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Abstract. We characterize Weilian prolongations of natural bundles from the viewpoint
of certain recent general results. First we describe the iteration F (EM) of two natural
bundles E and F . Then we discuss the Weilian prolongation of an arbitrary associated
bundle. These two auxiliary results enables us to solve our original problem.
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We start with some general remarks on the role of natural bundles EM and Weil

functors TA in differential geometry in Section 1. The main aim of the present

paper is to study the Weilian prolongation TA(EM) of a natural bundle from such

point of view. So we begin, in Section 2, with the prolongation of an arbitrary

associated bundle P [Q] with respect to a bundle functor F on the category FMm,n

of fibered manifolds with m-dimensional bases and n-dimensional fibers and their

local isomorphisms, where m is the dimension of the base of P and n = dimQ. In

Section 3 we pass to the case of a natural bundle over m-manifolds. In Proposition 1

we describe the structure of the natural bundle on F (EM) → M . The related

natural transformations are characterized too. Then some lemmas on Weil bundles

are deduced in Section 4. Further we describe the Weilian prolongation TA(P [Q]) of

an associated bundle. The last section is devoted to TA(EM).

All manifolds and maps are assumed to be infinitely differentiable. Unless other-

wise specified, we use the terminology and notation from the book [2].

The author was supported by the Ministry of Education of the Czech Republic under
the project MSM 0021622409 and by GACR under the grant 201/09/0981.
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1. Introduction

If we look at various differential geometric structures from the general point of

view, we can observe that they have certain common properties depending on the

category on which they are defined. WriteMf for the category of all manifolds and

smooth maps and FM for the category of all fibered manifolds and fiber preserving

maps. In the terminology of [2], a bundle functor D on a subcategory C of Mf is

a covariant functor transforming every C-objectM into a fibered manifold DM over

M and every C-morphism f : M → M ′ into an FM-morphism Df : DM → DM ′

over f . For example, the tangent functor T is defined on the whole category Mf .

On the other hand, the cotangent functor T ∗ is defined on the category Mfm of

m-dimensional manifolds and their local diffeomorphisms. Indeed, a smooth map

f : M → M ′ induces the linear map Txf : TxM → Tf(x)M
′, x ∈ M , whose dual

map is (Txf)∗ : T ∗

f(x)M
′ → T ∗

xM . If this is an isomorphism, we can construct

T ∗

xf := ((Txf)∗)−1 : T ∗

xM → T ∗

f(x)M
′. In [2], several general differencies between

the geometry of T and T ∗ are pointed out.

The bundle functors onMfm are the classical natural bundles over m-manifolds

in the sense of A. Nijenhuis, [4], [2]. Every such functor E is of the form EM =

P rM [Q, l], where P rM is the r-th order frame bundle of M , l : Gr
m × Q → Q is

a left action of its structure group Gr
m on Q, m = dimM , and Ef = P rf [Q, l] :

P rM [Q, l] → P rM ′[Q, l] is the morphism of associated bundles induced by the

principal bundle morphism P rf : P rM → P rM ′ determined by the local diffeo-

morphism f : M → M ′. The bundle functors on the category FMm,n of fibered

(m,n)-manifolds and their local isomorphisms, which can be called natural bundles

over fibered (m,n)-manifolds, are analogously described in [2].

An important general result is that the product preserving bundle functors F on

Mf are in bijection with Weil algebras, [1], [2]. The simplest Weil algebras are

D
s
k = Js

0 (Rk,R). An arbitrary Weil algebra A can be interpreted as a factor algebra

(1) A = D
s
k/ ∼,

see [1]. The functor F determines a Weil algebra A = FR. We will use the so-called

covariant approach to the Weil functor TA, [1]. In the case of Ds
k, T

D
s
k = T s

k is

the classical functor of (k, s)-velocities, T s
kM = Js

0 (Rk,M), and we define the Ds
k-

velocity of a map γ : R
k → M by jD

s
kγ = js

0γ ∈ T s
kM . Hence the tangent functor

T corresponds to the algebra of dual numbers D = D
1
1 = {a + be; a, b ∈ R, e2 = 0}.

In the case of an arbitrary A, we introduce the A-velocity jAγ ∈ TAM of γ : R
k →

M by a suitable factorization of js
0γ corresponding to (1), see [1]. Then the map

TAf : TAM → TAM ′ induced by f : M → M ′ is of the form

(2) TAf(jAγ) = jA(f ◦ γ) , γ : R
k →M.
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We have F = TFR. An important fact is that the natural transformations of two Weil

functors TA and TB are in bijection with the algebra homomorphisms µ : A → B.

We write µM : TAM → TBM for the corresponding map.

In [1] we collected several examples showing that the Weil algebra technique is

very efficient in various concrete evaluations in differential geometry.

We remark that the Weil algebra technique can be applied to many other classes of

geometric functors. The most important case are the fiber product preserving bundle

functors on the category FMm of fibered manifolds with m-dimensional bases and

the fiber preserving maps with local diffeomorphisms as base maps, [1], [3].

2. F -prolongation of associated bundles

Consider a principal bundle P (M,G), m = dimM . Its s-th principal prolongation

W sP is the bundle of s-jets js
(0,e)ϕ of local PB-isomorphisms ϕ : R

m×G→ P , where

0 ∈ R
m and e is the unit of G. This is a principal bundle over M with the structure

group

W s
mG = W s

0 (Rm ×G),

both the composition in W s
mG and its right action on W

sP being defined by compo-

sition of jets, [1]. Every diffeomorphism ϕ0 : R
m → R

m, ϕ0(0) = 0, and every map

ϕ1 : R
m → G determine a PB-isomorphism

(3) ϕ : R
m ×G→ R

m ×G, ϕ(x, g) = (ϕ0(x), ϕ1(x)g),

x ∈ R
m, g ∈ G. Passing to s-jets, we obtain an identification W s

mG = Gs
m × T s

mG.

As a group, W s
mG is the semidirect product G

s
m ⋊ T s

mG, [1, p. 150].

In general, let P (M,G) and P ′(M ′, G) be two principal G-bundles and let ϕ,

ϕ′ : P → P ′ be two PB-morphisms with the underlying base maps ϕ, ϕ′ : M →M ′,

ϕ(x) = ϕ′(x), x ∈ M . By equivariancy, if js
uϕ = js

uϕ
′ at a point u ∈ Px, then

js
ugϕ = js

ugϕ
′ for every g ∈ G. Simplifying the notation from [2], we write js

xϕ = js
xϕ

′

in such a case and we say that ϕ and ϕ′ have the s-th order contact at x ∈M .

Consider the category PBm(G) of principal G-bundles with m-dimensional bases

and PB-morphisms with local diffeomorphisms as base maps. A gauge natural bundle

is a functor D : PBm(G) → FM such that every DP is over the same base as P

and every Df : DP → DP ′ has the same base map as f , [2]. Such a functor is said

to be of order s, if js
xϕ = js

xϕ
′ implies

(Dϕ)x = (Dϕ′)x : (DP )x → (DP ′)ϕ(x).
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Write Z = D(Rm ×G)0 and define a left action

λD : W s
mG× Z → Z

as follows. Given (js
0ϕ0, j

s
0ϕ1) ∈ Gs

m × T s
mG, we construct (3) and set

(4) λD(js
0ϕ0, j

s
0ϕ1) = (Dϕ)0 : Z → Z.

Then Proposition 51.6 from [2] implies

Lemma 1. DP is an associated bundle

(5) DP = W sP [Z, λD].

Consider two such functors DiP = W sP [Zi, λDi
], i = 1, 2. Every natural trans-

formation ψ : D1 → D2 determines a W
s
mG-equivariant map

ψ0 := (ψRm×G)0 : Z1 → Z2.

Conversely, every W s
mG-equivariant map ψ : Z1 → Z2 defines a natural transforma-

tion W sP [Z1, λ1] →W sP [Z2, λ2] by {u, z} 7→ {u, ψ(z)}, u ∈W sP , z ∈ Z1.

Consider a left action l : G × Q → Q and a bundle functor F of order s on

FMm,n, n = dimQ. Every PBm(G)-morphism f : P → P ′ induces a morphism

FQ : P [Q] → P ′[Q] of associated bundles. Then the rule FQ(P ) = F (P [Q]) and

FQ(f) = F (fQ) is a gauge natural bundle of order s. Write WF l = λF Q . Then

Lemma 1 yields

Lemma 2. FQP is an associated bundle

(6) FQP = W sP [Z,WF l].

Hence Z = (F (R × Q))0 and the action WF l : W
s
mG × Z → Z has the following

form. The associated bundle morphism ϕQ induced by (3) is

(7) ϕQ(x, a) = (ϕ0(x), l(ϕ1(x))(a)), a ∈ Q,

so that

(8) WF l(j
s
0ϕ0, j

s
0ϕ1) = (FQϕ)0 : Z → Z.
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Consider left actions li : G × Qi → Qi, i = 1, 2. According to [2], every G-

map h : Q1 → Q2 defines a natural transformation h
F : FQ1 → FQ2 determined by

a W s
mG-map

(9) hF
0 : F0(R

m ×Q1) → F0(R
m ×Q2).

Further, given F1, F2, every natural transformation ψ : F1 → F2 defines a natural

transformation ψQ : FQ
1 → FQ

2 determined by a W
s
mG-map

(10) ψQ
0 : (F1(R

m ×Q))0 → (F2(R
m ×Q))0.

3. F -prolongation of natural bundles

In the case of an r-th order natural bundle E, we have EM = P rM [Q, l], where

l : Gr
m ×Q→ Q. Hence we obtain, by Lemma 2,

(11) F (EM) = W sP rM [Z,WF l].

There is a canonical injection P r+sM →֒W sP rM , jr+s
0 ϕ 7→ js

(0,e)P
rϕ with a group

injection i : Gr+s
m →֒W s

mG
r
m, [2]. Write WF l ◦ (i× idZ) =: lF : Gr+s

m ×Z → Z. Then

(11) implies

Proposition 1. F (EM) is an associated bundle

(12) F (EM) = P r+sM [Z, lF ].

The natural transformations of types (9) and (10) have the same form as in Sec-

tion 2.

Remark. We can also replaceE by a bundle functor defined on FMp,q, p+q = m.

Then P rM should be replaced by the bundle of fibered frames on a fibered manifold

Y with a p-dimensional base and q-dimensional fibers, [1].
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4. Some properties of Weil bundles

A Weil algebra A = R × N is said to be of order s if Ns+1 = 0 with minimal s.

(In [5], A.Weil uses the term “depth”.) Then TA
x f , f : M → M ′, depends on js

xf

only. This defines a system of maps

(13) τA : Js(M,M ′) ×M TAM → TAM ′,

τA(js
xf, j

Aγ) = jA(f ◦ γ),

γ : R
k → M , γ(0) = x. Clearly, τA(X2 ◦X1) = τA(X2) ◦ τ

A(X1) with composition

of s-jets on the left-hand side.

Since TA preserves products, TA
R

m = Am is the product bundle Rm ×Nm. We

have Gs
m = inv Js

0 (Rm,Rm)0, and the restriction of τ
A defines a left action

(14) τA
m : Gs

m ×Nm → Nm,

τA
m(js

0f, (j
Aγ1, . . . , j

Aγm)) = jAf(γ1, . . . , γm).

By construction, TAM is the associated bundle

(15) TAM = P sM [Nm, τA
m].

We need the following algebraic assertion.

Lemma 3. If A is of order s, then Nm = Hom(Ds
m, A).

P r o o f. Let x1, . . . , xm be the standard generators of D
s
m. Every algebra

homomorphism H : D
s
m → A is determined by the values H(xi) ∈ N . Since A is of

order s, these values can be prescribed arbitrarily. �

By Section 1, the natural transformation HQ : T s
mQ → TAQ determined by H

over a manifold Q is of the form

(16) HQ(js
0f) = jAf(γ1, . . . , γm), H(xi) = jAγi, f : R

m → Q.
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5. Weilian prolongations of associated bundles

First we describe TA(P [Q]). Since TA preserves products, we have TA(Rm×Q) =

TA
R

m × TAQ. Hence Z = Nm × TAQ. We define a map WAl : W
s
mG × (Nm ×

TAQ) → Nm × TAQ by

(17) WAl((X,Y ), (H,K)) = (τA
m(X)(H), TAl(HG(Y ),K)),

X ∈ Gs
m, Y ∈ T s

mG, H ∈ Nm, K ∈ TAQ, and in HG we interpret H as an algebra

homomorphism D
s
m → A. By [1], HG : T s

mG→ TAG is a group homomorphism.

This is an instructive exercise to verify formally that (17) is a left action, but it is

a consequence of the following assertion.

Proposition 2. We have WAl = WT A l. Hence

(18) TA(P [Q]) = W sP [Nm × TAQ,WAl].

P r o o f. We evaluate (8) in the case F = TA. Consider jAγ ∈ Nm and

jAδ ∈ TAQ. According to (7), WT A l(js
0ϕ0, j

s
0ϕ1)(j

Aγ, jAδ) = TAϕQ(jAγ, jAδ) =

(jA(ϕ0 ◦ γ), T
Al(jA(ϕ1 ◦ γ), j

Aδ)). By (16), jA(ϕ1 ◦ γ) = HG(js
0ϕ1). �

We also describe the natural transformations from Section 2 in the Weilian situa-

tion. In (9) with F = TA, we have TA
0 (Rm ×Qi) = R

m ×Nm × TAQi, i = 1, 2 and

TA(idRm ×h) = idT ARm ×TAh. Hence hT A

= idNm ×TAh.

In (10) with F1 = TA, F2 = TB and ψ determined by an algebra homomorphism

µ : A→ B, we have ψQ
0 : Nm

A × TAQ→ Nm
B × TBQ of the form ((µ | NA)m × µQ),

provided NA or NB denotes the nilpotent part of A or B, respectively.

6. The case of TA(EM)

Now we can proceed analogously to Section 3. In the case of a natural bundle

EM = P rM [Q, l], we first obtain TA(EM) = W sP rM [Z,WAl], Z = Nm × TAQ.

Using the injection i : Gr+s
m →֒ W s

mG
r
m, we define lA = WAl ◦ (i× idZ) : Gr+s

m ×Z →

Z. Then Proposition 2 implies
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Proposition 3. TA(EM) is an associated bundle

(19) TA(EM) = P r+sM [Nm × TAQ, lA].

The two types of natural transformations studied in Section 5 are expressed by

the same formulae even in the situation of Proposition 3.
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