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Abstract. The paper deals with the higher-order ordinary differential equations and the
analogous higher-order difference equations and compares the corresponding fundamental
concepts. Important dissimilarities appear for the moving frame method.
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Introduction

The parallelism between differential and difference equations was discussed in the

inspirative article [1]. Retaining the notation [1], we propose an alternative approach

where the interrelations become more transparent. Especially the fundamental con-

cepts clarify: compare (e.g.) first integrals, shift operator, symmetries and infinites-

imal transformations as stated in [1] with our conceptions introduced below. On the

other hand, the common method of moving frames [2] not mentioned in [1] needs

essential change for the case of the difference equations.

This research has been conducted at the Department of Mathematics as part of the
research project CEZ: Progressive reliable and durable structures, MSM 0021630519.
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1. Differential equation

We consider the equation

(1.1) u(N) = F (x, u, u′, . . . , u(N−1))
(

′ =
d

dx
, u = u(x)

)

in the real domain, where F is a smooth function. Employing the jet spaceM with

coordinates

(1.2) M : x, u0, u1, . . . , uN−1,

equation (1.1) is expressed by the first order system

(1.3)
duk

dx
= uk+1 (k = 0, . . . , N − 2),

duN−1

dx
= F (x, u0, . . . , uN−1)

and its solution is represented by the curve (the left-hand figure)

(1.4) P(x) = (x, u0(x), . . . , uN−1(x)) = (x, u(x), . . . , u(N−1)(x)) ∈ M.

Such a solution is uniquely determined by any of its points

(1.5) P(x̄) = (x̄, u0(x̄), . . . , uN−1(x̄)) ∈ M (fixed x̄ ∈ R).

A function

(1.6) Φ = Φ(x, u0, u1, . . . , uN−1)

on M is called the first integral of equation (1.1) if Φ(P(x)) = const. for every

solution (1.4). It follows that the restriction of the function Φ to x = x̄ can be

prescribed.

x̄ x

u
0

u
N−1

P(x̄) P(x)

Φ = c

n̄ n n + 1

u0
n

u0
n+1

uN−1
n

u
N−1

n+1

Pn̄

Pn

Φn = c

Sn

Fig. 1
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2. Difference equation

We consider the equation

(2.1) un+N = Fn(un, . . . , un+N−1) (un ∈ R, n ∈ Z)

where Fn are smooth functions. We suppose that it is exactly of the order N, that is,

(2.1) can be equivalently expressed as un = Gn+1(un+1, . . . , un+N). After a formal

adjustment of indices, we obtain the equation

(2.2) un−1 = Gn(un, . . . , un+N−1) (un ∈ R, n ∈ Z)

equivalent to (2.1).

In order to obtain a parallel theory, we introduce discrete counterparts uk
n
to the

derivatives u(k)(x). In full detail, we introduce spacesMn with coordinates

(2.3) Mn : u0
n
, u1

n
, . . . , uN−1

n
(n ∈ Z).

Roughly speaking, the coordinate uk
n
corresponds to the variable un+k appearing in

(2.1). It follows that equation (2.1) turns into the first order system

(2.4) uk

n+1 = uk+1
n (k = 0, . . . , N − 2), uN−1

n+1 = Fn(u0
n, . . . , uN−1

n ) (n ∈ Z)

which may be regarded as a shift transformation Sn : Mn → Mn+1. (More precisely,

Sn is given by the formulae

S∗

nuk

n+1 = uk+1
n (k = 0, . . . , N − 2), S∗

nuN−1
n+1 = Fn(u0

n, . . . , uN−1
n ) (n ∈ Z)

which are a mere transcription of (2.4). Alternatively, equation (2.2) is expressed by

(2.5) u0
n−1 = Gn(u0

n
, . . . , uN−1

n
), u1

n−1 = u0
n
, . . . , uN−1

n−1 = uN−2
n

and may be regarded as a transformation S−1
n : Mn → Mn−1.) Then a solution is

represented by a sequence of points

(2.6) Pn = (u0
n
, . . . , uN−1

n
) ∈ Mn (uk

n
∈ R, n ∈ Z)

satisfying (2.4) (hence SnPn = Pn+1, see the above right-hand figure). It follows

that it is determined by any of its points

(2.7) Pn̄ = (u0
n̄
, . . . , uN−1

n̄
) ∈ Mn̄ (uk

n̄
∈ R, fixed n̄ ∈ Z).
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A sequence of functions

(2.8) Φn = Φn(u0
n, . . . , uN−1

n ) (n ∈ Z)

is called the first integral of equation (2.1) if the values Φn(Pn) are independent of n

for every solution (2.6). It follows that the term Φn̄ (fixed n̄ ∈ Z) can be prescribed.

3. Symmetries of differential equation

We are interested in mappings Γ that preserve differential equation (1.1), how-

ever, reasonable counterparts for the difference equation (2.1) represent only the

x-preserving mappings. In terms of coordinates (1.2), such x-preserving symmetry

Γ: M → M is given by certain formulae

(3.1) Γ∗x = x, Γ∗uk = ûk(x, u0, . . . , uN−1) (k = 0, . . . , N − 1)

and equations (1.3) are preserved if and only if

(3.2) Dûk = ûk+1 (k = 0, . . . , N − 2), DûN−1 = F (x, û0, . . . , ûN−1),

(D = ∂/∂x + u1∂/∂u0 + . . . + uN−1∂/∂uN−2 + F∂/∂uN−1).

We also recall the infinitesimal symmetry

(3.3) Γ∗x = x, Γ∗uk = uk + εQk(x, u0, . . . , uN−1) + . . .

represented by the vector field

(3.4) X =
∑

Qk(x, u0, . . . , uN−1)
∂

∂uk

on the spaceM. The coefficients Qk satisfy the identities

DQk = Qk+1 (k = 0, . . . , N − 2), DQN−1 =
∑

Qk
∂F

∂uk
.

Since symmetries are mappings permuting the solutions, it follows that the restriction

of symmetries to the fiber x = x̄ (fixed x̄ ∈ R) can be arbitrarily prescribed.

There is a huge literature on the symmetry theory of differential equations. In

particular, we refer to [2] for the moving frame method. The particular pointwise

subcase when Γ∗u0 = û0(x, u0) is supposed is not easier and nontrivial pointwise

symmetries of a given equation (1.1) need not exist.
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4. Symmetries of difference equations

We introduce mappings Γn : Mn → Mn (n ∈ Z) given by certain formulae

(4.1) Γ∗

n
uk

n
= ûk

n
(u0

n
, . . . , uN−1

n
) (k = 0, . . . , N − 1).

Then equations (2.4) are preserved if and only if the requirements

(4.2) ûk

n+1 = ûk+1
n (k = 0, . . . , N − 2), ûN−1

n+1 = Fn(û0
n, . . . , ûN−1

n )

are satisfied by virtue of (2.4). In full detail, we have the requirements

ûk

n+1(u
1
n, . . . , uN−1

n , Fn) =

{

ûk+1
n

(if k = 0, . . . , N − 2),

Γ∗

nFn (if k = N − 1).

The sequence Γn (n ∈ Z) represents a symmetry of difference equation (2.1). The

relevant infinitesimal symmetry

(4.3) Γ∗

nuk

n = uk

n + εQk

n(u0
n, . . . , uN−1

n ) + . . .

is analogously represented by the sequence of vector fields

(4.4) Xn =
∑

Qk

n
(u0

n
, . . . , uN−1

n
)

∂

∂uk
n

(n ∈ Z)

on the spaces Mn. The coefficients Qk
n
satisfy the identities

Qk

n+1(u
1
n, . . . , uN−1

n , Fn) =

{

Qk+1
n

(if k = 0, . . . , N − 2),
∑

Ql
n∂Fn/∂ul (if k = N − 1).

Since symmetries are just the mappings that permute the solutions, it follows that

the data Γn̄ and Qk
n̄
(fixed n̄ ∈ Z) can be arbitrarily prescribed.
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We will mention in more detail the particular pointwise subcase when the trans-

formation formula

(4.5) Γ∗

n
u0

n
= gn(u0

n
) (= gn(un)) (n ∈ Z, abbreviation gn = û0

n
)

is supposed. Then the remarkable identities

(4.6)
Γ∗

nuk

n = Γ∗

nu0
n+k = gn+k(u0

n+k) = gn+k(uk

n) (k = 0, . . . , N − 1),

Γ∗

nFn = ûN−1
n+1 = gn+N(uN−1

n+1 ) = gn+N(Fn)

follow from (4.2) and (2.4).

We refer to [1] for the infinitesimal pointwise symmetries. Instead we will mention

the alternative method of moving frames. It is rather dissimilar from the common

theory of symmetries of differential equations [2].

5. Moving frames for pointwise symmetries

Functions gn+k, gn+N in identities (4.6) are unknown. Therefore identities (4.6)

can be expressed by saying that Γn transforms every level set u
k
n

= ck
n
, Fn = cn (c

k
n
, cn

are constants) again into such a level set. Alternatively: every equation duk
n = 0,

dFn = 0 is preserved. Still otherwise: let us consider spaces Nn with coordinates

and differential forms

(5.1) Nn : u0
n, . . . , uN−1

n , a0
n, . . . , aN−1

n , an (n ∈ Z),

αk

n
= ak

n
duk

n
(k = 0, . . . , N − 1), αn = an dFn.

Then

(5.2) Γ∗

nαk

n = αk

n (k = 0, . . . , N − 1), Γ∗

nαn = αn

if the transformation formulae (4.5), (4.6) are appropriately completed by the ad-

ditional coordinates. One can directly verify that the additional transformation

formulae (in fact needless in the sequel) ensuring the invariance (5.2) are

(5.3) Γ∗

nak

n =
ak

n

g′
n+k

(uk
n)

(k = 0, . . . , N − 1), Γ∗

nan =
an

g′
n+N

(Fn)
.
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6. The algorithm

Identities (5.2) express the invariance of the differential forms αk
n, αn and we will

search for more invariants in order to determine the mapping Γn : Nn → Nn. The

indices n ∈ Z may be kept fixed in this section.

First of all, we have

αn =
∑

Ak

nαk

n

(

Ak

n =
an

ak
n

∂Fn/∂uk

n

)

and it follows that Ak
n

= Γ∗

n
Ak

n
are invariants. Assume ∂Fn/∂uk

n
6= 0 for a certain k.

Since the level set Ak
n = 1 is preserved, we may restrict our calculations to this level

set. Alternatively, the coordinate ak
n
in (5.1) may be omitted and the coefficient ak

n

in (5.1) is replaced by an∂Fn/∂uk
n. (This is the common procedure in the moving

frame method.) Repeatedly applying this reduction, we have the invariant forms

(6.1) αk

n
=

{

an∂Fn/∂uk
n · duk

n (if ∂Fn/∂uk
n 6= 0)

ak
n

duk
n

(if ∂Fn/∂uk
n

= 0)

on the “reduced” space Nn (some coordinates ak
n are not occuring here).

Secondly, clearly

(6.2) dαn = dan ∧ dFn = βn ∧ αn

(

βn =
dan

an

+ bn dFn

)

where bn is regarded as a new variable. Since this βn is the most general differential

form satisfying (6.2), it follows that βn = Γ∗

n
βn is invariant. The invariance is

ensured if

Γ∗

n
bn =

1

g′
n+N

(Fn)

(

bn + an

g′′
n+N

(Fn)

g′
n+N

(Fn)

)

by using (4.6) and (5.3). (The formula will be in fact needless.)

Thirdly, assuming ∂Fn/∂uk
n
6= 0 and ∂Fn/∂ul

n
6= 0, (6.1) gives

(6.3) dαk

n
=

(

βn +
1

an

∑

(Akl

n
− bn)αl

n

)

∧ αk

n

(

Akl

n
=

∂2Fn/∂uk
n∂ul

n

∂Fn/∂uk
n
· ∂Fn/∂ul

n

)

with help of (6.2). The coefficients are invariant. Since every level set Akl
n − bn = 0

with k 6= l is preserved, we may restrict the calculations to the level set and put

bn = Akl
n for a certain appropriate k, l (where k 6= l).

Fourthly, after this restriction, we have the invariant form

(6.4) dβn = dAkl

n ∧ dFn =
1

(an)2

∑

Ars

n αr ∧ αs
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where

(6.5)
1

(an)2
Ars

n =
1

(an)2

(∂Akl
n /∂ur

n

∂Fn/∂us
n

−
∂Akl

n /∂us
n

∂Fn/∂ur
n

)

are invariant coefficients. If Ars
n

6= 0, the level set Ars
n

/(an)2 = 1 may be employed

in order to determine an which clarifies the form βn. Then βn =
∑

Ik
nαk

n, with the

true invariant functions Ik
n
depending only on the primary variables u0

n
, . . . , uN−1

n
.

In particular, we have proved the following assertion needful below.

Theorem 6.1. Assume ∂Fn/∂uk
n

6= 0 (n ∈ Z; k = 0, . . . , N − 1). Then the

pointwise symmetry Γn (n ∈ Z) given by (4.5) preserves all differential forms

αk

n
= an

∂Fn

∂uk
n

duk

n
, βn =

dan

an

+
∂2Fn/∂uk

n
∂ul

n

∂Fn/∂uk
n
· ∂Fn/∂ul

n

(n ∈ Z; k, l = 0, . . . , N − 1).

Here the additional parameters an are subject to formulae (5.32).

7. Examples

(i) The linear equation. Let us consider an equation

un+N = C0
nun + . . . + CN−1

n un+N−1 (Ck

n ∈ R, C0
n 6= 0),

therefore Fn =
∑

Ck
n
uk

n
in terms of variables (2.3). We have invariant forms

αk

n
= anCk

n
duk

n
(if Ck

n
6= 0), βn =

dan

an

;

see (6.1), (6.2) where bn = Akl
n

= 0 identically. The invariance equations (5.2)

with Γ∗

nuk
n = gn+k(uk

n) together with the additional invariance Γ∗

nβn = βn read

Γ∗

n
an · Ck

n
dgn+k = anCk

n
duk

n
, dΓ∗

n
ln an = d ln an whence

Γ∗

n
an = Enan, gn+k(uk

n
) =

1

En

(uk

n
+ Dk

n
) (En, Dk

n
∈ R)

and it follows that En = E is independent of n and Dk
n = Dn+k. In terms of original

variables, we have the substitution un+k 7→ gn+k(un+k) = (un+k + Dn+k)/E which

can be simplified as

un 7→ gn(un) =
1

E
(un + Dn) (n ∈ Z).
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This is indeed a symmetry if the recurrence Dn+N =
∑

Ck
n
Dn+k (n ∈ Z) is satisfied.

It follows that the point symmetries depend on the choice of N constants E 6= 0,

D0, . . . , DN−1.

(ii) Nontrivial invariants. Let us consider the equation

un+N = un + lnGn (Gn = un + . . . + un+N−1).

In terms of variables (2.3), we have invariant forms

α0
n = an

(

1 +
1

Gn

)

du0
n, αk

n = an

1

Gn

uk

n (k = 1, . . . , N − 1),

and βn which will be needless. One can then find that all coefficients to appear (e.g.,

Akl
n

, bn,Akl
n

, Ik
n
) depend only on functions Gn and we may introduce the invariance

requirement Γ∗

nGn = Gn. This implies Γ∗

n duk
n = duk

n whence

gn+k(uk

n) = Γ∗

nuk

n = uk

n + En+k.

In terms of original variables, we have the substitution un+k 7→ gn+k(un+k) = un+k+

En+k which can be simplified to

un 7→ gn(un) = un + En.

This is indeed a symmetry if the compatible requirements

En+N = En, En + . . . + En+N−1 = 0

equivalent to the single recurrence

En+1 + . . . + En+N = 0 (n ∈ Z)

are satisfied. It follows that the point symmetries depend on the choice of N − 1

constants. One can however see that a slight change of data may provide a difference

equation without any point symmetries, see also [4] for a quite general discussion if

N = 2 is supposed.

(iii) The zero curvature examples. Let us introduce a large class of equations

un+N = ϕn(p0
n
(un) + . . . + pN−1

n
(un+N−1)) (ϕ′

n
6= 0, pk

n

′

6= 0)

where ϕn, pk
n are smooth functions. In terms of variables (2.3), we have

Fn = ϕn

(

∑

pk

n(uk

n)
)

, Akl

n =
ϕ′′

n

(ϕ′

n)2
= bn, Akl

n = 0.
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We recall the invariant forms

αk

n
= anϕ′

n
pk

n

′ duk

n
= anϕ′

n
dpk

n
, βn =

dan

an

+
ϕ′′

n

(ϕ′

n
)2

dϕn = d(ln anϕ′

n
).

The invariance of the forms βn implies

Γ∗

n(anϕ′

n) = Enanϕ′

n

for appropriate nonvanishing constants En ∈ R. Then the invariance of the forms αk
n

reads

Enanϕ′

nΓ∗

n dpk

n = anϕ′

n dpk

n

whence

EnΓ∗

npk

n = pk

n + Dk

n (k = 0, . . . , N − 1)

for appropriate constants Dk
n ∈ R. However,

Γ∗

n
pk

n
= pk

n
(Γ∗

n
uk

n
) = pk

n
(gn+k)

and therefore En = E is independent of n and Dk
n

= Dn+k. Altogether we have the

substitution

(7.1) un+k 7→ gn+k(un+k) =
(

pk

n

)−1
( 1

E
(pk

n
(un+k) + Dn+k)

)

(k = 0, . . . , N − 1)

(with the inverse function
(

pk
n

)

−1
) in terms of original variables. In particular,

(7.2) un 7→ gn(un) =
(

p0
n

)−1
( 1

E
(p0

n
(un) + Dn)

)

and this result is quite reasonable in applications. We have an overdetermined sys-

tem of requirements. If requirements (7.1), (7.2) are compatible, they determine all

possible point symmetries.

(iv) Continuation with N = 2. Let us mention two intentionally simple examples

un+2 =
unun+1

un + un+1
, un+2 =

1 − unun+1

un + un+1
.

They can be transcribed as

un+2 =
1

1/un + 1/un+1
, un+2 =

1

tan(arctanun + arctanun+1)
,
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respectively. The choice of functions ϕn = ϕ, pk
n

= p (independent of n, k) is obvious

here and formula (7.2) may be applied. We obtain substitutions

un 7→
1

E−1(1/un + Dn)
, un 7→

1

tan E−1(arctanun + Dn)
(n ∈ Z)

and they are true symmetries if and only if the recurrence Dn+2 = Dn + Dn+1

(n ∈ Z) is satisfied (direct verification). The same formulae were obtained in [1]

with the use of infinitesimal transformations and rather lengthy calculations.
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