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CONVEXITY INEQUALITIES FOR ESTIMATING
GENERALIZED CONDITIONAL ENTROPIES
FROM BELOW

Alexey E. Rastegin

Generalized entropic functionals are in an active area of research. Hence lower and upper
bounds on these functionals are of interest. Lower bounds for estimating Rényi conditional
α-entropy and two kinds of non-extensive conditional α-entropy are obtained. These bounds
are expressed in terms of error probability of the standard decision and extend the inequalities
known for the regular conditional entropy. The presented inequalities are mainly based on
the convexity of some functions. In a certain sense, they are complementary to generalized
inequalities of Fano type.

Keywords: Rényi α-entropy, non-extensive entropy of degree α, error probability, Bayesian
problems, functional convexity

Classification: 94E17, 60E15, 62C10, 39B62

1. INTRODUCTION

Entropy is one of most important concepts in both the information theory and statis-
tical physics. Entropic quantities are also interesting mathematical subjects with many
attractive properties. There exist several fruitful extensions of the Shannon entropy.
One of them was proposed by Rényi [21]. Another one-parameter extension is the non-
extensive entropy of degree α. Although such non-extensive entropy was first discussed
by Havrda and Charvát [12] and by Daróczy [4], it became widely used in statistical
mechanics after the seminal work of Tsallis [26]. Entropic functions of degree α form an
especially helpful class of Csiszár’s f -entropies (see the review [3] and references therein).

The Fano inequality, which bounds the conditional entropy from above, is essential to
prove the converse to Shannon’s second theorem [2]. This inequality has been extended
to both the Rényi entropy [6] and non-extensive entropy of degree α [9, 19]. However,
inequalities of such a kind provide only upper bound on adopted conditional entropies
[8]. In quantum information theory, corresponding upper bounds are formulated for the
entropy exchange [25] and its non-extensive extension [20]. For two-sided estimating
of conditional entropies, lower bounds are necessary. Corresponding lower bounds were
derived by Rényi [22, 23, 24] and, independently, by other authors [1, 8, 16, 28]. These
bounds are mainly given in terms of error probability of the Bayesian approach to
statistical decisions.
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The aim of the present work is to extend the mentioned inequalities to both the
Rényi and non-extensive entropies. In particular, the presented inequalities interpolate
between the Rényi result [23] and the Vajda result [28]. The paper is organized as follows.
In Section 2, the main definitions and auxiliary material are given. In effect, we recall
the Rényi conditional entropy and two kinds of the non-extensive conditional entropy.
The case of input alphabet with arbitrary (finite) cardinality is examined in Section 3.
Lower bounds of desired type are derived for the Rényi conditional entropy of order
α > 0 and for some of the non-extensive conditional entropies. Assuming the binary
input, lower bounds in terms of the error probability are given for all the considered
entropic functionals in Section 4.

2. PRELIMINARIES

In this section, we recall definitions of the used measures of information. In the context
of communications, we pose as follows. Let random variables X and Y describe the input
and output of a channel. The variables X and Y take values on the finite sets (alphabets)
ΩX and ΩY , respectively. By #ΩX = m and #ΩY = n, we denote their cardinalities. We
should decide on the input symbols when the output symbols are known. This is a typical
problem of statistical decision theory. For probability distribution {p(x) : x ∈ ΩX}, the
Rényi entropy of order α > 0, α 6= 1, is defined as [21]

Rα(X) ,
1

1− α
ln

( ∑
x∈ΩX

p(x)α

)
. (1)

This quantity is a non-increasing function of α [21]. Other properties related to the
parametric dependence are discussed in [29]. The non-extensive entropy of degree α > 0,
α 6= 1, is defined by [26]

Hα(X) ,
1

1− α

( ∑
x∈ΩX

p(x)α − 1

)
. (2)

With the factor
(
21−α − 1

)−1 instead of (1 − α)−1, this entropic function was derived
from several axioms by Havrda and Charvát [12]. In a physical setting, the entropy (2)
was introduced by Tsallis [26]. Following the paper [13], the entropy (2) will be referred
to as “THC entropy”. Both the Rényi and THC entropies are widely used for studying
system, which involve long-range interactions, long-time memories, or fractal structures
(see [10, 13] and references therein). These measures are also useful for expressing
quantum uncertainties [17, 18]. Note that the entropy (2) can be rewritten as

Hα(X) = −
∑

x∈ΩX

p(x)α lnα p(x) , (3)

where the α-logarithm lnα z = (z1−α− 1)/(1−α) is defined for α > 0, α 6= 1 and z > 0.
In the limit α → 1, we have lnα z → ln z and the Shannon entropy

H1(X) = −
∑

x∈ΩX

p(x) ln p(x) . (4)
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The entropy (1) also recovers the Shannon entropy, when α → 1. For brevity, we will
usually omit the symbol of the set ΩX in entropic sums.

In the present paper, we will mainly deal with conditional entropies. The regular
conditional entropy is defined as [2]

H1(X|Y ) ,
∑

y
p(y) H1(X|y) = −

∑
x

∑
y
p(x, y) ln p(x|y) , (5)

where H1(X|y) = −
∑

x p(x|y) ln p(x|y) and p(x|y) = p(x, y)/p(y) in line with the Bayes
rule. The Rényi conditional entropy is defined by [6, 14]

Rα(X|Y ) ,
∑

y
p(y) Rα(X|y) , (6)

where

Rα(X|y) ,
1

1− α
ln
(∑

x
p(x|y)α

)
. (7)

In the literature, the following two kinds of THC conditional entropy are used. The first
is defined as [9]

Hα(X|Y ) ,
∑

y
p(y)αHα(X|y) , (8)

where

Hα(X|y) ,
1

1− α

[∑
x

p(x|y)α − 1
]

= −
∑

x
p(x|y)α lnα p(x|y) . (9)

The conditional entropy (8) is, up to a factor, the quantity introduced by Daróczy [4].
Some of its functional properties are examined in [9]. Another kind of THC conditional
entropy is put by [9]

H̃α(X|Y ) ,
∑

y
p(y) Hα(X|y) . (10)

Taking α = 2, we obtain the quadratic conditional entropy

H̃2(X|Y ) =
∑

y
p(y)

[
1−

∑
x

p(x|y)2
]

. (11)

Just the same entropic measure has been used by Vajda [28] for estimating the minimal
error probability. In the limit α → 1, all the three entropies (6), (8), and (10) coincide
with the regular conditional entropy (5).

While entropic functions are basic measures of uncertainty used in information theory,
the channel coding theorems are usually stated in terms of the error probability [2]. So,
relations between entropy and error probability are of interest [8]. Fano’s inequality
provide an upper bound that can be stated with error probability of arbitrary statistical
decision. On the other hand, lower bounds on the conditional entropy (5) are typically
expressed in terms of the error of so-called “standard” decision [22, 23, 24]. For given
output value y of Y , we decide always in favor of that value x̂(y) of X which maximizes
the conditional probability p(x|y), i. e.

x̂(y) , Arg max
{
p(x|y) : x ∈ ΩX

}
, p(x|y) ≤ p(x̂|y) ∀ x ∈ ΩX . (12)
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This decision is corresponding to the Bayesian approach [5]. Applications of Bayes rules
in hypothesis testing still attract much attention [15]. The expected error probability Pe

and the probability of successful estimation Ps are given by the well-known expressions

Pe = 1− Ps , Ps =
∑

y
p(y) p(x̂|y) . (13)

It has been proved in very general setting that no decision can have a smaller error
probability than the standard decision. This is the Bayesian version of the fundamental
Neyman–Pearson lemma [23, 24]. In the context of communications, the value Pe is
attained by the so-called “maximum a posteriori estimator” [8]. Our aim is to obtain
lower bounds on the conditional entropies (6), (8), and (10) in terms of the probabilities
Pe and Ps. Convexity properties of the considered functions will be used widely. So one
of the basic tools is the Jensen inequality extensively treated, e. g., in chapter III of [11].

3. THE CASE OF ARBITRARY FINITE INPUT

In a series of papers (see [22, 23, 24] and references therein), Rényi obtained lower bounds
on the standard conditional entropy (5) in terms of the error of the standard decision.
When the cardinality of ΩX is not specified, there holds [16, 23]

H1(X|Y ) ≥ − ln(1− Pe) . (14)

It turns out that this lower bound can be extended to some of the above generalized
entropies. Let us start with the Rényi conditional entropy (6).

Theorem 3.1. For all α ∈ (0;∞), the Rényi conditional entropy satisfies

Rα(X|Y ) ≥ − ln(1− Pe) . (15)

P r o o f . In view of p(x|y) ≤ p(x̂|y) and
∑

x p(x|y) = 1, we write down∑
x

p(x|y)α =
∑

x
p(x|y)α−1p(x|y) ≥ p(x̂|y)α−1 (0 < α < 1) , (16)∑

x
p(x|y)α =

∑
x

p(x|y)α−1p(x|y) ≤ p(x̂|y)α−1 (1 < α < ∞) . (17)

The function (1 − α)−1 ln ξ is increasing for α ∈ (0; 1) and decreasing for α ∈ (1;∞).
Combining the former with (16) and the latter with (17), the formula (7) leads to

Rα(X|y) ≥ 1
1− α

ln
[
p(x̂|y)α−1

]
= − ln p(x̂|y) . (18)

Since [− ln ξ] is a convex function, we substitute (18) in the definition (6) and obtain

Rα(X|Y ) ≥
∑

y
p(y)

[
− ln p(x̂|y)

]
≥ − lnPs , (19)

by the Jensen inequality and (13). Hence the claim (15) is provided. �

As it is noted in the paper [14], we have Rα(X|Y ) ≥ H1(X|Y ) for α ∈ (0; 1) and
H1(X|Y ) ≥ Rα(X|Y ) for α ∈ (1;∞). Hence the inequality (15) for α ∈ (0; 1) could be
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derived directly from the inequality (14). For α ∈ (1;∞), the inequality (15) is a new
result. We have presented the joint proof for both the ranges of the parameter α. Let
us proceed to the THC conditional entropies with the following statement.

Theorem 3.2. For all α ∈ (0;∞), there holds

Hα(X|y) ≥ lnα
1

p(x̂|y)
. (20)

P r o o f . It is easy to check that lnα ξ = −ξ1−α lnα(1/ξ) and lnα(1/ξ) is decreasing
function of ξ for all α > 0. Combining these points with (9) finally gives

Hα(X|y) =
∑

x

p(x|y) lnα
1

p(x|y)
≥ lnα

1
p(x̂|y)

, (21)

in view of p(x|y) ≤ p(x̂|y) and
∑

x p(x|y) = 1. �

Corollary 3.3. For all α ∈ (0; 1), the conditional entropy (8) satisfies

Hα(X|Y ) ≥
{
max p(y)

}α−1 lnα

(
1

1− Pe

)
. (22)

For all α ∈ (0; 2], the conditional entropy (10) satisfies

H̃α(X|Y ) ≥ lnα

(
1

1− Pe

)
. (23)

P r o o f . First, we will derive the inequality (23). Calculating the second derivative

d2

dξ2
lnα

1
ξ

= (2− α) ξα−3 , (24)

we see that the function lnα(1/ξ) is convex for α ≤ 2. So we substitute (20) in the
definition (10) and obtain

H̃α(X|Y ) ≥
∑

y
p(y) lnα

1
p(x̂|y)

≥ lnα
1
Ps

, (25)

where the Jensen inequality was used. This completes the proof of (23). We now note
that for α < 1 there holds p(y)α−1 ≥ {max p(y)}α−1, whence

Hα(X|Y ) ≥
{
max p(y)

}α−1
H̃α(X|Y ) . (26)

Combining this with (23) finally gives (22). �

In the limit α → 1, the lower bounds (15) and (23) coincide with the original Rényi
inequality (14). So we have extended the Rényi inequality to the adopted generalized
entropies. For α = 2, the inequality (23) becomes

H̃2(X|Y ) ≥ Pe . (27)
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This inequality was actually deduced by Vajda [28]. Note that some bounds of Fano
type with the measure H̃2(X|Y ) were also presented in the paper [28]. We see that the
lower bound (23) extends the Vajda result (27) as well and interpolates between it and
the Rényi inequality (14).

For α > 2, the function lnα(1/ξ) is concave and the sign in Jensen’s inequality is
reversed. So, another way of estimating the sums from below is required. One of useful
approaches is to fit this concave function by a linear one. Let f(ξ) be concave function
such that f(1) = 0, and let ξ be varied between ξ0 and 1. For ξ ∈ [ξ0; 1], we claim that

f(ξ) ≥ f(ξ0)
1− ξ

1− ξ0
. (28)

Indeed, the difference
{
f(ξ)− f(ξ0)(1− ξ0)−1(1− ξ)

}
is concave and, by construction,

vanishes for both the points ξ = ξ0 and ξ = 1. Hence the difference is positive in the
interval [ξ0; 1] everywhere. Using this fact, we obtain the following result.

Corollary 3.4. Suppose that #ΩX = m. For all α ∈ (2;∞), the conditional entropy
(10) satisfies

H̃α(X|Y ) ≥ m lnα m

m− 1
Pe . (29)

P r o o f . For given y, we have m probabilities p(x|y) such that
∑

x p(x|y) = 1. Hence the
maximum of them, namely p(x̂|y), is not less than 1/m. Using (28) with f(ξ) = lnα(1/ξ)
and ξ0 = 1/m, it follows from (20) that

Hα(X|y) ≥ m lnα m

m− 1
[
1− p(x̂|y)

]
. (30)

Combining this with (10) and (13) finally gives (29). �

In the limit α → 2+, the lower bound (29) coincides with the lower bound (23). In
this regard, the bound (29) is a proper continuation of the bound (23) to values α > 2.
Besides the error probability Pe, the inequality (29) contains the number m of symbols
from the set ΩX . Of course, this number is always known from the specification. Note
that for α ∈ (0; 1) we have the inequality expressed purely in terms of Pe, namely

Hα(X|Y ) ≥ lnα

(
1

1− Pe

)
. (31)

It follows from (22) by max p(y) ≤ 1 and α − 1 < 0. For the conditional entropy
Hα(X|Y ), some inequalities can also be derived for α > 1. Combining (23) and (29)
with the inequality

Hα(X|Y ) ≥ {min p(y)}α−1H̃α(X|Y ) , (32)

which holds for α > 1, we respectively have

Hα(X|Y ) ≥ {min p(y)}α−1 lnα

(
1

1− Pe

)
(1 < α ≤ 2) , (33)

Hα(X|Y ) ≥ {min p(y)}α−1 m lnα m

m− 1
Pe (2 < α < ∞) . (34)
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Note that the bounds (33) and (34) coincide for α = 2. However, the scope of the lower
bounds (33) and (34) is somewhat restricted, since the value of min p(y) is needed here.
It would be of interest to get those bounds on Hα(X|Y ) for α > 1 that are expressed
purely in terms of Pe (and, probably, m = #ΩX or n = #ΩY ). In the following section,
such a lower bound will be presented for the case of binary input. Nevertheless, the
bounds (33) and (34) may sometimes be useful in a practice.

Finally, we shall present another lower bound on the conditional entropy (10). This
bound does use the result (28) and does not (20). When the conditional entropies p(x|y)
can be estimated from below, we apply the following statement.

Theorem 3.5. Let #ΩX = m, and let M be the positive real number such that

min
{
p(x|y) : x ∈ ΩX , y ∈ ΩY

}
= M−1 . (35)

For all α ∈ (0;∞), the conditional entropy (10) satisfies

H̃α(X|Y ) ≥ m lnα M

M − 1
Pe . (36)

P r o o f . Applying (28) with the concave function f(ξ) =
(
ξα−ξ

)
/(1−α) and ξ0 = 1/M ,

one obtains

p(x|y)α − p(x|y)
1− α

≥ M−α −M−1

1− α

1− p(x|y)
1−M−1

≥ lnα M

M − 1
[
1− p(x̂|y)

]
. (37)

Hence we have H(X|y) ≥ m lnα(M)(M−1)−1
[
1−p(x̂|y)

]
by summing (37) with respect

to x ∈ ΩX . Substituting this inequality into the right-hand side of (10) completes the
proof in view of (13). �

Since
∑

x p(x|y) = 1 and #ΩX = m, we have min
{
p(x|y) : x ∈ ΩX

}
≤ 1/m for any

y, whence m ≤ M . The lower bound (36) is similar to (29) in structure and almost
coincides with the one, when M ≈ m. At the same time, the bound (36) is valid in
wider parametric range, including the standard case α = 1. For very large M , however,
we rather prefer the bounds (23) and (29). Note that the lower bound (36) can also be
combined with (26) for 0 < α < 1 and with (32) for α > 1.

4. THE CASE OF BINARY INPUT

The two symbols, usually “0” and “1”, are quite sufficient for almost all tasks of storage,
transmission and protection of information. So the case of binary input set is of great
importance in information theory and practice. Rényi pointed out [23] that the lower
bound (14) can somewhat be refined in this case. Namely, for #ΩX = 2 there holds (see
also [1, 27])

H1(X|Y ) ≥ (2 ln 2)Pe . (38)

[When the logarithms in (4) and (5) are taken to the base two, the ln 2 should be left
out from (38).] We aim to generalize the above inequality to the conditional entropies
(6), (8), and (10). First, we prove one auxiliary statement.
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Lemma 4.1. Let us define the function ηα(z) , zα + (1 − z)α. For z ∈ [0; 1/2], there
holds

ηα(z) ≥ 1 + 2 lnα(2) (1− α) z (0 < α < 1) , (39)
ηα(z) ≤ 1 + 2 lnα(2) (1− α) z (1 < α < ∞) . (40)

P r o o f . By calculation, ηα(0) = 1 and ηα(1/2) = 21−α = 1 + (1 − α) lnα 2. Hence
the difference

{
ηα(z) − 1 − 2 lnα(2) (1 − α) z

}
vanishes for both the points z = 0 and

z = 1/2. Further, this difference is concave for α ∈ (0; 1) and convex for α ∈ (1;∞). So
it is positive in the former and negative in the latter. �

Theorem 4.2. Suppose that #ΩX = 2. For all α ∈ (0; 1), the conditional entropy (6)
satisfies

Rα(X|Y ) ≥ (2 ln 2)Pe . (41)

For all α ∈ (1;∞), the conditional entropy (6) satisfies

Rα(X|Y ) ≥ 1
1− α

ln
[
1 + 2 lnα(2) (1− α) Pe

]
. (42)

P r o o f . For ΩX = {x0, x1} and given y, we put the minimal probability q(x̂|y) =
1− p(x̂|y) = min

{
p(x0|y), p(x1|y)

}
. It is clear that 0 ≤ q(x̂|y) ≤ 1/2 and

Pe =
∑

y
p(y) q(x̂|y) . (43)

The function (1 − α)−1 ln ξ increasing for α ∈ (0; 1) and decreasing for α ∈ (1;∞).
Combining the former with (39) and the latter with (40), the formula (7) gives

Rα(X|y) =
1

1− α
ln ηα

(
q(x̂|y)

)
≥ 1

1− α
ln
[
1 + 2 lnα(2) (1− α) q(x̂|y)

]
. (44)

For α ∈ (1;∞), the function (1−α)−1 ln ξ is convex. Substituting (44) into the definition
(6) and using the Jensen inequality, we get the claim (42) due to (43). In view of the
concavity of (1 − α)−1 ln ξ for α ∈ (0; 1), we now take some analog of (28). Namely, if
concave function f(ξ) obeys f(1) = 0 then

f(ξ) ≥ f(ξ1)
ξ − 1
ξ1 − 1

(45)

for each ξ ∈ [1; ξ1]. By 0 ≤ q(x̂|y) ≤ 1/2, the term ξ = 1 + 2 lnα(2) (1 − α) q(x̂|y)
certainly lies in the interval [1; ξ1] with ξ1 = 1 + lnα(2) (1 − α) = 21−α. By relevant
substitutions, we then get

Rα(X|Y ) ≥
ln
(
21−α

)
1− α

∑
y
p(y)

2 lnα(2) (1− α) q(x̂|y)
21−α − 1

, (46)

that is merely reduced just to the claim (41). �
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The inequality (41) is actually a corollary of the lower bound (38), since the relation
Rα(X|Y ) ≥ H1(X|Y ) takes place for α ∈ (0; 1). We have given the proof as it requires
only a few lines. In view of H1(X|Y ) ≥ Rα(X|Y ) for α ∈ (1;∞), no conclusions follow
here from (38). So the lower bound (42) is a new result. Because of 1 − α < 0, the
inequality (42) leads to the bound

Rα(X|Y ) ≥ (2 lnα 2)Pe , (47)

which is linear in the error probability Pe. In a certain sense, both the lower bounds
(42) and (47) are proper one-parametric extensions of the original bound (38). We shall
now deal with the THC conditional entropies.

Theorem 4.3. Suppose that #ΩX = 2. For all α ∈ (0; 1), the conditional entropy (8)
satisfies

Hα(X|Y ) ≥
{
max p(y)

}α−12 lnα(2)Pe . (48)

For all α ∈ (0;∞), the conditional entropy (10) satisfies

H̃α(X|Y ) ≥ (2 lnα 2)Pe . (49)

P r o o f . First, we will prove (49). The function (1−α)−1ξ increases with ξ for α ∈ (0; 1)
and decreases with ξ for α ∈ (1;∞). Combining the former with (39) and the latter
with (40), the formula (9) leads to

Hα(X|y) =
1

1− α

[
ηα

(
q(x̂|y)

)
− 1
]
≥ 2 lnα(2) q(x̂|y) . (50)

Substituting this point into (10) and summing with respect to y, we at once get (49).
Like the inequality (22), the claim (48) follows from (26) and (49). �

The lower bound (49) is a proper extension of the inequality (38) to the conditional
entropy (10) for all the parameter values α ∈ (0;∞). Note also that this bound is a
special case of (29) for α > 2. Similar to the bound (22), the inequality (48) leads to
the lower bound

Hα(X|Y ) ≥ (2 lnα 2)Pe , (51)

which is expressed purely in terms of the error probability Pe. Its scope, however, is
restricted to the values α ∈ (0; 1). Of course, for α > 1 we can write

Hα(X|Y ) ≥ {min p(y)}α−1 2 lnα(2)Pe , (52)

due to (32) and (49). But the formula (52) assumes that the value of min p(y) is known.
We shall now present a lower bound without such a request.

Theorem 4.4. Suppose that #ΩX = 2 and #ΩY = n. For all α ∈ (1;∞), the condi-
tional entropy (8) satisfies

Hα(X|Y ) ≥ 2α lnα(2)n1−αPα
e . (53)
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P r o o f . We firstly note that for z ∈ [0; 1/2] and α > 1, there holds

1− ηα(z) = 1− (1− z)α − zα ≥ γzα , (54)

where the factor γ = 2α−2 > 0. Indeed, the function 1− (1− z)α− (1+γ)zα is concave
for α > 1 and vanishes for both the points z = 0 and z = 1/2, i. e. it is positive in the
interval z ∈ [0; 1/2]. Then we write

Hα(X|y) =
1

α− 1

[
1− ηα

(
q(x̂|y)

)]
≥ 2α lnα(2) q(x̂|y)α , (55)

since (α− 1)−1γ = 2α lnα 2. Combining (8) and (55), for α > 1 we have

Hα(X|Y ) ≥ 2α lnα(2)
n∑

y=1

[
p(y) q(x̂|y)

]α ≥ 2α lnα(2)n1−α

[
n∑

y=1

p(y) q(x̂|y)

]α

(56)

that is merely (53) in view of (43). The right-hand side of (56) has been inserted due to
the inequality

1
n

∑n

y=1
a(y)α ≥

[
1
n

∑n

y=1
a(y)

]α

, (57)

which is valid for all α > 1 as a special case of the Jensen inequality. �

The lower bound (53) is expressed in terms of Pe and the number n = #ΩY ; the
latter is always known from the context. The inequality (57) is close to equality, when
all the a(y)’s are close to each other. If the quantities p(y) q(x̂|y) are almost equal for
all y, the lower bound (53) seems to be sufficiently tight. In the completely binary case,
when n = 2 as well, we have

Hα(X|Y ) ≥ (2 lnα 2)Pα
e . (58)

In the limit α → 1+, both the inequalities (53) and (58) coincide with the inequality (38).
Thus, we have obtained a proper extension of the lower bound (38) to the conditional
entropy (8) for parameter values α ∈ (1;∞).

(Received April 15, 2011)
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