupoid having the non-
associative triple (a, /?, c), or H(-) is a semigroup in the opposite case. 

Let K be a congruence on SH-groupoid E(-). If (aj)*c) is the corresponding non-
associative triple then either (a • lx\ah • c) c K and then E/K(-) is a semigroup, or 
(a hc\ ah - c) £ K and then E/K(-) is an SH-groupoid. 

An SH-groupoid G(-) is called SH-groupoid of type duo,a) if there exists an ele­
ment, a € G such that (auho) is the corresponding non-associative triple of the 
groupoid G{:), 

LI Szasz's theorem. Let /:(•) he an SH-groupoid and let (a, /?, c) he the only turn-
associative triple of E(-). IJ\\\y G E are such that x • v G {a. h, c) then x • y e {.\\y}. 
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Let G(o) and G(*) be groupoids having the same underlying set G. Then dist(G(o), 
G(*)) denotes card{(x, y) G G21 x o y 9- x * y}. 

Let G(-) be a groupo.d. Let sdist(G(-)) be the minimum of cardinal numbers 
dist(G(-),G(*)), where G(*) runs through the set of all semigroups having the un­
derlying set G. The number sdist(G(-)) is called semigroup distance of the groupoid 
G(;l 

1.2 Definition. Let G» •) be an SH-groupoid. A semigroup G(*) having the same 
underlying set G is callec. nearest semigroup ofG(-) if dist(G(>), G(-)) = sdist(G(-)). 

1.3 Definition. A groupoid ("/(•) is called primitive extension of its subgroupoid 
//(•) if there exists an element // € G\/> £ H such that G(-) is generated by the set 
H U {/>}. 

1.4 Lemma. Let G(-) be a primitive extension of a subgroupoid //(•) generated by 
the set H U {/.>}. 77/c>// /? ^ // and the groupoid P(-) generated by the one-element set 
{p} is a semigroup. 

1.5 Lemma. Let G(-) be an SH-groupoid of type (a, a, a). Then G(-) contains at 
least four different elements af b = aaf c = a • aa and d = aa • a. Furthermore, G(-) 
satisfies just one of the following two conditions: 

(i) a(a.ad) = a(aa.a) = aa.aa = (aa.d)a = (a.aa)a, 
(ii) a(a.aa) = aa.aa = (aa.d)a 9- a(aa.a) = (a.aa)a. 

1.6 Definition. Let E(-) is an SH-groupoid having the non-associative triple 
(a, a, a). £(•) will be called SH-groupoid of the first kind if it satisfies the condition 
(i). In the opposite case £*(•) will be called SH-groupoid of the second kind. 

1.7 Definition. A groupoid G(-) will be called stratijied groupoid if there exists 

a mapping cr of the G to the set of natural numbers satisfying the condition 

(r(x - y) = cr(x) + cr(y) 

for every x,y e G. 
In this case the mapping a will be called stratifying function on G(-). Finally, for 

each natural number// consider the set Sn = {x e Gur(x) = 11}. Each non-empty set 
Sn will be called n-tfi stratijication of the set G. 

1.8 Definition. Let (/(•) be a stratified groupoid and let cr be the corresponding 
stratifying function. A congruence K on G(-) will be called stratijied congruence if 
for all *,y e G U', y) c A* implies <r(x) = <x(v) . 

2. M i n i m a l S H - j ; r o u p o i d s a n d t h e i r n e a r e s t s e m i g r o u p s 

From now on, we will deal only with SH-groupoids of type (a, a, a). An SH-
groupoid G(-) of type (a, a, a) is called minimal if it is generated by the one-element 
set {a}. 
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2.1 Construction. For each natural number k > 5 consider pair-wise different 
elements <f.,.. ,ak,ak+l,.... Consider another six different elements a,b,c,d,e*f 
and put G = {a. b. c, cL e, J\ a5,..., ak, aki~l....}. 

Further, denote by A a mapping of the set G to the set of natural numbers such that 
A(cn = V /Kb) = 2, A(c) = 3 = ,l(d), ,l(<') = 4 = A(f) and / l(^) = k for every natural 
number k > 5. 

Finally, define on G a binary operation * in the way that the condition A(.xy) = 
= A(x) + A(y) for every x, y G G is satisfied. 

Especially, put at first: 
(i) b = a- a; 

(It) c = a • b and d = b • a, 
(di) e = a • c = b • b = d • a and f = c • a = <ri • d: 
(iv) cr* = a • e = a • f = b • c = b • d = c J) = d • b = e • a = f • a; 
(v) <76 = b < e = b - f = c • c = c • d = d • c = d • d = e • b = f • b; 

(vi) a1 = c • e = c • f = d • e = d • f = e • c = e • d = f • c = f • ci; 
(vii) a* = e-e = e-f = J>e = J>J\ 

Furl her, for each natural number k > 5 put: 
(viii) b • a1 = ak • b = ak+2, 

(ix) c • cik = d • ak = ak • c =• ak • d = aki~\ 
(x) e • ak = f • ak = ak • e = ak • f = aM. 

Finally, for all natural numbers k,m > 5 put: 
(xi) ak -a''1 = ak+m. 
Then G becomes a groupoid which will be further denoted as G(-). 

22 Lemma. G(-) is a minimal free SH-gwupoidofthe second kind. 

Proof It is obvious that G(-) is generated by one-element set {a} and it holds 
c =: a - b = a • aa =£ cm • a = b • a = d. 

If .v,y,c G G are such that ,l(.v) + /i(y) + A(z) = k > 5 then x-yz = tf* = xy-c . There 
is only a finite number of ordered triples (.v, v, z) having A(x) + A(y) + /t(r,) = 4 and it 
is easy to check that each of such triples is associative. It is proved in [6| that G(-) is 
a minimal free SH-groupoid of type (a, a, a). 

I;urther, e --= aa • aa =£ a • (aa • a) = f . Therefore G(-) is an SH-groupoid of the 
second kind and the condition A(.vy) = A(x) + J(y) is satisfied for every .v,y € C. It 
means that G(-) is a stratified groupoid. Moreover, ,l(.v) denotes just the length of the 
corresponding element .v G G. 

2.3 Lemma. Let G(-) be a minimal free SH-groupoid of the type (a, a, a). Then 
the set K = {(::,x);x e G\ U {(c.f), (f,^)} is a stratijied congruence on G(-) and the 
corresponding groupoid G/K(-) is a minimal free SH-groupoid of type (a, a, a) and if 
is the only injinite SH-groupoid of the first kind. 

Proof It is easy to sec, that K is a congruence on G(.) and, so, G/K is an SH-
groupoid having the only non-associative triple (a, a, a). The rest is obvious. 
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2.4 Remark. Let G(-) He the SH-groupoid from 2.1 and K the congruence from 2.3. 
Put a4 = {(eJ':JJ\e)} and denote by H the set {aJ),(\d,oKoK . . . ,ak,ak* K . . . } . 
Then H is the underlying set of G/A'(-) and the SH-groupoid G/K(°) will be shortly 
denoted as //(•) in the sequel. 

2.5 Lemma. sdist(H(-i) = 1. 

Proof Define on H new binary operations A and V in the following way: 
(i) ahb = d ^ a J) and xAy = x • y whenever (\«y) f (aj))\ 

(ii) bVa = c t b • a and xVy = x * y whenever (x,y) £ (b,a). 
It is obvious that A(xAy) = A(x) + /l(y) = A(xVy) for every x,y e //. Further. 
(aAa)Aa = (a • # )Aa = /;/ui = b - a = d = a Ah = aA(aha) and (aVa)Va = (a - a)Va = 
= hVa = c = a • b = aVh = aV(a • a) = aV(aVa). Therefore, /7(A), J/(V) are 
semigroups. Obviously, dist(H('-),H(A)) = 1 = dist(H(-). H(V)) . 

Furthermore, if H(o) is an arbitrary semigroup having dist(H(*), H(o)) = 1 then 
a o a = a • a. Indeed, in the opposite case we have y = a o a and y • b = y o /; = 
= aoaob = aoc = ac = a'x . It follows from this that A(y) = 2. Therefore, we obtain 
y = b, a contradiction. 

2.6 Lemma. The SH-yronpoid //(•) has only two nearest semigroups and they are 
H(A)andH(V). 

Proof It follows immediately from 2.3 and 2.5, 

2.7 Lemma. sdist(G(-)) = 2. 

Proof Define on G a binary operation < such that a <b = r, c <a = e and x <y = 
= x - y in the remaining cases. 

Then we have*: 
(i) a < (a <a) = a <b = a - b = c = h <a = (a <a) <IL 

(ii) a <(b <a) = a <c = a < c = a - c = e = c <a = (a -1)) <a = (a <b) <a. 
(iii) a<(a <h) = a<(a • /;) = a<c = a-c = e = b-b = b<b = (a • a)<b = (a <<\)<IK 

(iv) b < (a < a) = b < (a - a) = b < b = e = c < a = l/.? <a) < a, 
(v) x < (y < •;) = ak = (x <y) < z whenever A(x) + A(y) + A(z) = k > 5. 

It means that G(<) is a semigroup and therefore sdist(GF)) < dist(G(-), G(«)) = 2. 
Suppose that sdist((G'-)) = 1. Then there is a semigroup G(0) such that dist(GF). 

G(0)) = 1. Then just one of the conditions aOa ?- a - a, aOh ^ a • /?, bOa £ I) • a has to 
be satisfied. Further, sdi>t(G(-)) is finite and therefore there exists natural number /// 
such that xOy = x • y whenever A(x) + A(y) > m. For any natural number k > m and 
each .v G G it holds (ak)0x = ak'Mx) = xO(ak). 

Suppose first that y = aOa $ a • a. Then ak~2 = (akf! )0a = (ak0a)0a = ak0(a0a) = 
= (ak)0y = ak • y = ak'Mx'\ It follows from this that A(y) = 2. But this takes place 
only if y = a • a a contradiction. 

Suppose furtaer that y = a<b 9- n * /;. Then we have </ '" = {I4"'1 «/; = (ak <a)<b = 
= ak <(a <b) = (ak) <y = ak • y = ak'Mx\ It follows from this that A(y) = 3. It means 
that y = b • a = d and x <y = x - y holds for every (.\\y) =?- U/,/?). Then we obtain 
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f .= a-tl = a<d = «<*(/> • <ri) = d<(h < a) = (</ <b)<a = d<a = d-a = e3 a contradiction 
again. 

The remaining case y = b <a t ba is similar to the last one. It follows from this 
that I =£ sdist((G(-)) and the rest is clear. 

2.8 Theorem. There exist just only two infinite minimal SH-groupoids having 
non-associative triple (a, a, a). This is either the SH-groupoid H(-) of the first kind 
having sdist(HF)) = 1, or it is the SH-groupoid G(-) of the second kind having 
sdisi(GF)) = 2. 

Proof If follows immediately from 2.5 arid 2.7. 

3. P r i m i t i v e e x t e n s i o n s of m i n i m a l S H - g r o u p o i d s 

Suppose that /-'(•) is an arbitrary SH-groupoid of type (a, a, a) generated by a two 
element set \c\p\. Then F(-) contains proper subgoupoids //(•) and P(-). Denote by 
W t h e s e t F \ ( / / U P ) 

II /> • x •£ a -*-* .v * /; then p • xy = px - y for every x.y € F. 
The corresponding element is determined, by the ordered triple (/?, x\y) and it can 

be understood as the word pxy. Similarly, xn • y = x • py and also xy • p = x • yp for 
every .v,y n F. Therefore, the corresponding element can be described as the word 
xpy or the word xyp* respectively.. 

Suppose that n > 3 and .v-, A X . . . , x„, x,H j € F. If there exists at least one natural 
number I < k < n + \ such that A> = /> then we have also 

X\ ' .1*2x3 . . . x/f A/t + i = A* | A*2 * X\ . . Xn \',n\ = • • • = xj x2 . . . Xn * X,H. \ . 

It means that the corresponding element is described by the word .*ix2A"/?x/.f i contain­
ing at least once the element />. 

3.1 Construction. Consider the SH-groupoid //(•) of the first kind constructed in 
2.1 and 2.3. I .et p £ H and let P(-) be the free semigroup generated by one-element 
set {/>}. Suppose that infinte countable sets / / = {a,/?, c. (L a4,... ,«*,«*'*'*,...} and 
P =.- j / ? , / ; 2 , , . . , / / ' , / /M * , . . . ! are disjoint. 

Further, foi every two natural numbers /, j consider all natural numbers k such that 
1 < k < — r . Let Wjjx be pair-wise different elements and forgiven natural numbers 
/, 7 denote by Wjj the set containing all these elements. Of course, each of these 
elements can be understood as the word containing just /-times the element a and 
7-times the element /;. Consider the lexicographic order on the set W,j and suppose 
that the number k denotes just the place of the word Wjjx in this order. 

For each natural number n > 2 put \V'/; = W\j,.\ U W2jl..2 U ••• U VYVi.i and let 
W r, \\'\ U \V2 U • • • U W„ U Wfl,, U . . . . 

Finally, suppose that the sets /J, P and IV are pair-wise disjoint and put E = 
= // L P U W. 
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Define a mapping A of the set E to the set of all natural numbers in the following 
way: A(a) = 1 •= A(p),A(b) = 2,,1(c) = 3 = A(d) and A(ak) = k for each natural 
number k > 4. I;urther, put A(p)n) = m for each natural number m. Finally, for each 
Awij,k) put /l(u',,;i) = i + j for every two natural numbers i, j . 

Define on E a binary operation • in the way that the following two conditions are 
satisfied: 

(i) both groupoids H(-) and P(-) have to be proper subgroupoids of the constructed 
groupoid £(•); 

(ii) each product x • y of element x, y £ E such that x e IV or y € IV has to be 
equal to the word w/j,* which is constructed form the words x and y in this order. 
The corresponding number k is determined by the placement of the word xy with the 
respect to the lexicographic order of the set W/+/. 

Then E(-) becomes an SH-groupoid with non-associative triple (a, a, a) and it is 
generated by the set {a,p}. 

3.2 Lemma. The groupoid E(-) is a stratified SH-groupoid of type (a, a, a) ge-
nerated by two-element set {af p] and it is the only free primitive extension of the 
SH-groupoid H(-). 

Proof It follows from 3.1 that the condition A(x - y) = A(x) + A(y) is satisfied 
for every x.y € E. There is only finite number of ordered triples (x,y,z) having 
A(x) + A(y) + ,l(~) = 3 and it holds: 

a • (a • a) = a • b = c ?• d = I) • a = (a • a) • a: 
a - (a - p) -- it'2jj = (a - a) • p: 
a • (p - a) == *̂2,i,2 = (u * p)' (K 
p • (a • a) == v̂ '2,1.3 = (p • a) • </; 
a • (/; •/?) := u'i.2.1 = (a • p) - p\ 
p • (a • p) = u+2.2 = (/>' ") " P; 
/> • (p -a) •- W'\23 = (p * P) ' (K 
P-(P'P) = />3 = (/>•/»•/>. 
Further, it is easy to check that each triple (x\y\ z.) having A(x) + A(y) + A(z) > 4 is 

associative. It follows immediately from the definition because both products x-(y-z) 
and (.v • y) • ;<; Represent the same element vr,-./,* which is described by the word xyz 
whenever at least one of /v,y,:, is in IV, 

3.3 Lemma, sidst(E(-)) = 1 = sdist(H(-)). 

Proof. Define on E a binary operation * such that c -- /> * n =£ /; • a, <> = c * « £ c • « 
and x * y = JC • y whenever x,y e K are such that (/>, <ri) =£ (,v,y) =£ (c, </). 

It is easy to see that E(*) is a semigroup and the condition A(x *y) = /i(.v) + J(y) is 
satisfied for every x,y £ £. The rest follows immediately from the construction and 
from sdist(HO) = 1. 

It is obvious that there are congruences on E(-) satisfying the condition a • a = 
= pn for an arbitrary given natural number n. If K is one of such congruences then 
(x • b,x • pn) G K and (b • y\ pn • y) £ K for every JC,y £ E. 
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Suppose, furthermore, that K is a stratified congruence on E(-) and let <r be the 
corresponding stratifying function on E. Then <r(a • I?) = cr(a • //') and <r(/; • a) = 
= <r(/?" • «). It follows from this that 2 x a(a) = // x <T(/;). 

3.4 Construction. Let // > 2 be an arbitrary given natural number and consider 
the SH-groupoid /:(•) from 3.1. Define, at first, a stratifying function cr on the set E. 

Put for the simplicity, cr(p) = 2 and cr(a) = n. Then cr(b) = 2/i, cr(c) = 3/i = <r(d) 
and (r(am) = /// x // for each natural number m > 4, <r(pk) = 2k for each natural 
number L cr(n\</>w) = i x n + 2j for each u•/./>, G VV. 

Define, further, a binary relation A- on the set E in the way that (A, A) € K for each 
.v G /: and (A\ v) G K only if ir(x) = <r(y). It follows from this that (.v,y) G K if and only 
if i'\\ .v.) G K for every A\V G F, (/;, // ') G K and (a, A) ^ K for each A* G £. 

[-specially, put at first (.v,y) G A: if and only if A = y for each A G F such that 
<r(x) < 2/?. Further, put (.v,y) G A' for each natural number k > 3/i + 1 and every 
A,y G /: such that tr(.v) = k = <r(y) . 

It follows from this that there is only a finite number of the remaining ordered pairs 
(A\V) G E(2} having <T(A) = (r(y) < 3n. 

Define, finally, the relation K step by step for the remaining .v,y G E. There is 
E = /•/U PU IV and the set W contains disjoint subsets Wjj. Suppose that A t y, 
(r(x) r= (r(y) and let 2/? < (r(x) < 3n. 
(i) If <r(A) = 2n and A* G // U P then either A* = /?, or A = //' and we have (/>,/;) G A\ 
(/>,//') G A\ (p"J?) G K and (p",pn) G AT. If ii = 2/i? + 1 then x & W. If/i = 2//? then 
A G {<7//'\ //7V/} and we put (A\V) G A* in that case if and only if A = y. 
(ii) If ir(x) = 2/i + k and 1 < k < //, then x <£ H. If .v G P then /;// = /r ' , f* = 
= p>pz,nk'] = pbpk~] = / r • p2fnk~2 - p:bpk~2 = . . . = ///; . Therefore, we put 
(A\V ) G A- if A\ v G {/?//, /?/?/ /"- , . . . , //"-/;/?. ///;, / r"u '} and for the remaining A\V G K 
having <T(A) = 2/i + k = <T(V) we put (A\V) G A' if and only if A* = y. 
(iii) If <r(.v) = 3/i and /i = 2//? + 1 then A <f. P. We have either A G {t\d} or A G IV. For 
A* - r we have a • I? = a • // '. If r =*-- y then (r. y) G K if and only if y = ap". Similarly, 
if x = d and d -?-- y then (<J,y) G K if and only if y = pna. Of course, (c\d) £ K. Finally, 
if AW G W then A, y G IViJf and we put (A\V) G K if and only if A = y. 

Let ir(A) = 3/i and /? = Int. If A G // then we put again (c\d) $. K, (t\y) G K if 
y G \<\ap"\ a-id (d,y) G A' if y G {d,//'«}. Further, if A G P then we put (.v,y) G K 
if A, v G {/?//-'. pbpm~],..., />'"' '/?/>, //"/>, yr'M/"} similarly as in (ii). Finally, in the 
remaining cases if A\V G IV and <r(.v) = 2// + 2/// = rr(y) we put (.v,y) G K if and only 
if A:= y. 

3.5 Lemma. The binary relation K is a stratified congruence of the ^roupoid E(-). 

Proof Suppose, at first, that .v,y, ~ G E are pair-wise different elements such that 
(x,y) G JC and (y\z) G K. 

It is obvious that (x,z) G K whenever <r(Aj > 3/i + L It follows from A ^ y that 
2#i < or(x) < 3n. Therefore, <T(A) = ir(z) and it follows from the conduction of K that 
(x,z)eK. 
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Further, let r. v, /. u e E and be such that (r, .v), (/, n) c K. If a(r) + (r(t) > 3n + 1 
then obviously (n, :vu) e K. Suppose that r -£ .v and (T(r) + <r(t) < 3//. Then (r(r) > 2n. 
Thus cr(t) < n and t = n. It follows from the construction of K that (rt.su) e K in 
this case. In the remaining cases we have r = .s\ t = // and the rest follows from the 
construction 3.4. 

3.6 Lemma. E/K(-) is a groupoid containing (up to isomorphism) the SH-gnntpoid 
H(-) as a proper suhgroupoid and it is generated by two clement set {a, p). 

Proof It follows immediatelly from 3.4 and 3.5. 

3.7 Construction. Let n > 3 be an arbitrary given natural number. Consider the 
groupoids E(-) from 3.1 and E/K(-) from 3.6. For every two natural numbers /, j such 
that 1 < / + j < 2/i consider pair-wise different elements itjj of the set W such that 
iiij = plap)'. Denote by U\n the set of all such elements itjj. For every three natural 
numbers /, j, A such that i + j + k < n and 1 < j consider pair-wise different elements 
VJJA of the set W such that Vjj^ = plapJapk. Denote by ¥}n the set of all such elements 

ViJJc-

Further, if n = 2m then put Em = {a) U P U U^ U V3ll and denote by F2#w(*) the 
corresponding isomorphic image of the groupoid E/K(-). 

Finally, for each natural number /? = 2m + 1 consider pair-wice different elements 
qk and denote as Q the set (</<„, i, q\na* • • • }• Hut E2m+t = {a} U P3„ U U3n U V3n U Q. 
Denote F2i?i+i(\* the corresponding isomorphic image of the constructed groupoid 
£/*(•). 

3.8 Lemma. sdist(K„,(o) £ n. 

Proof Define on En a new binary operation * in the following way: 
(i) ap" = //' * a = /,• * (p" la) = /;2 * (p""2a) = • • • = /J""1 * (/?a) £ /Az; 

(ii) x * y = .v • y whenever (.v, y) ^ (a, a), //', tO- (l}" ' - /w) * (P- p"~la). 
It is obvious that cr(x) * y) = rr(x) • y) for every A\V C: F„. Therefore, x * (y * ;:) = 
= (x * y) * z whenever <r(x) + cr(v) + cr(;:) > 3// + 1. 

We have a * (a * a) = a * (//') = O//1 = /?" * */ = (a •* a) * a. Further, it is pos­
sible to check that if (.w \\ z) ('~ \(p"~l*p.a)Apn * \ / \ /w) , . . . Ap,p,p"~2a) then also 
x * (y * z) = (.v * y) * ". 

There is a finite number of remaining triples (A\ \ \ :;) having (r(x) + rr(y) + rr(-) < 
< 3/i + 1 . In these cases, either xy ^ //' and r. 9- //' AO, or .v ?- //' and \\-F ^ //' "Aa. 
Therefore, x * (y * c) = ( v * y) * ~ again. 

It was proved above that En(*) is a semigroup having dist(Kn(*), Kn(-)) = n and the 
rest is clear. 

3 J Lemma. sdist(K2n.. \J-)) = 2m + 1. 

Proof. Let F?wft(*) be an arbitrary semigroup such that 
dist(K2„Hi(*). I^m-if')) - sd!st(K2„Hi(-). Of course, at least one of the conditions 
a * a4- /r,;H"l, </ • /r" l+ ^ <//r'"'!, // ' * « -£ /?2m+1a has to be satisfied. 
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It follows from 3.8 that there exists a natural number k such that .v * y = x-y 
whenever cr(.i) + (r(y) > k. Iff = a • a then / • / / = / • pk = a • (a * / / ) = a • apk = 
= <w • / / . It follows from this that (Hi) =. 4m + 2. There is only one element t having 
(-(/) .•=- 4/n + 2 and this is just the element p2,tnl = a - a. 

Therefore, either a • p2,nhl ^ a • / r w " ' , or p 2 w f l * a -£ p2m + 1 • a. In both cases 
dist(I.2m*i(*) E2m*i(*)) --- 2m + 1. Thus dist(E2,„4i(*),E2m+ !(•)) > 2m + 1 and 
the rest follows immediately from 3.8. 

3.10 Proposition. sdist(E2m(-)) = 2m. 

Proof Let K2//.(*) he a semigroup having dist(K2m(*), E2m(-)) ~ sdist(E2m(*)- It 
is obvious that at least one of the conditions a • a ^ p2m

9 a • p2m =£ apln\ p" • a •*-
•£ /r"V/ has to be satisfied. 

Suppose, at first, that / = a • a 4 a - a = /r"\ It follows from 3.8 that there is 
a natural number k such that x*y = x-y whenever cr(x) + cr(y) > k. Especially, 
t • / / :.r / • pk = (a • a) • //' = a • (r/ • //") = </ • (O//") = a • («//) = (Oo) • //'. 
Therefore, <r(/) = 4/n and hence / € {apm

npapm"{,... ,pm~lap, pma). It means that 
/ = tiun. i for suitable natural number / < m in this case. 

Further, (a • a) • a = « • (o • </), and so n • //,>,_/ = ///.,„../ • a. But a • //,-.,„-/ = 
= Vujjn i ^ vij>i-i.o - -'/.m- / * -'• -t follows from this that either a • //,>,_,• **- a • //,-.,„-,•, or 
//,.„, / • // -£ //,•,„../ -a. 

Let, for exirmple, a • UiJn..i-*a • //,>../ and suppose that 
(i) /?/ • pk = y;1. pk for every J + k < 3///, 

(ii) (i * /;' = a - pJ for each j < 2///, 
(iii) a • (a/>*) = // • (rt//') for each k ± m. 

It is easy to check that then plnHlkJ = <-/ • a • / r f i = a • a • /r+1 = //,>,_,- • / / f1 = 
= UiMl i - f)'

jJ = ///.,„->/. This is a contradiction with the construction 3.4. It follows 
from this that at least one of the conditions (i),(ii), (iii) cannot be valid and therefore, 
there are at least m ordered pairs (,v,y) such that x • y ^ x • y. 

The similar assertion could be proved also for products pJ • //,>,_,-. But then we 
obtain dist(K2,„(*). E2,n(-)) ^ 2/i? + 1, a contradiction. Therefore, a • a = p2m = n • a 
and either a • /r"' ?- a • /r'", or /r'" • n *£ /r'"' • a. 

Suppose, for example, that .v = plm • a *£ /r'"a. Then rr(.v) = 6/n, and hence 
.v = <r//r'", or .v = u/,4,,,-/ and y > 1, or .v =- Vij.2m-i-j a n ^ i ^ V It is tedious but 
possible to check that dist(K2„,(*). I-2m(*)) > bw hi each of these cases. 

3.11 Theorem. For each natural number n there exists at least one SH-groupoid 
/:..,(•) of type (a, a, a) such that: 

i i ) I1!n is an infinite countable set: 
di) /:„(-) is generated by a two-element set \a, p\: 

mi) sdist(Kn(-)) = /»• 

Proof. It lb'lows immediatelly from 3.4, 3.5, 3.6 and 3.7. 



3.12 Corollary. For each natural number n there is a finite SH-groupoid Fn(.) 
such that sdist(Fn(-)) = n. 

Proof. The construction 3.4 can by modified by the following conditions: 
(i) if (x,y) € K and cr(jc) > 3n then tr(x) = (r(y): 

(ii) (x,y) 6 K whenevercr(x) > 3/i + 1 and <T(Y) ,-: 3n + I. 
It follows from the condition (ii) that the set E/K has to he finite in this case. 

4. C o in m e n t s a n d o p e n p r o h 1 e m s 

4.1 The gioupoids E,(-) of type (a, a,a) are SH-groupoids of the first kind. Is 
it possible to construct also SH-groupoids of type (a,a,a) satisfying the condition 
a(aa • a) 4 aa • aa and having sidst(En(-)) = nl 

4.2 The condition a(x * y) = <r(x) + o~(y) is important for proofs. Are there also 
primitive extensions of minimal SH-groupoids En(-) such that this condition is not 
satisfied? 
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