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Abstract

In this paper we introduce a new sequence spaceBVσ(M, u, p, r, ‖·, . . . , ·‖)
defined by a sequence of Orlicz functionsM = (Mk) and study some topo-
logical properties of this sequence space.

Key words: paranorm space, invariant mean, orlicz function, Musielak–
orlicz function, n-normed space, solid

2000 Mathematics Subject Classification: 40D05, 40A05

1 Introduction and Preliminaries

The concept of 2-normed spaces was initially developed by Gähler[2] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak[11]. Since
then, many others have studied this concept and obtained various results, see
Gunawan ([3], [4]), Gunawan and Mashadi [5] and many others. Let n ∈ N and
X be a linear space of dimension d, where d ≥ n ≥ 2 over the field K (K is
the field of real or complex numbers). A real valued function ‖·, . . . , ·‖ on Xn

satisfying the following four conditions:

1. ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent
in X;

2. ‖x1, x2, . . . , xn‖ is invariant under permutation;
3. ‖αx1, x2, . . . , xn‖ = |α| ‖x1, x2, . . . , xn‖ for any α ∈ K, and

4. ‖x+ x′, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖+ ‖x′, x2, . . . , xn‖
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is called a n-norm on X and the pair (X, ‖·, . . . , ·‖) is called a n-normed space
over the field K.
For example, we may take X = R

n being equipped with the Euclidean
n-norm, ‖x1, x2, . . . , xn‖E = the volume of the n-dimensional parallelopiped
spanned by the vectors x1, x2, . . . , xn which may be given explicitly by the
formula

‖x1, x2, . . . , xn‖E = | det(xij)|,
where xi = (xi1, xi2, . . . , xin) ∈ Rn for each i = 1, 2, . . . , n and ‖.‖E denotes
the Euclidean norm. Let (X, ‖·, . . . , ·‖) be an n-normed space of dimension
d ≥ n ≥ 2 and {a1, a2, . . . , an} be linearly independent set in X. Then the
following function ‖·, . . . , ·‖∞ on Xn−1 defined by

‖x1, x2, . . . , xn−1‖∞ = max{‖x1, x2, . . . , xn−1, ai‖ : i = 1, 2, . . . , n}

defines an (n− 1)-norm on X with respect to {a1, a2, . . . , an}.
A sequence (xk) in a n-normed space (X, ‖·, . . . , ·‖) is said to converge to

some L ∈ X if

lim
k→∞

‖xk − L, z1, . . . , zn−1‖ = 0 for every z1, . . . , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ‖·, . . . , ·‖) is said to be Cauchy if

lim
k,p→∞

‖xk − xp, z1, . . . , zn−1‖ = 0 for every z1, . . . , zn−1 ∈ X.

If every cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the n-norm. A complete n-normed space is said to be
a n-Banach space.
Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x) ≥ 0, for all x ∈ X;

2. p(−x) = p(x), for all x ∈ X;

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X;

4. if (σn) is a sequence of scalars with σn → σ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x) → 0 as n → ∞, then p(σnxn−σx) → 0
as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see [20],
Theorem 10.4.2, P-183). For more details about sequence spaces see ([6], [12],
[16], [18]).
Let l∞ and c denotes the Banach spaces of bounded and convergent sequences

x = (xk)
∞
k=1 respectively. Let σ be an injection of the set of positive integers

N into itself having no finite orbits and T be the operator defined on l∞ by
T ((xn)

∞
n=1) = (xσ(n))

∞
n=1.
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A positive linear functional ϕ, with ‖ϕ‖ = 1, is called a σ-mean or an
invariant mean if ϕ(x) = ϕ(Tx) for all x ∈ l∞.
A sequence x = (xk) is said to be σ-convergent, denoted by x ∈ Vσ, if ϕ(x)

takes the same value, called σ-lim x, for all σ-means ϕ. We have

Vσ =

{
x = (xn) :

∞∑
m=1

tm,n(x) = L uniformly in n, L = σ − lim x

}
,

for m ≥ 0, n > 0, where, tm,n(x) =
xn+xσ(n)+···+xσm(n)

m+1 , and t−1,n = 0 (see
schaefer [19]), where σm(n) denotes the mth iterate of σ at n. In particular, if
σ is a translation, a σ-mean is often called a Banach limit and Vσ reduces to f ,
the set of almost convergent sequences (see Lorentz [8]). Subsequently invariant
mean have been studied by Ahmad and Mursaleen [1] and many others.
A sequence space E is said to be solid(or normal) if (xk) ∈ E implies

(αkxk) ∈ E for all sequences of scalars (αk) with |αk| ≤ 1 and for all k ∈ N.
A sequence space E is said to be monotone if it contains the canonical preim-

ages of all its step spaces.
An orlicz function M is a function, which is continuous, non-decreasing and

convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.
Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the

following sequence space. Let w be the space of all real or complex sequences
x = (xk), then

�M =

{
x ∈ w :

∞∑
k=1

M
( |xk|

ρ

)
< ∞

}

which is called as an Orlicz sequence space. The space �M is a Banach space
with the norm

‖x‖ = inf

{
ρ > 0:

∞∑
k=1

M
( |xk|

ρ

)
≤ 1

}
.

It is shown in [7] that every Orlicz sequence space �M contains a subspace
isomorphic to �p(p ≥ 1). The Δ2−condition is equivalent to M(Lx) ≤ kLM(x)
for all values of x ≥ 0, and for L > 1. An Orlicz function M can always be
represented in the following integral form

M(x) =

∫ x

0

η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞.
A sequenceM = (Mk) of Orlicz functions is called a Musielak–Orlicz func-

tion see ([10], [14]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, . . .

is called the complementary function of a Musielak–Orlicz function M. For a
given Musielak–Orlicz functionM, the Musielak–Orlicz sequence space tM and
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its subspace hM are defined as follows

tM = {x ∈ w : IM(cx) < ∞ for some c > 0},
hM = {x ∈ w : IM(cx) < ∞for all c > 0},

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x‖ = inf
{
k > 0: IM

(x
k

)
≤ 1

}
or equipped with the Orlicz norm

‖x‖0 = inf

{
1

k
(1 + IM(kx)) : k > 0

}
.

Mursaleen [13] defined the sequence space

BVσ =

{
x ∈ l∞ :

∑
m

|ϕm,n(x)| < ∞, uniformly in n

}
,

where ϕm,n(x) = tm,n(x)− tm−1,n(x), assuming that tm,n(x) = 0, for m = −1.
Note that for any sequences x = (xk), y = (yk) and scalar λ we have

ϕm,n(x+ y) = ϕm,n(x) + ϕm,n(y)

and
ϕm,n(λx) = λϕm,n(x).

Let M = (Mk) be a Musielak–Orlicz function, p = (pm) be any sequence of
strictly positive real numbers and r ≥ 0 the sequence space BVσ(M, p, r) defined
by Raj, Sharma and Sharma [15].
LetM = (Mk) be a sequence of Orlicz functions and w(X) denotesX-valued

sequence spaces. Let p = (pm) be a bounded sequence of positive real numbers
and u = (uk) be any sequence of strictly positive real numbers. In the present
paper we define the sequence space:

BVσ(M, u, p, r, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞,

uniformly in n and for some ρ > 0
}
.
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ForM(x) = x, we get

BVσ(u, p, r, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

1

mr

[
sup
k≥0

uk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞,

uniformly in n and for some ρ > 0
}
.

For p = pm = 1 for all m, we get

BVσ(M, u, r, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]
< ∞,

uniformly in n and for some ρ > 0
}
.

For r = 0, we get

BVσ(M, u, p, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞,

uniformly in n and for some ρ > 0
}
.

ForM(x) = x and r = 0, we get

BVσ(u, p, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

[
sup
k≥0

uk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞,

uniformly in n and for some ρ > 0
}
.

For p = pm = 1 for all m and r = 0, we get

BVσ(M, u, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]
< ∞,

uniformly in n and for some ρ > 0
}
.

ForM(x) = x, p = pm = 1 for all m and r = 0, we get,

BVσ(u, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

[
sup
k≥0

uk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]
< ∞,

uniformly in n and for some ρ > 0
}
.
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If we take u = uk = 1 for all k we get,

BVσ(M, p, r, ‖·, . . . , ·‖) ={
x = (xk) ∈ w(X) :

∞∑
m=1

1

mr

[
sup
k≥0

Mk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞,

uniformly in n and for some ρ > 0
}
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk =
H, K = max(1, 2H−1) then

|ak + bk|pk ≤ K{|ak|pk + |bk|pk} (1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

The aim of this paper is to examine some topological properties and inclusion
relations between above defined sequence spaces.

2 Some properties of sequence space BVσ(M, u, p, r, ‖·, . . . , ·‖)

Theorem 2.1 The sequence space BVσ(M, u, p, r, ‖·, . . . , ·‖) is a linear space
over the field of complex numbers C.

Proof Let x, y ∈ BVσ(M, u, p, r, ‖·, . . . , ·‖) and α, β ∈ C. Then there exist
positive numbers ρ1 and ρ2 such that

∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ1
, z1, . . . , zn−1

)]pm

< ∞,

uniformly in n and for some ρ1 > 0

and

∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(y)

ρ2
, z1, . . . , zn−1

)]pm

< ∞,

uniformly in n and for some ρ2 > 0.

Define

ρ3 = max(2|α|ρ1, 2|β|ρ2).
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SinceM = (Mk) is non-decreasing, convex and so by using inequality (1.1), we
have

∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n

(
αx+ βy

)
ρ3

, z1, . . . , zn−1‖
)]pm

≤
∞∑

m=1

1

mr

[
sup
k≥0

ukMk

(
‖αϕm,n(x)

ρ3
, z1, . . . , zn−1‖

+ ‖βϕm,n(y)

ρ3
, z1, . . . , zn−1‖

)]pm

≤ K
∞∑

m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ1
, z1, . . . , zn−1‖

)]

+K
∞∑

m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(y)

ρ2
, z1, . . . , zn−1‖

)]
< ∞, uniformly in n.

This proves that BVσ(M, u, p, r, ‖·, . . . , ·‖) is a linear space over the field C of
complex numbers. �

Theorem 2.2 LetM = (Mk) be a sequence of Orlicz functions, p = (pm) be a
bounded sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers, the space BVσ(M, u, p, r, ‖·, . . . , ·‖) is a paranormed space
with the paranorm defined by

g(x) = inf
n≥1

{
ρ

pn
H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm
) 1

H ≤ 1,

uniformly in n
}
,

where H = max(1, sup pm).

Proof It is clear that g(x) = g(−x). Since M(0) = 0, we get g(0) = 0. By
using Theorem 2.1, for α = β = 1, we get

g(x+ y) ≤ g(x) + g(y).

For the continuity of scalar multiplication, let λ �= 0 be any complex numbers,
then by definition, we have

g(λx) = inf
n≥1

{
ρ

pn
H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(λx)

ρ
, z1, . . . , zn−1

)]pm
) 1

H

≤ 1,

uniformly in n
}
.
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g(λx) = inf
n≥1

{
(|λ|s) pn

H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(λx)

s|λ| , z1, . . . , zn−1‖
)]pm

) 1
H

≤ 1,

uniformly in n
}
,

where s = ρ
|λ| . Since |λ|pm ≤ max(1, |λ|q), we have

g(λx) ≤ max(1, |λ|q) inf
n≥1

{
s

pn
H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n

s
, z1, . . . , zn−1‖

)]pm
) 1

H
)
≤ 1,

uniformly in n
}
= max(1, |λ|q)g(x),

and therefore g(λx) converges to zero in BVσ(M, u, p, r, ‖·, . . . , ·‖). Now let x
be fixed element in BVσ(M, u, p, r, ‖·, . . . , ·‖), there exist ρ > 0 such that

g(x) = inf
n≥1

{
ρ

pn
H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm
) 1

H ≤ 1,

uniformly in n
}
.

Now

g(λx) = inf
n≥1

{
ρ

pn
H :

( ∞∑
m=1

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(λx)

ρ
, z1, . . . , zn−1‖

)]pm
) 1

H ≤ 1,

uniformly in n
}
−→ 0 as λ −→ 0.

This completes the proof. �

Theorem 2.3 Suppose that 0 < pm ≤ qm < ∞, for each m ∈ N and r ≥ 0.
Then
(i) BVσ(M, u, p, ‖·, . . . , ·‖) ⊆ BVσ(M, u, q, ‖·, . . . , ·‖),
(ii) BVσ(M, u, ‖·, . . . , ·‖) ⊆ BVσ(M, u, r, ‖·, . . . , ·‖).

Proof (i) Suppose that x ∈ BVσ(M, u, p, ‖·, . . . , ·‖). This implies that
[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm ≤ 1
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for sufficiently large value of m, say m ≥ m0 for some fixed m0 ∈ N. Since
M = (Mk) is non-decreasing, we have

∞∑
m=m0

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]qm

≤
∞∑

m=m0

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z − 1, . . . , zn−1‖

)]pm

< ∞.

Hence x ∈ BVσ(M, u, q, ‖·, . . . , ·‖).
(ii) Suppose that x ∈ BVσ(M, u, ‖·, . . . , ·‖). This implies that[

sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]
≤ 1,

for sufficiently large value of m, say m = m0 for fixed m0 ∈ N. SinceM = (Mk)
is non-decreasing, we have

∞∑
m=m0

1

mr

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]

≤
∞∑

m=m0

[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]
< ∞.

Hence x ∈ BVσ(M, u, r, ‖·, . . . , ·‖). �

Corollary 2.1 (i) If 0 < pm ≤ 1 for each m, then

BVσ(M, u, p, ‖·, . . . , ·‖) ⊆ BVσ(M, u, ‖·, . . . , ·‖).
(ii) If pm ≥ 1 for all m, then

BVσ(M, u, ‖·, . . . , ·‖) ⊆ BVσ(M, u, p, ‖·, . . . , ·‖).
Proof It follows from the above Theorem. �

Theorem 2.4 The sequence space BVσ(M, u, p, r, ‖·, . . . , ·‖) is solid.
Proof Let x ∈ BVσ(M, u, p, r, ‖·, . . . , ·‖). This implies that

∞∑
m=1

m−r
[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞.

Let (αm) be the sequence of scalars such that |αm| ≤ 1 for all m ∈ N. Then the
result follows from the following inequality

∞∑
m=1

m−r
[
sup
k≥0

ukMk

(
‖αmϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

≤
∞∑

m=1

m−r
[
sup
k≥0

ukMk

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

< ∞.
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Hence αx ∈ BVσ(M, u, p, r, ‖·, . . . , ·‖) for all sequences of scalars (αm) with
|αm| ≤ 1 for all m ∈ N whenever x ∈ BVσ(M, u, p, r, ‖·, . . . , ·‖). �

Corollary 2.2 The sequence space BVσ(M, u, p, r, ‖·, . . . , ·‖) is monotone.
Proof It follows from the above Theorem. �

Theorem 2.5 Let M = (Mk), M′ = (M ′
k), M′′ = (M ′′

k ) are sequences of
Orlicz functions satisfying Δ2-condition and r, r1, r2 ≥ 0. Then we have
(i) If r > 1 then BVσ(M′, u, p, r, ‖·, . . . , ·‖) ⊆ BVσ(M◦M′, u, p, r, ‖·, . . . , ·‖),
(ii) BVσ(M′, u, p, r, ‖·, . . . , ·‖)⋂BVσ(M′′, u, p, r, ‖·, . . . , ·‖)

⊆ BVσ(M′ +M′′, u, p, r, ‖·, . . . , ·‖),
(iii) If r1 ≤ r2 then BVσ(M, u, p, r1, ‖·, . . . , ·‖) ⊆ BVσ(M, u, p, r2, ‖·, . . . , ·‖).

Proof (i) SinceM′ = (M ′
k) is continuous at origin from right for all k, for ε > 0

there exists 0 < δ < 1 such that 0 ≤ C ≤ δ implies M ′
k(C) < ε. If we define

I1 =
{
m ∈ N : sup

k≥0
ukM

′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)
≤ δ, for some ρ > 0

}
,

I2 =
{
m ∈ N : sup

k≥0
ukM

′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)
> δ, for some ρ > 0

}
,

when supk≥0 ukM
′
k

(
‖ϕm,n(x)

ρ , z1, . . . , zn−1‖
)
> δ, we get

sup
k≥0

ukMk

(
sup
k≥0

M ′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

))

≤
{
2 sup
k≥0

ukMk(1)/δ
}
sup
k≥0

ukM
′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)
.

Hence for x ∈ BVσ(M′, u, p, r, ‖·, . . . , ·‖) and r > 1, we have
∞∑

m=1

m−r
[
sup
k≥0

uk(Mk ◦M ′
k)
(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

=
∑
m∈I1

m−r
[
sup
k≥0

uk(Mk ◦M ′
k)
(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

+
∑
m∈I2

m−r
[
sup
k≥0

uk(Mk ◦M ′
k)
(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

≤
∑
m∈I1

m−r[ε]pm

+
∑
m∈I2

m−r
[{

sup
k≥0

2ukMk(1)/δ
}
sup
k≥0

ukM
′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

≤ max(εh, εH)

∞∑
m=1

m−r +max
({2Mk(1)

δ

}h

,
{2Mk(1)

δ

}H)
,
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where 0 < h = inf pm ≤ pm ≤ H = sup
n

pm < ∞.
(ii) The proof follows from the following inequality

m−r
[
sup
k≥0

uk(M
′
k +M ′′

k )
(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

≤ Km−r
[
ukM

′
k

(
‖ |ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

+Km−r
[
ukM

′′
k

(
‖ϕm,n(x)

ρ
, z1, . . . , zn−1‖

)]pm

.

(iii) The proof is straight forward. �

Corollary 2.3 LetM = (Mk) be a sequence of Orlicz functions satisfying Δ2-
condition. Then we have
(i) If r > 1, then BVσ(u, p, r, ‖·, . . . , ·‖) ⊂ BVσ(M, u, p, r, ‖·, . . . , ·‖),
(ii) BVσ(M, u, p, ‖·, . . . , ·‖) ⊆ BVσ(M, u, p, r, ‖·, . . . , ·‖),
(iii) BVσ(u, p, , ‖·, . . . , ·‖) ⊆ BVσ(u, p, r, , ‖·, . . . , ·‖),
(iv) BVσ(M) ⊆ BVσ(M, u, r, , ‖·, . . . , ·‖).

Proof The proof follows from the above theorem. �
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