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Abstract. We find several large classes of equations with the property that every automor-
phism of the lattice of equational theories of commutative groupoids fixes any equational
theory generated by such equations, and every equational theory generated by finitely many
such equations is a definable element of the lattice. We conjecture that the lattice has no
non-identical automorphisms.
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Introduction

The study of definability in lattices of equational theories was started in the pa-

pers [3], [4], [5] and [6] that all together represent a proof of the conjecture formulated

in the paper [11]. In the four papers it is proved that for any signature σ (containing

either at least one binary or at least two unary operation symbols), the following are

true:

(1) the lattice L of equational theories of signature σ has no automorphisms other

that the obvious, syntactically defined one;
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(2) every finitely equational theory of signature σ is definable in L up to these

automorphisms;

(3) the equational theory of any finite σ-algebra is definable in L up to these auto-

morphisms;

(4) the set of finitely based equational theories, the set of one-based equational

theories and the set of the equational theories corresponding to finitely generated

varieties of signature σ are definable subsets of the lattice L.

The result does not imply that the same would be true for the lattice of equational

theories corresponding to subvarieties of a given variety, but it suggests that the same

technique could be used in the cases when the variety is defined by linear equations

(equations containing the same variables on the left as on the right, and containing

each variable only twice). The most significant varieties of this kind are those of

semigroups, commutative semigroups and commutative groupoids.

An attempt to imitate the results of [3] through [6] to obtain the definability for

equational theories of semigroups was done in the paper [8]. At first is seemed that

everything would go through smoothly. We succeeded to translate (or modify) the

papers [3], [4], [6] and also a half of the paper [5]. But then we got stuck; the paper

brings only partial results. We still do not know if the lattice of equational theories

of semigroups has only the two obvious automorphisms. (See [12] for some more

recent development.)

A similar attempt was done for commutative semigroups in the paper [9]. Again,

the author got stuck at a place corresponding to the middle of [5]. Proceeding fur-

ther, the author succeeded however to prove that the desired aim cannot be achieved:

there are non-obvious automorphisms of the lattice (and even uncountably many).

The problems of definability in the lattice of equational theories of commutative semi-

groups have been solved completely in [1]. In particular, the group of automorphisms

of the lattice has been described.

These two circumstances naturally turn the attention to the equational theories

of commutative groupoids. It seemed at first that in this case everything would

be easy, since commutative groupoids do not differ so much from general groupoids

as semigroups do. The investigation was already started in the paper [7], which

is a commutative modification of [4]. (We do not need to fully describe modular

elements of the lattice, as in the paper [3], since in [8] we found a way how to avoid

it, and the same can be applied to commutative groupoids.) Also, a half of [5] was

translated all right. But then, again, one gets stuck.

After several vain attempts to overcome the difficulties, I gave up and the present

paper is the summary of the partial results. We obtain definability for some broad

classes of equational theories. After Section 1, where we establish the terminology

and recall basic facts, each subsequent section demonstrates definability for a class
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of theories. First, in Section 2, we deal with the so called ideal theories, defined by

certain sets of terms, and then with theories based on various types of equations.

We did not succeed to prove that the lattice of equational theories of commutative

groupoids has no non-identical automorphisms. We just conjecture it. (There are no

other obvious automorphisms in the commutative case.) However, it is also possible

that the situation will turn out to be similar to that of commutative semigroups,

that there exist unknown automorphisms. We think that this is an interesting and

challenging problem.

1. Preliminaries

This paper is a continuation of [7]. The terminology and notation introduced in

that paper remain without change; for more general topics see [10]. Let us recall that

X is a fixed infinite countable set, the elements of which are called variables, and

F is the free commutative groupoid over X ; the elements of F are called terms. The

length of a term t is denoted by λ(t), or also by |t|. The depth of a term t is denoted

by δ(t). If b is a subterm of a term a, i.e., if a = bc1 . . . cn for some terms c1, . . . , cn

(n > 0), we write b ⊆ a. The set of variables occurring in a term a is denoted

by S(a). The number of occurrences of a variable x in a term a is denoted by νx(a).

A term a is linear if νx(a) 6 1 for all variables x. A term a is unary if CardS(a) = 1.

We write b ∼ lh(a) if b is the linear hull of a and b ∼ uh(a) if b is the unary hull

of a. By a substitution we mean an endomorphism of F . By a substitution instance

of a term a we mean any term f(a) where f is a substitution. Given a variable x

and a term a, we denote by σx
a the substitution f such that f(x) = a and f(y) = y

for every variable y 6= x. For two terms a, b we write a 6 b if a substitution instance

of a is a subterm of b. We write a < b if a 6 b and b � a. We write a || b if neither

a 6 b nor b 6 a. We write a ∼ b (and say that the two terms are similar) if a 6 b

and b 6 a. The block a/∼ is called the pattern of a term a.

A term b is said to be a wonderful extension of a term a if b = ax1 . . . xn for some

n > 0 and some pairwise distinct variables x1, . . . , xn not belonging to S(a).

For two terms a, b we write a ⊑ b if νx(a) 6 νx(b) for all variables x. If a ⊑ b

and b 6⊑ a, we say that b is essentially longer than a. Observe that if b is essentially

longer than a, then f(b) is longer than f(a) for any substitution f .

By an equation we mean an ordered pair of terms. By an (equational) theory we

mean a congruence E of the groupoid F such that (a, b) ∈ E implies (f(a), f(b)) ∈ E

for any substitution f . The set of all theories is a complete lattice under inclusion.

This lattice will be denoted by L. The least element 0L of L is the set of trivial

equations (equations (a, a) for a ∈ F ) and the greatest element 1L of L is the set of

all equations.
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An equation (c, d) is said to be an immediate consequence of an equation (a, b) if

there exists a substitution f such that d can be obtained from c by replacing one

occurrence of f(a) with f(b). (I.e., if there are terms u1, . . . , un for some n > 0

such that c = f(a)u1 . . . un and d = f(b)u1 . . . un.) An equation is said to be an

immediate consequence of a set of equations E if it is an immediate consequence of

at least one equation from E.

Let E be a set of equations. By an E-derivation of an equation (a, b) we mean

a finite sequence u0, . . . , un (with n > 0) of elements of F such that u0 = a, un = b

and for any i ∈ {1, . . . , n}, either (ui−1, ui) or (ui, ui−1) is an immediate consequence

of E. An equation is said to be derivable from E if it has at least one E-derivation. It

is easy to prove that the set of the equations that are derivable from E is just the least

theory containing E. It will be denoted by Cn(E) and called the theory generated

by E, or the theory based on E, and its elements will be called consequences of E. For

an equation (u, v) put Cn(u, v) = Cn({(u, v)}); such theories are called one-based.

By a minimal E-derivation of an equation (a, b) we mean an E-derivation

u0, . . . , un of (a, b) such that n 6 m for any other E-derivation v0, . . . , vm of

that equation. Clearly, every equation from Cn(E) has a minimal E-derivation.

By a full set we mean a set J ⊆ F such that a ∈ J and a 6 b imply b ∈ J . If

J is a full set, we define IJ = 0L ∪ J2. Clearly, this is a theory. Theories obtained

from full sets in this way will be called ideal theories. The mapping J → IJ is an

isomorphism of the distributive lattice of full sets onto the lattice of ideal theories,

which is a complete sublattice of L.

For a term a put Ia = IJ where J = {t : t > a}. The theories Ia (for a ∈ F ) will

be called principal ideal theories.

We denote by Es the theory of semilattices. It consists of the equations (a, b) such

that S(a) = S(b).

A set E of equations is said to be good if there exists a first-order formula ϕ(x1, x2)

with two free variables x1, x2 in the language of ordered sets such that for any pair T1,

T2 of theories, ϕ(T1, T2) is satisfied in L if and only if T1 = IH(a,b) and T2 = Cn(a, b)

for some equation (a, b) ∈ E. (The code-terms H(a, b) were introduced in [7].)

Proposition 1.1. Let E be a good set of equations. Then:

(1) The set of the theories based on an equation from E is definable.

(2) The set of the theories based on a finite set of equations from E is definable.

(3) For every (a, b) ∈ E, the theory Cn(a, b) is a definable element of L.

(4) Every automorphism of L coincides with the identity on all the elements of L

that are theories based on a subset of E.

P r o o f. This is easy. (The results of [7] can be used.) �
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Clearly, the union of a finite collection of good sets of equations is good. Every

good set of equations is closed under similarity. (Two equations (a, b) and (c, d) are

called similar if α(a) = c and α(b) = d for an automorphism α of F .)

Suppose that K1 is a good set of equations and K2 is another set of equations,

perhaps larger than K1, for which we prove that whenever (a, b) ∈ K2 then Cn(a, b)

is the greatest (or perhaps the smallest, or the only) theory T satisfying, together

with some more simple, first-order expressible conditions, the following condition:

for any (c, d) ∈ K1, (c, d) ∈ T if and only if (c, d) is a consequence of (a, b). Then,

if K2 has been defined syntactically in a reasonable way, it follows from the results

of [7] that K2 is also good. (By saying that K2 has been defined in a reasonable way

we mean that the techniques explained in [7] can be used to show that the set of the

code-terms H(a, b) with (a, b) ∈ K2 is definable in the ordered set of term patterns.)

We will prove in Section 3 that the set of strictly parallel equations is good and

then continue to build larger good sets of equations in this way. We would get the

complete decidability result if this process can lead in finitely many steps to obtain

the set of all equations as a good set, similarly as it has been done in [5] for equational

theories of universal algebras. In the present paper we will not get that far.

According to a folklore result (every non-regular equational theory is generated

by its regular equations together with any one of its non-regular equations), it is

sufficient to restrict ourselves to regular equations—equations (a, b) such that S(a) =

S(b).

2. Definability of ideal theories

Theorem 2.1. Let J be a full set. Then IJ and IJ ∩ Es are modular elements

of L.

P r o o f. Let T be either IJ or IJ ∩ Es. Let A, B be two theories such that

A ⊆ B, B ⊆ A∨ T and B ∩ T ⊆ A. In order to prove that T is modular, we need to

show that A = B.

Consider first the case when either T = IJ or A ⊆ Es. Let (a, b) ∈ B. There exists

an (A∪T )-derivation a0, . . . , an of (a, b). We will prove (a, b) ∈ A by induction on n.

If n = 0 then (a, b) = (a, a) ∈ A. Let n > 0. If (a, a1) ∈ A then a1, . . . , an is a shorter

(A ∪ T )-derivation of (a1, b) ∈ B, so (a1, b) ∈ A by induction and we get (a, b) ∈ A.

If (an−1, b) ∈ A, we get (a, b) ∈ A similarly. If (a, a1) ∈ T −A and (an−1, b) ∈ T −A

then both a and b belong to J . So, if T = IJ , we get (a, b) ∈ B ∩ T ⊆ A; if

T = IJ ∩ Es, then B ⊆ A ∨ T ⊆ Es, and again (a, b) ∈ B ∩ T ⊆ A.

It remains to consider the case when T = IJ ∩ Es and A 6⊆ Es.

Claim 1 : If (a, b) ∈ B where a, b ∈ J and S(a) ⊆ S(b), then (a, b) ∈ A.
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It is easy to see that since A 6⊆ Es, there exists a term s = s(x, y) with S(s) =

{x, y} (for two distinct variables x, y) such that (s(x, y), s(x, x)) ∈ A. Choose

a variable x0 ∈ S(a). Define two substitutions f , g by f(z) = g(z) = z for z ∈ S(a)

and f(z) = s(x0, z) and g(z) = s(x0, x0) for the variables z not belonging to S(a).

Since (f(z), g(z)) ∈ A for all variables z, we have (f(b), g(b)) ∈ A. Now (a, g(b)) ∈

B ∩ T ⊆ A, (g(b), f(b)) ∈ A, (f(b), b)) ∈ B ∩ T ⊆ A, so that (a, b) ∈ A.

Claim 2 : If (a, b) ∈ B and there is no term c ∈ J with (a, c) ∈ A, then (a, b) ∈ A.

Let a0, . . . , an be an (A∪ T )-derivation of (a, b). By induction on i = 0, . . . , n one

can easily prove that (a, ai) ∈ A.

Let (a, b) ∈ B. We need to prove that (a, b) ∈ A. By Claim 2 (and its symmetric

version) we can assume that there exist terms c, d ∈ J with (a, c) ∈ A and (b, d) ∈ A.

If S(c) = S(d), then (c, d) ∈ B ∩ T ⊆ A and hence (a, b) ∈ A. So, without loss of

generality we can suppose that S(c) 6⊆ S(d). Define a substitution f by f(x) = cd

for x ∈ S(c) − S(d) and f(x) = x for all the other variables x. We have (c, d) ∈ B,

(f(c), f(d)) ∈ B where f(d) = d, so (c, f(c)) ∈ B. But c, f(c) ∈ J and S(c) ⊆

S(f(c)), so (c, f(c)) ∈ A by Claim 1. Also, (f(c), d) ∈ B together with f(c), d ∈ J

and S(d) ⊆ S(f(c)) imply (f(c), d) ∈ A by Claim 1. Hence (c, d) ∈ A and we get

(a, b) ∈ A. �

Theorem 2.2. Let T be a modular element of L. Denote by U the set of the

terms a for which there exists a term b such that (a, b) ∈ T and b 6= p(a) for any

permutation p of S(a). Then U is a full set and (U × U) ∩ Es ⊆ T . If T 6= 0L, then

U is nonempty.

P r o o f. Claim 1 : For every a ∈ U there exists a term b such that (a, b) ∈ T ,

b � a and S(a) = S(b).

We have (a, c) ∈ T for some c such that c 6= p(a) for any permutation p of S(a).

If there exists a variable x ∈ S(a) − S(c), we can take b = f(a) where f is the

substitution with f(x) = aa and f(y) = y for all variables y 6= x. If S(a) ⊆ S(c)

and there exists a variable x ∈ S(c)−S(a), take b = f(c) where f is the substitution

mapping the variables from S(a) onto themselves and mapping all other variables

onto a. Now let S(a) = S(c). If c � a, take b = c. If c 6 a, then c < a,

a = f(c)a1 . . . ak for a substitution f and some terms a1, . . . , ak, and we can take

b = f(a)a1 . . . ak.

Claim 2 : For every a ∈ U there exists a term b such that (a, b) ∈ T , a ⊂ b and

S(a) = S(b).

By Claim 1 there exists a term c such that (a, c) ∈ T , c � a and S(a) = S(c).

Denote by A the theory generated by (c, cc) and by B the theory generated by (a, aa)

and (c, cc). We have A ⊆ B and (a, aa) ∈ (A∨T )∩B = A∨ (T ∩B). So, there exists
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an (A ∪ (T ∩ B))-derivation of (a, aa). In particular, there exists a term b 6= a such

that either (a, b) ∈ A or (a, b) ∈ T ∩B. Since c � a, we cannot have (a, b) ∈ A. Hence

(a, b) ∈ T ∩B and there exists a B-derivation u0, . . . , uk of (a, b). Easily by induction

on i = 0, . . . , k, a ⊆ ui. Hence a ⊂ b. Since (a, b) ∈ B, we have S(a) = S(b).

Claim 3 : If p, q, r, s are terms such that p � r, q � r, p � s, q � s, r || s,

S(r) = S(s) and T ∪ {(p, q)} |= (r, s), then (r, s) ∈ T .

Denote by A the theory generated by (p, q) and by B the theory generated by

(p, q) and (r, s). We have A ⊆ B and (r, s) ∈ (A ∨ T ) ∩ B = A ∨ (T ∩ B). Let

u0, . . . , uk be a minimal A ∪ (T ∩ B)-derivation of (r, s). Let us prove by induction

on i that ui can be obtained by a permutation of variables from either r or s, and

(r, ui) ∈ T ∩ B. This is clear for i = 0. Let i > 0 and let ui−1 be either α(r) or

α(s) for a permutation α of S(r). Then p � ui−1, q � ui−1 and so (since ui−1 6= ui)

(ui−1, ui) /∈ A. Hence (ui−1, ui) ∈ T ∩ B. Since (r, ui−1) ∈ T ∩ B by induction, we

get (r, ui) ∈ T ∩B. There is a {(p, q), (r, s)}-derivation v0, . . . , vm of (ui−1, ui). Now

v0 can be obtained by a permutation of variables from either r or s. Since r || s, it

is easy to prove by induction on j that also vj can be obtained by a permutation of

variables from either r or s. In particular, this is true for ui and we are done with

the induction. We get (r, s) ∈ T ∩ B ⊆ T .

We say that a term a is well-behaved if (a, d) ∈ T for every term d such that a ⊆ d

and S(a) = S(d).

Claim 4 : If a ∈ U and if there exist a term b and an infinite sequence x1, x2, . . .

of variables from S(a) such that (a, b) ∈ T , a ⊂ b, S(a) = S(b) and b � ax1 . . . xk

for all k, then a is well-behaved.

We have b = ab1 . . . bm for some terms b1, . . . , bm. Let d be a term such that a ⊂ d

and S(a) = S(d). We have d = ad1 . . . dn for some terms d1, . . . , dn. Take k so

large that ax1 . . . xk is longer than bb1 . . . bmd1 . . . dn. One can easily check that the

assumptions of Claim 3 are all satisfied if we put

p = bx1 . . . xk, q = bb1 . . . bm, r = ax1 . . . xk, s = b

and that they are also satisfied if we put

p = bx1 . . . xk, q = bb1 . . . bmd1 . . . dn, r = ax1 . . . xk, s = bd1 . . . dn.

It follows from the first observation that (ax1 . . . xk, b) ∈ T , from which we get

(ax1 . . . xk, a) ∈ T ; and from the second observation that (ax1 . . . xk, bd1 . . . dn) ∈ T ,

whence (ax1 . . . xk, d) ∈ T . But then (a, d) ∈ T .

Claim 5 : If a ∈ U is not well-behaved, then every term b such that (a, b) ∈ T ,

a ⊂ b and S(a) = S(b) can be written as b = ay1 . . . yr for a sequence y1, . . . , yr
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of variables such that r ≡ 0 mod n, where n is the cardinality of S(a), and yi = yj

implies i ≡ j mod n.

We have b = ay1 . . . yr for some terms y1, . . . , yr. Consider the infinite sequence

x1, x2, . . ., where {x1, . . . , xn} = S(a) and xi = xi−n for i > n. According to Claim 4,

b 6 ax1 . . . xk for some k. Clearly, this implies that y1, . . . , yr are variables and

yi = yj implies i ≡ j mod n. We also have (a, az1 . . . z2r) ∈ T where zi = zi+r = yi

for i = 1, . . . , r, so we can similarly conclude that zi = zj implies i ≡ j mod n. But

this is possible only if r ≡ 0 mod n.

Claim 6 : Every term a ∈ U is well-behaved.

Suppose that a is not well-behaved. By Claim 2 there exists a term b such that

(a, b) ∈ T , a ⊂ b and S(a) = S(b). By Claim 5, b can be written as b = ay1 . . . yr

where {y1, . . . , yr} = S(a). Take a variable x ∈ S(a). By Claim 4 we have b 6

ax1 . . . xk for some k, where x1 = . . . = xk = x. Clearly, this is possible only if

S(a) = {x}. In particular, y1 = . . . yr = x. Take a variable y 6= x. We have (ay, by) ∈

T , so that ay ∈ U . Moreover, ay contains two variables and we have already proved

that every such term, belonging to U , is well-behaved. Hence (ay, ay · xx) ∈ T and

then (ax, ax · xx) ∈ T . From this we get (a, (ax · xx)y2 . . . yr) ∈ T , a contradiction

by Claim 5.

Claim 7 : U is a full set.

Let a ∈ U and a 6 b. We need to prove that b ∈ U . We have f(a) ⊆ b for

a substitution f . By Claim 2 there exists a term c with (a, c) ∈ T , a ⊂ c and

S(a) = S(c). Denote by b′ the term obtained from b by replacing one occurrence

of f(a) with f(c). Since (b, b′) ∈ T and b′ is longer than b, we get b ∈ U .

Claim 8 : We have (a, b) ∈ T for any two terms a, b ∈ U with S(a) = S(b).

Indeed, by Claim 6 we have (a, ab) ∈ T and (b, ab) ∈ T .

Claim 9 : If T 6= 0L, then U is nonempty.

We have (a, b) ∈ T for some a 6= b. We can suppose that b = p(a) for a permuta-

tion p of S(a), since otherwise both a and b belong to U . Denote by x1, . . . , xn the

variables from S(a), so that n > 1. We have (ax1 . . . xn, bx1 . . . xn) ∈ T , and clearly

bx1 . . . xn 6= p(ax1 . . . xn) for any permutation p of S(a). �

Theorem 2.3. Es is the only modular coatom T of L with the property that

whenever T = A ∨ B for two modular elements A, B of L then either T = A or

T = B. Consequently, Es is a definable element of L.

P r o o f. Es is modular by Theorem 2.1; of course, it is a coatom of L. Let

Es = A∨B where A andB are both modular. Let x be a variable. Since (x, xx) ∈ Es,

there exists an A ∪ B-derivation of (x, xx). Consequently, there exists a term a 6= x

such that (x, a) belongs to either A or B. Without loss of generality, (x, a) ∈ A. But

then it follows from Theorem 2.2 that A = Es.
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Suppose that there exists a modular coatom T 6= Es of L with the same property.

If (x, a) ∈ T for some variable x and some a 6= x, then T = Es by Theorem 2.2,

a contradiction. It follows that T ⊆ IJ where J is the full set of the terms that are

not variables. Since T is a coatom, we get T = IJ . But IJ is a nontrivial join of two

modular elements, e.g., IJ = (IJ ∩Es)∨ IK where K is the set of all terms of length

at least 3. �

Theorem 2.4. A theory T is an intersection of a principal ideal theory with Es

if and only if it satisfies the following three conditions:

(1) T is modular and 0L ⊂ T ⊆ Es;

(2) for every modular theory S such that 0L ⊂ S ⊂ T there exists a theory U ⊆ T

for which there is no smallest theory V ⊆ T with the property U ⊆ (U ∩S)∨V ;

(3) whenever T = M1∨M2 whereM1 andM2 are both modular theories then either

T = M1 or T = M2.

Consequently, the set of the theories Ia ∩ Es, where a is a term, is definable.

P r o o f. Let T = Ia ∩Es. By Theorem 2.1, T is modular; the rest of (1) is clear.

Let 0L ⊂ S ⊂ T where S is modular. Denote by J the set of the terms t for which

there exists a term t′ such that (t, t′) ∈ S and t′ 6= p(t) for any permutation p of S(t).

By Theorem 2.2, J is a nonempty full set and IJ ∩ Es ⊆ S. Since S ⊂ T , we have

J ⊂ Ia and a /∈ J . Put U = Cn(a, aa), so that U ⊆ T , and suppose that there is

a smallest theory V ⊆ T with U ⊆ (U ∩ S) ∨ V ; we need to obtain a contradiction

from this assumption. Denote by W the set of the terms w ∈ J such that S(w) =

{x}, where x is a fixed variable. Clearly, W is nonempty. For w ∈ W we have

wx ∈ J , (w(a), w(a)a) ∈ U ∩S, (a, w(a)) ∈ T and hence U ⊆ (U ∩S)∨Cn(a, w(a));

consequently, V ⊆ Cn(a, w(a)). For every w ∈ W , (a, w(a)) is contained in the

theory consisting of the equations (u, v) such that for every variable y, νy(u)− νy(v)

is divisible by λ(w)−1. Consequently, whenever (u, v) ∈ V then for every variable y,

νy(u) − νy(v) is divisible by λ(w) − 1. But obviously, for every w ∈ W there exists

a term w′ ∈ W with λ(w′) = λ(w) + 1. It follows that (u, v) ∈ V is possible only if

νy(u) = νy(v) for all variables y. Since (a, aa) ∈ (U ∩S)∨V , there is an (U ∩S)∪V -

derivation u0, . . . , un of (a, aa). Let us prove by induction on i that λ(ui) = λ(a)

and S(ui) = S(a). This is clear for ui = u0 = a; let it be true for some ui with i < n.

If (ui, ui+1) ∈ V , then the conclusion for ui+1 follows from the above observation. If

(ui, ui+1) ∈ U ∩ S, then it follows from a /∈ J that ui+1 = p(ui) for a permutation p

of S(ui), so that λ(ui+1) = λ(ui) and S(ui+1) = S(ui). The induction has been

finished. In particular, λ(aa) = λ(a), a contradiction.
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Let T = M1 ∨ M2 where M1 and M2 are modular. Since (a, aa) ∈ T , there exists

a term b such that (a, b) ∈ Mi for an i ∈ {1, 2} and b 6= p(a) for any permutation p

of S(a). Then it follows from Theorem 2.2 that T = Mi.

Now we are going to prove the converse implication. Let T be a theory satisfying

the three conditions. Denote by J the set of the terms t for which there exists a term t′

such that (t, t′) ∈ T and t′ 6= p(t) for any permutation p of S(t). By Theorem 2.2,

J is a nonempty full set and IJ ∩Es ⊆ T . Suppose that T 6= IJ ∩Es. Put S = IJ ∩Es,

so that S is modular by Theorem 2.1 and 0L ⊂ S ⊂ T . Let U be a theory contained

in T . For every term a ∈ J we have a/S = a/T = {b ∈ F : S(a) = S(b)}. For every

term a /∈ J we have a/S = {a}, and a/T may contain only the terms p(a) where p is

a permutation of S(a) (so that a/T is finite). From this it follows easily that for any

theory V contained in T , U ⊆ (U ∩S)∨V if and only if U ∩ ((F −J)× (F −J)) ⊆ V .

So, there is a smallest theory among such theories V . This contradiction with (2)

proves that T = IJ ∩ Es.

Since J is nonempty, there exists a minimal term a in J . Denote by Q the set

of the minimal terms of J that are not similar to a and denote by K the full set

generated by Q. Clearly, T = (Ia ∩ Es) ∨ (IK ∩ Es). By (3), either T = Ia ∩ Es or

T = IK ∩ Es. But then, T = Ia ∩ Es. �

Theorem 2.5. A theory T is an ideal theory if and only if either T = 0L or else

T is modular, T 6⊆ Es, and there does not exist a modular theory S ⊂ T such that

S 6⊆ Es and U ⊆ S for any theory U ⊆ T that is an intersection of a principal ideal

theory with Es. Consequently, the set of ideal theories is definable. Also, the set of

principal ideal theories is definable.

P r o o f. This follows easily from the previous theorems. �

Theorem 2.6. Every principal ideal theory is definable.

P r o o f. For two terms a, b we have Ia ⊆ Ib if and only if a > b, so that the

ordered set P of principal ideal theories is antiisomorphic to the ordered set of term

patterns. By Theorem 2.5, P is a definable subset of the lattice L. According

to Theorem 8.1 of [7], every term pattern is a definable element of the ordered set

of term patterns. Consequently, every principal ideal theory is a definable element

of L. �

For every term a denote by M(a) the set of all equations (u, v) such that either

u = v or u > a and v > a or u ∼ v ∼ a and S(u) = S(v). It is easy to check that

M(a) is a theory. We have M(a) = M(b) if and only if I(a) = I(b) if and only if

a ∼ b.
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Proposition 2.7. For a term a, M(a) is the largest modular element T of L such

that T ⊂ Ia and T 6⊆ Es.

Consequently, the binary relation R, where (T1, T2) ∈ R if and only if T1 = Ia and

T2 = M(a) for a term a, is definable.

P r o o f. First we are going to show that M(a) is modular. Let A, B be two

theories such that A ⊆ B, B ⊆ A ∨ M(a) and B ∩ M(a) ⊆ A. We need to show

that A = B. Suppose, on the contrary, that there is an equation (b, c) ∈ B − A

and take one for which the length n of a minimal (A ∪ M(a))-derivation b0, . . . , bn

of (b, c) is the smallest possible. We have (b, c) /∈ M(a), since otherwise we would

have (b, c) ∈ B ∩ M(a) ⊆ A. In particular, a 6= b and n > 0. If (b, b1) ∈ A

then b1, . . . , bn is a shorter (A ∪ M(a))-derivation of the equation (b1, c) ∈ B, so

that (b1, c) ∈ A and thus (b, c) ∈ A, a contradiction. We get (b, b1) ∈ M(a) −

A. Similarly, (bn−1, c) ∈ M(a) − A. Since (b, c) /∈ M(a), we have b ∼ b1 ∼ a,

S(b) = S(b1) and bn−1, c > a (or vice versa, but the other symmetric case would be

handled similarly). Then n > 3. There is a permutation p of S(b) with b1 = p(b).

Since (b1, b2) ∈ A, we have (p−1(b1), p
−1(b2)) ∈ A, i.e., (b, p−1(b2)) ∈ A. Now,

clearly b, p−1(b2), p
−1(b3), . . . , p

−1(bn−1), c is a shorter (A∪M(a))-derivation of (b, c),

a contradiction.

Clearly, M(a) ⊂ Ia and M(a) 6⊆ Es. Conversely, if T is a modular element

of L such that T ⊂ Ia and T 6⊆ Es, then it follows easily from Theorem 2.2 that

T ⊆ M(a). �

For a term a we denote by I∗a the largest ideal theory properly contained in Ia,

i.e., the ideal theory IJ where J is the full set generated by all the covers of a. We

have (u, v) ∈ I∗a if and only if either u = v or u, v > a.

3. Parallel equations

By a parallel equation we mean a regular equation (a, b) such that a, b are two

incomparable terms.

For every term a we denote by Ga the set of the permutations p of S(a) such that

p(a) = a. Clearly, Ga is a subgroup of the symmetric group on S(a). (See [2] for an

exact description of Ga).

The following two facts can be found in [1] and [2].

Fact 3.1. Let a be a term and p be a permutation of S(a). Then Gp(a) = pGap−1.

Fact 3.2. Let (a, b) be a parallel equation and p be a permutation of S(a). Then

(a, p(b)) ∈ Cn(a, b) if and only if p ∈ Ga ∨Gb (the join in the lattice of subgroups of

the symmetric group on S(a)).
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An equation (a, b) is said to be mini-parallel if it is parallel and for any permu-

tation p of S(a), if (a, p(b)) is a consequence of (a, b) then (a, p(b)) is equivalent

with (a, b).

Lemma 3.3. A parallel equation (a, b) is mini-parallel if and only if

Ga ∨ Gp(b) = Ga ∨ Gb

for every p ∈ Gb.

P r o o f. This follows from Fact 3.2. �

Lemma 3.4. Every parallel equation (a, b) has a mini-parallel consequence

(a, p(b)) for some permutation p of S(a).

P r o o f. This is evident. �

Example 3.5. The equation (xyzz, (xx · zz)y) is parallel but not mini-parallel;

(xyzz, (xx · yy)z) is its mini-parallel consequence.

Lemma 3.6. Let (a, b) be a parallel equation and T be a theory; put S = S(a) =

S(b). Then T = Cn(a, p(b)) for some permutation p of S such that (a, p(b)) is

mini-parallel if and only if the following are satisfied:

(1) T ⊆ Es;

(2) T 6⊆ M(a) ∨ M(b);

(3) Ia ∨ Ib is the ideal theory generated by T ;

(4) whenever U is a theory such that U ⊂ T then U ⊆ M(a) ∨ M(b).

P r o o f. Clearly, (u, v) ∈ M(a) ∨ M(b) if and only if either u = v or u ∼ v ∼ a

and S(u) = S(v) or u ∼ v ∼ b and S(u) = S(v) or each of the terms u, v is (strictly)

larger than at least one of the terms a, b. Let T = Cn(a, p(b)) where (a, p(b)) is mini-

parallel. The first three conditions are obviously satisfied. Let U ⊂ T and suppose

that U 6⊆ M(a) ∨ M(b). Since U ⊆ Ia ∨ Ib and U 6⊆ M(a) ∨ M(b), either (a, a′) ∈ U

for some a′ 6∼ a or (b, b′) ∈ U for some b′ 6∼ b. But U ⊆ Cn(a, p(b)), so in each

case we get (a, qp(b)) ∈ U for some permutation q. Since (a, p(b)) is mini-parallel,

(a, qp(b)) is equivalent with (a, p(b)). But then T = U , a contradiction.

Conversely, let the four conditions be satisfied. By (2) and (3), either (a, a′) ∈ T for

some a′ 6∼ a or (b, b′) ∈ T for some b′ 6∼ b. If (a, a′) ∈ T then a′ ∼ b, since otherwise

we would have either a′ > a or a′ > b, Cn(a, a′) 6⊆ M(a) ∨ M(b) and hence T =

Cn(a, a′) by (4), a contradiction with (3). So, if (a, a′) ∈ T then a′ ∼ b. Similarly,

if (b, b′) ∈ T then b′ ∼ a. In each case we get (a, p(b)) ∈ T for a permutation p
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of S(a). Since Cn(a, p(b)) 6⊆ M(a) ∨ M(b), by (4) we get T = Cn(a, p(b)). If q is

a permutation such that (a, qp(b)) is a consequence of (a, p(b)), then it follows from

(4) that T = Cn(a, qp(b)). Consequently, (a, p(b)) is a mini-parallel equation. �

Let a be a term. By an a-permutational theory we mean a theory that has a base

consisting of equations (a, p(a)), for some permutations p of S(a).

Proposition 3.7. Let a be a term. A theory T is a-permutational if and only if

either T = 0L or the following conditions are satisfied:

(1) Ia is the ideal theory generated by T ;

(2) T ⊆ M(a);

(3) whenever U is a theory such that U ⊆ M(a) and U ∨ I∗a = T ∨ I∗a then T ⊆ U .

Consequently, the binary relation R where (T1, T2) ∈ R if and only if T1 = Ia and

T2 is an a-permutational theory for some term a, is definable.

P r o o f. Let T be a-permutational and T 6= 0L. Clearly, the conditions (1) and

(2) are satisfied. Let U ⊆ M(a) and U ∨ I∗a = T ∨ I∗a . We have (u, v) ∈ U ∨ I∗a
if and only if either (u, v) ∈ I∗a or (u, v) ∈ U , u ∼ v ∼ a and S(u) = S(v). We

have (u, v) ∈ T ∨ I∗a if and only if either (u, v) ∈ I∗a or (u, v) ∈ T , u ∼ v ∼ a and

S(u) = S(v). Since U ∨ I∗a = T ∨ I∗a , it follows that for every permutation p of S(a),

(a, p(a)) ∈ U if and only if (a, p(a)) ∈ U . But T is generated by such equations, so

T ⊆ U .

Conversely, let (1), (2) and (3) be satisfied. Denote by G the set of the permuta-

tions p of S(a) such that (a, p(a)) ∈ T . Then G is a group and Ga ⊆ G; it follows

from (1) and (2) that Ga ⊂ G. Denote by U the theory based on the equations

(a, p(a)) with p ∈ G, so that U is a-permutational and U ⊆ T . Clearly, U ⊆ M(a)

and U ∨ I∗a = T ∨ I∗a . By (3), T = U . �

Lemma 3.8. Let a, b be two terms, f be a substitution and x1, . . . , xn (n > 0)

be variables such that

(1) f(a) = bx1 . . . xn;

(2) if 1 6 i 6 n and i 6 λ(a) then xi /∈ S(b);

(3) if 1 6 i + 1 6 i + k 6 n and k 6 λ(a) then xi+1, . . . , xi+k are pairwise distinct.

Then either a is a slim linear term or a = a1y1 . . . yn for a term a1 and pairwise

distinct variables y1, . . . , yn not belonging to S(a1). If a = b and n > 1, then a is

a slim linear term.

P r o o f. The first statement will be proved by induction on n. For n = 0 it

is clear. Let n > 1 and suppose a is not a slim linear term. Then a = cd for two

terms c, d with f(c) = bx1 . . . xn−1 and f(d) = xn. Of course, d is a variable. By
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the induction assumption applied to the terms c, b and the variables x1, . . . , xn−1,

there are only two cases to be considered.

Case 1 : c is a slim linear term. Then a = y1 . . . ymd where y1, . . . , ym are pair-

wise distinct variables and d = yi for some i. It follows that xn has at least

two occurrences in bx1 . . . xn, so that n > λ(a) = m + 1; we have f(d) = xn,

f(ym) = xn−1, . . . , f(y3) = xn−m+2 and {f(y1), f(y2)} = {bx1 . . . xn−m, xn−m+1}.

But bx1 . . . xn−m, xn−m+1, . . . , xn are pairwise different, so y1, . . . , ym, d are pairwise

distinct, a contradiction. This case is not possible.

Case 2 : c = c1y1 . . . yn−1 where y1, . . . , yn−1 are pairwise distinct variables not

belonging to S(c1). Then a = c1y1 . . . yn−1d, f(c1) = b, f(yi) = xi and f(d) = xn.

Since λ(a) > n, xn /∈ S(bx1 . . . xn−1) and so d /∈ S(c1y1 . . . yn−1). We can put a1 = c1

and yn = d.

In order to prove the second statement, let f(a) = ax1 . . . xn and suppose that

a is not slim and linear. By the first statement, a = a1y1 . . . yn where y1, . . . , yn

are pairwise distinct variables not belonging to S(a1). Since f(a1y1 . . . yn) =

a1y1 . . . ynx1 . . . xn, we have f(a1) = a1y1 . . . yn and hence a1 is a slim linear term

(it is obvious in this case, or we could also proceed by induction on the length of a).

But then a is a slim linear term. �

An equation (a, b) is said to be strictly parallel if the following conditions are

satisfied:

(1) (a, b) is parallel and neither a nor b is a slim linear term;

(2) Ga = Gb = idS(a);

(3) whenever a is a wonderful extension of a term a1 then b is not a substitution

instance of a1;

(4) whenever b is a wonderful extension of a term b1 then a is not a substitution

instance of b1.

It follows from Lemma 3.3 that every strictly parallel equation is mini-parallel.

Proposition 3.9. Let (a, b) be a strictly parallel equation and let T be a theory.

Then T = Cn(a, b) if and only if the following two conditions are satisfied:

(1) T = Cn(a, p(b)) for a permutation p of S(a) such that (a, p(b)) is mini-parallel;

(2) whenever (c, d) is a parallel consequence of (a, b) then (c, q(d)) ∈ T for a per-

mutation q of S(c) such that (c, q(d)) is mini-parallel.

P r o o f. The direct implication is obvious. Let (1) and (2) be satisfied. By (1),

T = Cn(a, p(b)) for some permutation p and we only need to prove that p is the

identity. Take a number m such that m > λ(a) and m > λ(b). Take a sequence

x1, . . . , xn of variables such that S(a) ⊆ {x1, . . . , xn}, whenever 1 6 i + 1 6 i + k 6
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n and k 6 m then xi+1, . . . , xi+k are pairwise distinct and whenever xi ∈ S(a)

then i > m and xi−1, . . . , xi−m /∈ S(a). Clearly, (ax1 . . . xn, bx1 . . . xn) is a parallel

consequence of (a, b). So, by (2), there is a permutation q of S(ax1 . . . xn) such that

(ax1 . . . xn, q(bx1 . . . xn)) is a consequence of (a, p(b)).

Let c be a term such that (ax1 . . . xn, c) is an immediate consequence of ei-

ther (a, p(b)) or (p(b), a). It follows from Lemma 3.8 that p(b) � ax1 . . . xn, so

(ax1 . . . xn, c) can be only an immediate consequence of (a, p(b)). There exists a sub-

stitution f such that f(a) ⊆ ax1 . . . xn and c can be obtained from ax1 . . . xn by

replacing an occurrence of f(a) with fp(b). It follows from Lemma 3.8 that f(a) = a,

hence c = fp(b)x1 . . . xn. Since Ga contains only the identity, f is the identity and

c = p(b)x1 . . . xn.

We can show quite similarly that if c is a term such that (p(b)x1 . . . xn, c) is an im-

mediate consequence of either (a, p(b)) or (p(b), a) then c = ax1 . . . xn. Since there ex-

ists an (a, p(b))-derivation of (ax1 . . . xn, q(bx1 . . . xn)), it follows that only two terms

can be members of this derivation, namely, the terms ax1 . . . xn and p(b)x1 . . . xn. In

particular, we get q(bx1 . . . xn) = p(b)x1 . . . xn. Then q(b) = p(b) and q(xi) = xi for

all i. Since S(b) ⊆ {x1, . . . , xn}, it follows that q is the identity and p(b) = b. �

Theorem 3.10. The set of strictly parallel equations is good.

P r o o f. The two conditions in Proposition 3.9 can be more formally expressed

to obtain the desired first-order formula; the pieces of the form ‘T = Cn(u, g(v))

for a permutation g such that (u, g(v)) is mini-parallel’ should be reformulated using

Lemma 3.6. �

4. Nice equations

A term a is said to be strongly nice if it is a product of two terms, none of which

is a variable; it is said to be weakly nice if it is a product of a variable with a term

containing this variable; it is said to be nice if it is either strongly or weakly nice.

An equation (a, b) is said to be nice if it is regular and both a and b are nice.

Theorem 4.1. Let (a, b) be a nice equation. Then Cn(a, b) is the greatest the-

ory T such that T ⊆ Es and any strictly parallel equation belongs to T if and only

if it is a consequence of (a, b). Consequently, the set of nice equations is good.

P r o o f. Let T be a such a theory; we need to prove that T ⊆ Cn(a, b). Let

(c, d) ∈ T and c 6= d. Put m = max(λ(c), λ(d)). Clearly, there exists a sequence

x1, . . . , xn of variables such that n > 2m, S(c) ⊆ {x1, . . . , xn}, x1, . . . , xm /∈ S(c),

x1, . . . , xn−1 are pairwise distinct and xn = xn−m.
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Suppose that cx1 . . . xn 6 dx1 . . . xn. Since n > m, we have f(cx1 . . . xn) =

dx1 . . . xi for some substitution f and some i; clearly, i > n − m. Since n > 2m,

we have i − m > 1 and f(xn) = xi, f(xn−1) = xi−1, . . ., f(xn−m) = xi−m. If

i 6= n, we get a contradiction from xn = xn−m and xi 6= xi−m. So, i = n and

f(cx1 . . . xn) = dx1 . . . xn. Consequently, one of the following two cases takes place.

Case 1 : f(c) = d and f(xi) = xi for all i. Since S(c) ⊆ {x1, . . . , xn}, we get

f(c) = c, so that c = d, a contradiction.

Case 2 : f(c) = x1, f(x1) = d and f(xi) = xi for all i > 2. Then c is a variable,

c = xj for some j and clearly j 6= 1, so that f(c) = c and again c = d, a contradiction.

We have proved cx1 . . . xn � dx1 . . . xn. Quite similarly, dx1 . . . xn � cx1 . . . xn.

So, (cx1 . . . xn, dx1 . . . xn) is a parallel equation. Obviously, it is strictly parallel.

Since it belongs to T , it is a consequence of (a, b) and there is an (a, b)-derivation

u0, . . . , uk of this equation.

Let us prove by induction on i that ui = vix1 . . . xn for some term vi such that

(c, vi) is a consequence of (a, b). For i = 0 it is clear. Let i > 1. Without loss of

generality, (ui−1, ui) is an immediate consequence of (a, b). There is a substitution f

such that f(a) ⊆ ui−1 = vi−1x1 . . . xn and ui results from ui−1 by replacing f(a)

with f(b). If f(a) ⊆ vi−1, then ui = vix1 . . . xn where vi results from vi−1 by

replacing f(a) with f(b), so that (vi−1, vi) is a consequence of (a, b) and then it follows

from the induction assumption that (c, vi) is a consequence of (a, b). The other case

is f(a) = vi−1x1 . . . xr for some r > 1. If r 6 m then xr /∈ S(vi−1x1 . . . xr−1), so that

a cannot be nice, a contradiction. Hence r > m. Then xr−m+1, . . . , xr are pairwise

distinct variables; since λ(a) 6 m and f(a) = exr−m+1 . . . xr for some term e, we

get that a is a slim linear term; but then a is not nice, a contradiction.

In particular, dx1 . . . xn = vnx1 . . . xn where (c, vn) is a consequence of (a, b). But

then (c, d) is a consequence of (a, b). We have proved T ⊆ Cn(a, b). �

5. Modest equations

An equation (a, b) is said to be modest if it is regular, a, b are of length > 3 and

there exists a variable x such that a = a1x and b = b1x for some terms a1, b1 with

x /∈ S(a1) and x /∈ S(b1).

Denote by EM the set of the equations (a, b) such that either a = b or (a, b) is

either nice or modest.

(The reason why we forbid terms of length less than 3 in the definition of a modest

equation is that if we discarded it, then EM would not be transitive: we would have

(xxy, xy) ∈ EM and (xy, yyx) ∈ EM but (xxy, yyx) /∈ EM .)

320



Proposition 5.1. EM is a theory. It is the greatest theory T such that T ⊆ Es,

T ⊆ Ixyz ∨ Ixx and whenever (u, v) is either strictly parallel or nice then (u, v) ∈ T

if and only if (u, v) ∈ EM . Consequently, EM is a definable element of L.

P r o o f. One can easily check that EM is a theory. Let T be a theory with the

above mentioned properties; we must prove T ⊆ EM . Suppose, on the contrary, that

there exists an equation (c, d) ∈ T − EM . Without loss of generality, c = c1x where

x ∈ X − S(c1), while d is not of such a form (with the same x).

We can suppose that c1 and d are both nice. Indeed, if this was not the case, then

instead of (c, d) we could take the equation (f(c), f(d)) where f is the substitution

with f(x) = x and f(y) = yy for all variables y 6= x; we have (f(c), f(d)) ∈ T −EM ,

and the terms f(c1) and f(d) are both nice.

Put S(c1) = {x1, . . . , xn}. The equations (c1, x1x1 · x1x1x2 . . . xn) and (d, x1x1x ·

x1x1x1x2 . . . xn) are both nice, belong to EM and hence belong to T . Then also

(c, (x1x1 · x1x1x2 . . . xn)x) belongs to T and we get ((x1x1 · x1x1x2 . . . xn)x, x1x1x ·

x1x1x1x2 . . . xn) ∈ T , since (c, d) ∈ T . Clearly, this equation is strictly parallel

and so it follows that it belongs to EM ; but it does not belong to EM and we get

a contradiction. �

Theorem 5.2. Let (a, b) be a modest equation. Then Cn(a, b) is the greatest

theory T such that T ⊆ EM and any nice equation belongs to T if and only if it is

a consequence of (a, b). Consequently, the set of modest equations is good.

P r o o f. Let (a, b) = (a1x0, b1x0). Let T be such a theory; we need to prove

T ⊆ Cn(a, b). Let (c, d) ∈ T and c 6= d; we are going to prove that (c, d) ∈ Cn(a, b).

If (c, d) is nice, it is clear. Suppose (c, d) is not nice. Since (c, d) ∈ EM , it follows that

(c, d) is modest. We have c = c1x and d = d1x for two terms c1, d1 and a variable

x /∈ S(c1) = S(d1). Take a variable y ∈ S(c1). The equation (c1y, d1y) is nice and

belongs to T , so it is a consequence of (a, b). There is an (a, b)-derivation w0, . . . , wn

of (c1y, d1y).

Let us prove by induction on i that wi = siy for a term si such that (c1x, six) ∈

Cn(a, b). For i = 0 it is clear. Let i > 1. The equation (wi−1, wi) is an immediate

consequence of either (a, b) or (b, a); without loss of generality, it is sufficient to con-

sider the case when it is an immediate consequence of (a, b). There is a substitution f

such that f(a) ⊆ wi−1 = si−1y and wi results from wi−1 by replacing f(a) with f(b).

If f(a) ⊆ si−1, then everything is clear. The other case is f(a) = si−1y. Then

f(a1) = si−1, f(x0) = y and wi = f(b1)y. Put si = f(b1), so that wi = siy. Denote

by g the substitution with g(x0) = x and g(z) = f(z) for all variables z 6= x0. Since

g coincides with f on S(a1) = S(b1), we have f(a1) = g(b1). Then g(a) = g(a1)x =
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f(a1)x = si−1x and g(b) = g(b1)x = f(b1)x = six. Since (g(a), g(b)) ∈ Cn(a, b), we

get (si−1x, six) ∈ Cn(a, b) and hence (c1x, six) ∈ Cn(a, b).

In particular, for i = n we get (c1x, d1x) ∈ Cn(a, b), i.e., (c, d) ∈ Cn(a, b). �

6. Unary equations

An equation (a, b) is said to be unary if S(a) = S(b) = {x} for a variable x.

Theorem 6.1. Let (a, x) be a unary equation such that x is a variable and a 6= x.

Then Cn(a, x) is the greatest theory T such that T ⊆ Es and any nice equation

belongs to T if and only if it is a consequence of (a, x). Consequently, the set of

unary equations is good.

P r o o f. Let T be such a theory; we need to prove that T ⊆ C where C =

Cn(a, x). Let (c, d) ∈ T and c 6= d. For every variable y ∈ S(c) take four distinct

variables y1, y2, y3, y4 in such a way that if y 6= z then the sets {y1, y2, y3, y4} and

{z1, z2, z3, z4} are disjoint. Denote by f the substitution with f(y) = y1y2 · y3y4 for

all y ∈ S(c). Since (f(c), f(d)) ∈ T is a nice equation, we have (f(c), f(d)) ∈ C.

Clearly, there exists a substitution g such that gf(y) = σx
yσx

a(a) for all y ∈ S(c). We

have (σx
yσx

a(a), y) ∈ C and thus (gf(y), y) ∈ C for all y ∈ S(c). Hence (gf(c), c) ∈ C

and (gf(d), d) ∈ C; since (f(c), f(d)) ∈ C, we have (gf(c), gf(d)) ∈ C and we get

(c, d) ∈ C.

It follows that the set of the unary equations (a, b) such that either a ∈ X or

b ∈ X is good. The other nontrivial unary equations are all nice, so the whole set is

good. �

7. xy-equations

Throughout this section let x and y be two distinct variables. By an xy-equation

we mean a regular equation with the left side equal to xy. The aim of this section is

to prove that the set of xy-equations is good.

By a 1-special equation we mean an equation (xy, a) where a is a term such that

S(a) = {x, y}, a 6= xy and neither xx nor yy is a subterm of a.

Theorem 7.1. Let (xy, a) be a 1-special equation. Then Cn(xy, a) is the greatest

theory T such that T ⊆ Es and every equation that is either modest or unary belongs

to T if and only if it is a consequence of (xy, a). Consequently, the set of 1-special

equations is good.

322



P r o o f. Let T be such a theory and (c, d) ∈ T ; we need to prove that (c, d) is

a consequence of (xy, a). This is clear if (c, d) is either modest or unary. Consider

the remaining case only. Since (c, d) is not unary, c, d are of length at least 2. Take

a variable z not belonging to S(c) = S(d). The equation (cz, dz) is modest and

belongs to T , so it is a consequence of (xy, a). There exists an (xy, a)-derivation

u0, . . . , uk of (cz, dz).

Let us prove by induction on i that whenever ui can be written as ui = vv1 . . . vm

where z /∈ S(v) and z ∈ S(v1) (less formally, whenever v is a maximal no z containing

occurrence of a subterm in ui) then (c, v) is a consequence of (xy, a). For i = 0 it

is clear, since u0 = cz. Let i > 0. Then ui is obtained from ui−1 by replacing

one occurrence of a subterm pq (for some terms p, q) with the term r = σx,y
p,q (a), or

vice versa. If a maximal no z containing occurrence of v in ui is disjoint with pq

(with r, respectively), then it is also a maximal no z containing occurrence of v

in ui−1 and so (c, v) is a consequence of (xy, a) by induction. If it contains pq

(or r, respectively) then the same replacement in v transforms v into a maximal no

z containing occurrence of a subterm in ui−1 and we can again apply induction. The

only remaining possibility is that v is a proper subterm of pq (or of r, respectively).

But then, in both cases, v is a subterm of either p or q (here we are using the fact

that (xy, a) is 1-special) and the induction can be applied again.

Since d is a maximal no z containing occurrence of a subterm in uk, it follows that

(c, d) is a consequence of (xy, a). �

Let K be a set of equations. By a K-related pair we mean a pair of regular

theories T1, T2 such that (x, t) ∈ Ti implies t = x, there are two terms a1, a2 of

length > 3 with (xy, ai) ∈ Ti for i = 1, 2, and whenever (u, v) ∈ K then (u, v) ∈ T1

if and only if (u, v) ∈ T2.

Lemma 7.2. Let T1 6= T2 be a K-related pair where K is the set of the equations

that are either strictly parallel or nice or modest or unary or 1-special. For i = 1, 2

denote by Hi the set of the terms t of length > 3 such that (xy, t) ∈ Ti.

(1) Let i ∈ {1, 2}. Then Hi contains a strongly nice term.

(2) Let i ∈ {1, 2}. For every term t /∈ X there exists a strongly nice term t′ with

(t, t′) ∈ Ti.

(3) T1 6⊆ T2 and T2 6⊆ T1.

(4) H1 6⊆ H2 and H2 6⊆ H1.

(5) Let i ∈ {1, 2}. There exists a term a ∈ Hi such that either xx ⊆ a or yy ⊆ a.

(6) Let i ∈ {1, 2}. There exists a term a ∈ Hi such that both xx ⊆ a and yy ⊆ a.

(7) Let i ∈ {1, 2}. For every term t /∈ X there exists a strongly nice term t′ such

that (t, t′) ∈ Ti and xx ⊆ t′ for all x ∈ S(t).
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(8) Let i ∈ {1, 2}. Let t /∈ X be a term and x1, . . . , xn be all (pairwise distinct)

variables occurring in t. Then there exists a strongly nice term t′ such that

(t, t′) ∈ Ti, xixi ⊆ t′ for all i and νx1
(t′) < νx2

(t′) < . . . < νxn
(t′).

(9) Let i ∈ {1, 2}. There exists a positive integer c such that for every term t /∈ X

there is a positive integer N with the property that for every k > 0 there exists

a term t′ as in (8) of length N + kc.

(10) Let u, v be two terms of length > 3. Then (u, v) ∈ T1 if and only if (u, v) ∈ T2.

(11) H1 ∩ H2 = ∅.

(12) Let i ∈ {1, 2} and a ∈ Hi. Then either xx ⊆ a or yy ⊆ a.

P r o o f. (1) There is a term ai of length > 3 such that (xy, ai) ∈ Ti. If ai is not

already strongly nice, then (without loss of generality) ai = bix for a term bi /∈ X .

We have (xy, σx,y
bi,x(ai)) ∈ Ti and the right-hand side of this equation is a strongly

nice term.

(2) Let t = uv. By (1) there is a strongly nice term bi ∈ Hi. We have (t, σx,y
u,v(b)) ∈

Ti where the right-hand side is a strongly nice term.

(3) Suppose, for example, that T1 ⊂ T2. Take an equation (u, v) ∈ T2−T1, so that

u, v /∈ X . By (2) there are nice terms u′, v′ with (u, u′) ∈ T1 and (v, v′) ∈ T1. Then

(u, u′) ∈ T2 and (v, v′) ∈ T2. Since (u, v) ∈ T2, we get (u′, v′) ∈ T2. But (u′, v′) is

nice, so (u′, v′) ∈ T1. But then (u, v) ∈ T1, a contradiction.

(4) Suppose, for example, that H1 ⊆ H2. Take a strongly nice term a ∈ H1. If

(u1u2, v1v2) is an arbitrary nontrivial equation from T1, then (u1u2, σ
x,y
u1,u2

(a)) and

(v1v2, σ
x,y
v1,v2

(a)) both belong to T1 ∩T2 and so the equation (σx,y
u1,u2

(a), σx,y
v1,v2

(a)) be-

longs to T1; but it is a nice equation, so it also belongs to T2 and we get (u1u2, v1v2) ∈

T2. Now T1 ⊆ T2 is a contradiction with (3).

(5) If, for example, no term from H1 contains either xx or yy as a subterm, then

(xy, u) is a 1-special equation for all u ∈ H1, so that all such equations belong to T2

and H1 ⊆ H2, a contradiction with (4).

(6) If a ∈ Hi where (for example) xx ⊆ a and yy 6⊆ a, then a contains a subterm yv

for some term v; the term obtained from a by replacing yv with σx,y
y,v (a) belongs to Hi

and contains both xx and yy.

(7) Let a be as in (6) and t′ be as in (2). Let x ∈ S(t). We have xv ⊆ t′ for

some term v. The term obtained from t′ by replacing xv with σx,y
x,v(a) is strongly

nice, Ti-related with t′ and contains xx; it also contains yy for any other variable y

whenever t′ did, so that we can make this replacement for all variables in S(t) one

by one.

(8) Let t′ be as in (7). Take a term a ∈ Hi and replace an occurrence of x2x2

in t′, perhaps repeatedly, with σx,y
x2,x2

(a) until t′ is transformed into a term with more

occurrences of x2 than of x1. Then do the same with the variables x3, . . . , xn.
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(9) Take a term a ∈ Hi and put c = λ(a)−2. For a term t, take a term t′ as in (8)

and put N = λ(t′). If we replace a subterm xnxn of t
′ (where xn is the variable with

the largest number of occurrences) with σx,y
xn,xn

(a), we obtain a term of length N + c

with the same properties of t′ as in (8). We can do this k-times to obtain a term of

length N + kc.

(10) Let (u, v) ∈ T1; we are going to prove that (u, v) ∈ T2.

By (2), there is a nice term w such that (u, w) ∈ T1. We shall first prove that

(u, w) ∈ T1 ∩ T2. This is clear if u is nice. Otherwise, u = u1z for a variable z

not occurring in u1. It follows easily from (9) that there are (perhaps very long)

strongly nice terms u′

1 and w′ = w′

1w
′

2, both with the properties of t′ in (8), such

that λ(u′

1) + 1 < λ(w′), λ(u′

1) > λ(w′

1) and λ(u′

1) > λ(w′

2). The equation (u, u′

1z) is

modest and belongs to T1, so (u, u′

1z) ∈ T2. The equation (w, w′) is nice and belongs

to T1, so (w, w′) ∈ T2. The equation (u′

1z, w′) is strictly parallel and belongs to T1,

so (u′

1z, w′) ∈ T2. We have obtained (u, w) ∈ T1 ∩ T2.

Similarly, there exists a nice term w such that (v, w) ∈ T1 ∩ T2. Since (u, v) ∈ T1,

we have (w, w) ∈ T1. But (w, w) is nice, so (w, w) ∈ T2. But then (u, v) ∈ T2.

(11) If there is a term in H1 ∩ H2, then it follows from (10) that for any equa-

tion (u, v) we have (u, v) ∈ T1 if and only if (u, v) ∈ T2, so that T1 = T2, a contra-

diction.

(12) If a ∈ Hi and neither xx ⊆ a nor yy ⊆ a, then (xy, a) is a 1-special equation,

(xy, a) ∈ T1 ∩ T2 and a ∈ H1 ∩ H2, a contradiction with (11). �

By a 2-special term we mean a term t1t2 where S(t1) = {x} and S(t2) = {y}.

By a 2-special equation we mean an equation (xy, t) where t is a 2-special term of

length > 3.

Lemma 7.3. Let (xy, w) be a consequence of a 2-special equation (xy, t). Then

w is 2-special.

P r o o f. One can easily see that if (r, s) is an immediate consequence of a 2-

special equation then r is 2-special if and only if s is 2-special. �

Theorem 7.4. Let (xy, a) be a 2-special equation. Then C = Cn(xy, a) is the

only theory T such that T ⊆ Es, the ideal theory generated by T equals Ixy, and

every equation that is either strictly parallel or nice or modest or unary or 1-special

belongs to T if and only if it is a consequence of (xy, a). Consequently, the set of

2-special equations is good.

P r o o f. Let T be a theory with these properties. We have a = u(x)v(y) for

two unary terms u and v. Since Ixy is the ideal theory generated by T , there exists

a term b of length > 3 such that (xy, b) ∈ T . We have S(b) = {x, y} and so we
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can write b = b(x, y). Clearly, (xy, u′v′) for two some terms u′, v′ not belonging

to X . Since (xy, b(x, y)) ∈ T , we have (u′v′, b(u′, v′)) ∈ T . This equation is nice, so

(u′v′, b(u′, v′)) ∈ C. Then (xy, b(u′, v′)) ∈ C. By Lemma 7.3, b(u′, v′) is a 2-special

term. From this it follows that b is a 2-special term.

Let (U, V ) be an arbitrary immediate consequence of (xy, a), so that U =

pqw1 . . . wn and V = u(p)v(q)w1 . . . wn for some terms p, q, w1, . . . , wn (n > 0).

We are going to prove that all 2-special subterms of U are C-equivalent with xy if

and only if all 2-special subterms of V are C-equivalent with xy.

Let all 2-special subterms of U be C-equivalent with xy and let t be a 2-special

subterm of V . If either t ⊆ p or t ⊆ q or t ⊆ wi for some i then t is a 2-special

subterm of U , so that (xy, t) ∈ C. If t ⊆ u(p) then (since t is a 2-special term) t ⊆ p.

Similarly, if t ⊆ v(q), then t ⊆ q. The only remaining case is t = u(p)v(q)w1 . . . wi

for some i > 0. Then t is C-equivalent with pqw1 . . . wi; this is a 2-special subterm

of U and so it is C-equivalent with xy.

The converse implication can be proved similarly.

Take a variable z /∈ {x, y}. The equation (xyz, bz) is modest and belongs to T , so

it belongs to C and there exists an (xy, a)-derivation of (xyz, bz). The left-hand side

of this equation contains a single 2-special subterm, namely, the term xy. It follows

from what we have just proved that also every 2-special subterm of bz is C-equivalent

with xy. But b is a 2-special subterm of bz, so (xy, b) ∈ C. Hence (xy, b) ∈ C ∩ T .

Now it follows from Lemma 7.2 (11) that T = C. �

By a 3-special equation we mean an equation (xy, a) such that S(a) = {x, y} and

xy ⊆ a.

Lemma 7.5. Let (xy, a) be a 3-special equation and C = Cn(xy, a). Let z be

a variable different from both x and y; let A0, A1, . . . , An be an (xy, a)-derivation

where A0 = xyz; let u be a term such that S(u) = {x, y} and zu ⊆ An. Then there

exists a unary term w such that (u, w(xy)) ∈ C.

P r o o f. We proceed by induction on n. For n = 0 everything is clear. Let

n > 0, zu ⊆ An and S(u) = {x, y}. If zu ⊆ An−1, we are done by induction. So, let

zu 6⊆ An−1. There are two cases.

Case 1 : An−1 = a(r, s)p1 . . . pk and An = rsp1 . . . pk for some terms r, s, p1, . . . , pk

(k > 0). Then zu 6⊆ pi for all i, zu 6⊆ rs (since rs ⊆ a(r, s) ⊆ An−1) and thus zu =

rsp1 . . . pj for some j > 0. Since z is a variable, z = pj and u = rsp1 . . . pj−1. For u
′ =

a(r, s)p1 . . . pj−1 we have (u, u′) ∈ C, S(u′) = {x, y}, zu′ = a(r, s)p1 . . . pj ⊆ An−1

and so, by induction, (u′, w(xy)) ∈ C for a unary term w. But then (u, w(x, y)) ∈ C.

Case 2 : An−1 = rsp1 . . . pk and An = a(r, s)p1 . . . pk for some terms r, s,

p1, . . . , pk. If zu = a(r, s)p1 . . . pj for some j > 0, then we can proceed similarly as in
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Case 1. Of course, zu 6⊆ pj for all j. So, the only remaining case is zu ⊆ a(r, s). We

have zu 6⊆ r and zu 6⊆ s, so that zu = b(r, s) for a non-variable subterm b of a. Since

z is a variable not contained in u, this is possible only if either z = r and u = c(s) or

else z = s and u = c(r) for a unary term c. By symmetry, it is sufficient to consider

the case z = r, u = c(s). We have rs ⊆ An−1 where r = z and S(s) = {x, y}, so by

induction (s, w(xy)) ∈ C for a unary term w. But then (c(s), c(w(xy))) ∈ C, i.e.,

(u, c(w)(xy)) ∈ C where c(w) is a unary term. �

Theorem 7.6. Let (xy, a) be a 3-special equation. Then C = Cn(xy, a) is the

only theory T such that T ⊆ Es, the ideal theory generated by T equals Ixy, and

every equation that is either strictly parallel or nice or modest or unary or 1-special

or 2-special belongs to T if and only if it is a consequence of (xy, a). Consequently,

the set of 3-special equations is good.

P r o o f. Let T be a theory with these properties. Since Ixy is the ideal theory

generated by T , there exists a term t of length > 3 such that (xy, t) ∈ T ; we have

S(t) = {x, y}. Take a variable z /∈ {x, y}. The equation (xyz, tz) is modest and

belongs to T , so it belongs to C. By Lemma 7.5, there is a unary term w such that

(t, w(xy)) ∈ C.

Suppose T 6= C, so that by Lemma 7.2 (11) there is no term b except xy with

(xy, b) ∈ C ∩ T . In particular, (xy, t) /∈ C and thus w is not a variable. Also, t is

not 2-special; since S(t) = {x, y}, it follows that t is nice. Since w is not a variable,

w(xy) is also nice and thus (t, w(xy)) is a nice equation; since it belongs to C, we

get (t, w(xy)) ∈ T . Hence (xy, w(xy)) ∈ T . But this is a 1-special equation, so

(xy, w(xy)) ∈ T ∩ C, a contradiction. �

By a 4-special term we mean a term a such that S(a) = {x, y}, a is strongly nice

and the following two conditions are satisfied:

(1) whenever u /∈ X is a proper subterm of a then f(u) 6= g(a) for all substitutions

f , g;

(2) whenever f(a) = g(a) for two substitutions f , g then f(xy) = g(xy).

By a 4-special equation we mean an equation (xy, a) such that a is a 4-special term.

Theorem 7.7. Let (xy, a) be a 4-special equation. Then C = Cn(xy, a) is the

only theory T such that T ⊆ Es, the ideal theory generated by T equals Ixy, and

every equation that is either strictly parallel or nice or modest or unary or 1-special

belongs to T if and only if it is a consequence of (xy, a). Consequently, the set of

4-special equations is good.

P r o o f. Let T be a theory with these properties; we need to prove that T = C.
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Let a = a1a2 and write a as a = a(x, y). Denote by A the set of the terms t such

that a � t. For u, v ∈ A define a term u ◦ v ∈ A by induction on the length of uv as

follows:

u ◦ v =

{

uv if uv ∈ A,

p ◦ q if uv = a(p, q) for two terms p and q.

It follows from (2) that ◦ is a correctly defined commutative binary operation on A.

Let h be a homomorphism of the groupoid T of all terms into the groupoid (A, ◦);

put p = h(x) and q = h(y). Let us prove by induction on the length of u that if

u is a proper subterm of a then h(u) = u(p, q). This is clear if u ∈ {x, y}. Now

let u = u1u2. Then h(u) = h(u1) ◦ h(u2) = u1(p, q) ◦ u2(p, q) by the induction

assumption. It follows from (1) that u(p, q) ∈ A, so that h(u) = u1(p, q) ◦ u2(p, q) =

u1(p, q)u2(p, q) = u(p, q) as desired.

In particular, we have h(a) = h(a1) ◦ h(a2) = a1(p, q) ◦ a2(p, q) = p ◦ q = h(xy).

This means that the groupoid (A, ◦) satisfies the equation (xy, a).

Denote by H the extension of the identity on X to a homomorphism of the

groupoid T of all terms onto the groupoid (A, ◦). Clearly, H(u) = u for all u ∈ A.

Let us prove by induction on the length of a term t that (t, H(t)) ∈ C. This is clear

if t ∈ X . Now let t = t1t2. We have H(t) = h(t1) ◦ h(t2) where, by the induction

assumption, (t1, h(t1)) ∈ C and (t2, h(t2)) ∈ C. If H(t1) ◦ h(t2) = H(t1)H(t2), we

get (H(t), t1t2) ∈ C as desired. In the opposite case we have H(t1)H(t2) = a(p, q)

for some p, q ∈ A, and H(t) = p ◦ q. Since (clearly) pq is shorter than t, by the

induction assumption we have (pq, p ◦ q) ∈ C. Of course, (pq, a(p, q)) ∈ C; since

a(p, q) = H(t1)H(t2) and (H(ti), ti) ∈ C, we get (H(t), t) ∈ C.

From this it follows that for any terms t and u, (t, u) ∈ C if and only if H(t) =

H(u).

Since Ixy is the ideal theory generated by T , there exists a term b of length > 3

such that (xy, b) ∈ T . Take a variable z /∈ {x, y}. The modest equation (xyz, tz)

belongs to T , so that it also belongs to C. Consequently, H(xyz) = H(tz). But

H(xyz) = xyz and (since a is strictly nice) H(tz) = H(t)z. We get xyz = H(t)z, so

that xy = H(t) and (xy, t) ∈ C ∩ T . By Lemma 7.2 we get T = C. �

By a 5-special equation we mean an equation (xy, a) such that (xy, a) is not

2-special, S(a) = {x, y} and xy 6⊆ a.

Lemma 7.8. Let (xy, a) be a 5-special equation. Let t be a term such that

S(t) = {x, y} and xy 6⊆ t. Then (t, uv) ∈ Cn(xy, a) for two terms u, v such that

S(u) = S(v) = {x, y} and xy 6⊆ uv.

P r o o f. Since a is not 2-special, without loss of generality a = a1a2 where

S(a2) = {x, y} and x ∈ S(a1). Let t = t1t2. We can assume that at least one of
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the terms t1, t2 contains both x and y, because otherwise t could be replaced with

a(t1, t2). Without loss of generality, S(t2) = {x, y}. Then we can take uv = a(t2, t1).

�

Lemma 7.9. Let (xy, a) be a 5-special equation. Let t be a term such that

S(t) = {x, y} and xy 6⊆ t. Then (t, t′) ∈ Cn(xy, a) for a term t′ such that xy 6⊆ t′

and t′ has a subterm uv with S(u) = {x}, S(v) = {y}, u 6= x and v 6= y.

P r o o f. Let w be a minimal subterm of t with S(w) = {x, y}. Then w = w1w2

where S(w1) = {x} and S(w2) = {y}. Also, let b be a minimal subterm of a with

S(b) = {x, y}. Then b = b1b2 where S(b1) = {x} and S(b2) = {y}. Without loss of

generality, b2 6= y. If w1 = x then w2 6= y and we can replace the subterm w of t with

the subterm a(w2, w1) ⊇ b1(w2)b2(w1). If w2 = y then w1 6= x and we can replace

the subterm w of t with the subterm a(w1, w2) ⊇ b1(w1)b2(w2). �

In the following we are going to prove that every 5-special equation has at least one

4-special consequence. Let (xy, a) be a 5-special equation. It follows from Lemma 7.8

and Lemma 7.9 that we can assume that a = a1a2 · a3a4 where

(1) for j = 1, 2, 3, 4, aj contains a subterm UjVj with S(Uj) = {x}, S(Vj) = {y},

Uj 6= x, Vj 6= y;

(2) a2 is essentially longer than a1a3a4.

Denote by ≡ the theory based on (xy, a).

Denote by α the term a(x, x) and write it as α = xxα1 . . . αk (k > 1). Of course,

α ≡ xx. Put α0 = xx and αi+1 = αiα1 . . . αk, so that αi ≡ xx for all i > 0. Denote

by β, β1, . . . , βk, βi the terms α, α1, αk, αi with x replaced by y. Hence βi ≡ yy for

all i > 0.

Put N = |a| = |α| = |β|.

For j = 1, . . . , 4 and any i > 0 denote by U i
j the term obtained from Uj by

replacing one occurrence of xx with αi, denote by V i
j the term obtained from Vj by

replacing one occurrence of yy with βi, and denote by ai
j the term obtained from aj

by replacing one occurrence of UjVj with U i
jV

i
j .

Let us take a positive integer m such that am
2 is essentially longer than a. Put

M = |a1a
m
2 · a3a4|.

Lemma 7.10. For any i, j > 0, every unary subterm of ai
1a

m
2 · aj

3a4 that is not

a variable is a product of two terms, at least one of which is of length < N .

P r o o f. This is obvious. �

Lemma 7.11. Let i, j be such that U j
3V j

3 is essentially longer than ai
1a

m
2 and ai

1 is

essentially longer than am
2 . Then there are no terms p, q with ai

1a
m
2 (p, q) ⊆ aj

3a4(p, q).
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P r o o f. Suppose ai
1a

m
2 (p, q) ⊆ aj

3a4(p, q). Clearly, ai
1a

m
2 (p, q) is a subterm of

either U j
3 (p) or V j

3 (q); without loss of generality, it is sufficient to consider the case

ai
1a

m
2 (p, q) ⊆ U j

3 (p). Since ai
1(p, q) is longer than am

2 (p, q), it follows from Lemma 7.10

that am
2 (p, q) = w(p) for a subterm w of U j

3 and |w| < N . Now

N |p| 6 νx(am
2 )|p| < |am

2 (p, q)| = |w(p)| < N |p|,

a contradiction. �

Lemma 7.12. Let i > M2 and u be a unary term of length > 1 such that

whenever w1w2 ⊆ u then either |w1| < N or |w2| < N . Then there are no terms p,

q, r with either ai
1a

m
2 (p, q) = u(r) or ai

3a4(p, q) = u(r).

P r o o f. Suppose ai
1a

m
2 (p, q) = u(r). We can write u as u = u1u2 where

ai
1(p, q) = u1(r) and am

2 (p, q) = u2(r). Since ai
1(p, q) is longer than am

2 (p, q), u1 is

longer than u2 and hence |u2| < N by Lemma 7.10.

We have |U i
1(p)V i

1 (q)| > i|p|+i|q| > M2(|p|+|q|). On the other hand, the length of

the rest of ai
1a

m
2 (p, q) is less thanM(|p|+ |q|). Hence the length of U i

1(p)V i
1 (q) makes

more than two-thirds (in particular, more than a half) of the length of ai
1a

m
2 (p, q).

From this it follows that U i
1(p)V i

1 (p) is not a subterm of r, so that U i
1(p) = w1(r)

and V i
1 (q) = w2(r) for a subterm w1w2 of u.

Suppose w1, w2 /∈ X . We can write w1 as w1 = w11w12 and U i
1 as U i

1 = PQ where

P (p) = w11(r) and Q(p) = w12(r). Without loss of generality, P is longer than Q;

but then |P | > i > M2 and |Q| < N . So, |P | > N |Q|, |P (p)| > N |Q(p)|, |w11(r)| >

N |w12(r)|, and hence |w1| > N . Similarly, |w2| > N . This is a contradiction, since

w1w2 ⊆ u.

So, without loss of generality, w1 = x and U i
1(p) = r. Since the length of

U i
1(p)V i

1 (q) makes more than two-thirds of the length of ai
1a

m
2 (p, q), we cannot have

V i
1 (q) = r; hence w2 /∈ X . We can write w2 = w21w22 and V i

1 = RS where

|R| > i > M2 and |S| < N . Without loss of generality, w22(r) = S(q). Then

|w22| < |w21|, so |w22| < N . From this it follows that either |r| = c|q| or |q| = c|r|

for some positive integer c < N . On the other hand, |r| = d|p| for some d > M2,

since U i
1(p) = r implies that |r| is a multiple of |p| and we have |U i

1| > i > M2.

Put e = νx(am
2 ) and f = νy(am

2 ), so that 1 6 e, f 6 N . Then |u2||r| = |u2(r)| =

|am
2 (p, q)| = e|p| + f |q|.

If |r| = c|q| then c|u2||q| = e|p| + f |q| means that e|p| is divisible by |q|, so that

|q| 6 e|p|, |r| = c|q| 6 ce|p| < M2|p| (since c, e < N), a contradiction, since |r| = d|p|

where d > M2.

If |q| = c|r| then |u2||r| = e|p| + fc|r|, so that e|p| is divisible by |r| and hence

|r| 6 e|p| where e < N , a contradiction, since |r| = d|p| where d > M2.
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This proves that we cannot have ai
1a

m
2 (p, q) = u(r). Quite similarly, we cannot

have ai
3a4(p, q) = u(r). �

Lemma 7.13. There exist positive integers i, j with these properties:

(1) i > M2;

(2) νx(U i
1V

i
1 ) > M3 and νy(U i

1V
i
1 ) > M3;

(3) ai
1 is essentially longer than am

2 ;

(4) U j
3V j

3 is essentially longer than ai
1a

m
2 ;

(5) Mνx(ai
1a2) < νx(aj

3a4) < M2νx(ai
1a

m
2 ) and

Mνy(a
i
1a2) < νy(aj

3a4) < M2νy(ai
1a

m
2 ).

P r o o f. One can take i so large that (1), (2) and (3) are satisfied and, moreover,

such that (4) and (5) are satisfied if we take j = Mi + M2. (In order to check this,

it is useful to realize that if t is any of the terms ak
1 , a

k
1a

m
2 , U

k
1 , U

k
3 , a

k
3a4 for some k,

then νx(t) = (N − 2)k + d and νy(t) = (N − 2)k + d′ for some 0 6 d, d′ < M .) �

Lemma 7.14. Let A = ai
1a

m
2 · aj

3a4 where i, j satisfy the five conditions of

Lemma 7.13, and let u /∈ X be a proper subterm of A. Then there are no terms p,

q, r, s with A(p, q) = u(r, s).

P r o o f. Suppose A(p, q) = u(r, s). We can write u as u = u1u2 where

ai
1a

m
2 (p, q) = u1(r, s) and aj

3a4(p, q) = u2(r, s).

Suppose that u1 is unary. Then, by Lemma 7.12, u1 ∈ X . If also u2 is unary then

similarly u2 ∈ X , but clearly u1 6= u2, so that xy is a subterm of A, a contradiction.

So, u1 ∈ X and S(u2) = {x, y}. Then ai
1a

m
2 (p, q) ⊆ aj

3a4(p, q), a contradiction with

Lemma 7.11.

This proves S(u1) = {x, y}. Similarly, S(u2) = {x, y} (in this case, instead of

an application of Lemma 7.11 we can use the fact that aj
3a4(p, q) is longer than

ai
1a

m
2 (p, q)).

If |u2| 6 M then |aj
3a4(p, q)| = |u2(r, s)| < M(|r| + |s|) < M |u1(r, s)| =

M |ai
1a

m
2 (p, q)|, contradicting Lemma 7.13 (5). Hence |u2| > M . Since u2 con-

tains both x and y, this is possible only if either U i
1V

i
1 or U j

3V j
3 is a subterm

of u2. Also, since u1u2 ⊂ A, we have |u1| < M by Lemma 7.10. Since νx(u2) >

νx(U i
1V

i
1 ) > M3 > M2νx(u1) (and similarly for y), we have |u2(r, s)| > M2|u1(r, s)|,

i.e., |aj
3a4(p, q)| > M2|ai

1a
m
2 (p, q)|. On the other hand, it follows from Lemma 7.13 (5)

that |aj
3a4(p, q)| < M2|ai

1a
m
2 (p, q)| and we have obtained the desired contradiction.

�

Lemma 7.15. Let A = ai
1a

m
2 · aj

3a4 be as in Lemma 7.14 and let p, q, r, s be

terms such that A(p, q) = A(r, s). Then pq = rs.
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P r o o f. Clearly, U i
1(p)V i

1 (q) = U i
1(r)V

i
1 (s). If U i

1(p) = U i
1(r) and V i

1 (q) = V i
1 (s),

then p = r and q = s. The other case is U i
1(p) = V i

1 (s) and V i
1 (q) = U i

1(r).

Suppose p 6= s. Then these two terms must be of different lengths, and it is possible

to consider, without loss of generality, only the case |p| > |s|. Clearly, |p| > 2|s|. We

have |U i
1| = 2 + i(N − 2) + c and |V i

1 | = 2 + i(N − 2) + d for some 0 6 c, d < N , so

that

(2 + i(N − 2) + c)|p| = |U i
1(p)| = |V i

1 (s)| = (2 + i(N − 2) + d)|s|

from which we get

2(2 + i(N − 2) + c)|s| 6 (2 + i(N − 2) + d)|s|

and consequently i < N . This contradiction proves p = s, and q = r can be proved

similarly. �

Theorem 7.16. The set of xy-equations is good.

P r o o f. It follows from the previous lemmas that the set of 5-special equations

is good. The set of xy-equations is the union of the five sets of equations considered

and proved to be good in this section. �
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