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G-nilpotent units of commutative group rings

Peter Danchev

Abstract. Suppose R is a commutative unital ring and G is an abelian group.
We give a general criterion only in terms of R and G when all normalized units
in the commutative group ring RG are G-nilpotent. This extends recent results
published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].

Keywords: group rings, normalized units, nilpotents, idempotents, decomposi-
tions, abelian groups

Classification: 16S34, 16U60, 20K10, 20K20, 20K21

1. Introduction

Throughout the present paper, let it be agreed that all groups are multiplica-
tively written and abelian as is customary when studying group rings, and all rings
are commutative with identity 1 (further called commutative unital). For such a
ring R and a group G, suppose N(R) is the nil-radical of R and Gt is the torsion
part of G with p-component Gp. Likewise, suppose RG is the group ring of G over
R with group of normalized units V (RG). Standardly, I(LG;G) is the fundamen-
tal ideal of LG where L ≤ R and I(RG;H) is the relative augmentation ideal of
RG with respect to H ≤ G. As usual, imitating [13], id(R) = {e ∈ R | e2 = e},
inv(R) = {p | p · 1 ∈ U(R)}, where p is a prime number, U(R) is the unit group of
R, zd(R) = {p | ∃r ∈ R \ {0} : pr = 0}, and supp(G) = {p |Gp 6= 1G}.

Following [8], [9] we define the idempotent subgroup Id(RG) as follows:

Id(RG) =
{
e1g1 + · · ·+ ekgk | ei ∈ id(R),

∑

i

ei = 1, eiej = 0 (i 6= j), gi ∈ G; 1 ≤ i, j ≤ k
}
.

It is self-evident that Id(RG) is a group and that Id(RG) ≤ V (RG).
All other notations and notions are standard and follow essentially those from

the survey paper [9] and the classical monographs [8], [10], [11] and [12].
The purpose of this article is to establish a necessary and sufficient condition

in terms associated only with R and G when all normalized units are G-nilpotent.
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Definition. A normalized unit v ∈ V (RG) is said to be G-nilpotent if v can be
uniquely expressed as v = gw where g ∈ G and w ∈ 1 + I(N(R)G;G).

This is tantamount to ask when the decomposition

V (RG) = G× (1 + I(N(R)G;G))

holds; note that G ∩ (1 + I(N(R)G;G)) = 1.
Some explorations that are closely related to this theme are given in [3], [4]

and [5] (compare with Section 2). Here we shall amend our technique and, as a
result, we will generalize the main assertions from these papers.

2. Preliminaries and main results

Before proving the chief statements, we need some technicalities.

Lemma 1. For each ring R the following equality is fulfilled:

U(R/N(R)) = {r +N(R) | r ∈ U(R)}.

Proof: Clearly the left hand-side contains the right one because there exist
r, f ∈ R with rf = 1 and hence (r+N(R))(f +N(R)) = rf +N(R) = 1+N(R).

As for the converse inclusion, let x ∈ U(R/N(R)) be given. Then, x = r+N(R)
for some r ∈ R such that there exists f ∈ R with (r + N(R))(f + N(R)) =
rf + N(R) = 1 + N(R). Consequently, rf − 1 ∈ N(R) which means that rf ∈
1 +N(R) ⊆ U(R). Therefore, it is easily seen that r ∈ U(R) as required. �

Lemma 2. For any ring R the following equality holds:

inv(R) = inv(R/N(R)).

Proof: Assume that p ∈ inv(R). Then p·1 ∈ U(R) and hence in view of Lemma 1
we have p(1 +N(R)) = p · 1 +N(R) ∈ U(R/N(R)). Thus p ∈ inv(R/N(R)) and
the inclusion “⊆” is obtained.

As for the converse containment “⊇”, choose p ∈ inv(R/N(R)), whence p(1 +
N(R)) ∈ U(R/N(R)). In accordance with Lemma 1 we may write p · 1+N(R) =
α + N(R) where α ∈ U(R). Furthermore, p · 1 ∈ U(R) + N(R) = U(R) so that
p ∈ inv(R), as required. �

Let R be a ring. Define np(R) = {p | ∃r ∈ R \ N(R) : pr ∈ N(R)}. The
following claim is useful.

Lemma 3. For every ring R the following equality is true:

zd(R/N(R)) = np(R).
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Proof: Given p ∈ zd(R/N(R)), there is r /∈ N(R) such that p(r + N(R)) =
pr +N(R) = N(R). Thus pr ∈ N(R) and p ∈ np(R).

Conversely, let p ∈ np(R). Then there is r ∈ R \ N(R) with pr ∈ N(R).
Consequently, p(r + N(R)) = N(R) and r + N(R) 6= N(R) which implies that
p ∈ zd(R/N(R)). �

Lemma 4. Suppose R is a ring. Then

id(R) = {0, 1} ⇐⇒ id(R/N(R)) = {0, 1}.

Proof: “⇒”. Because of the classical fact that idempotents can always be lifted
through N(R) (see, e.g., [1]) if R/N(R) has a non-trivial idempotent, then the
same must be true of R, a contradiction.

“⇐”. Choose an arbitrary element r ∈ R with r2 = r, hence r + N(R) =
r2+N(R) = (r+N(R))2. Therefore, either r+N(R) = N(R), whence r ∈ N(R)
and thus r = 0, or r + N(R) = 1 + N(R), whence r ∈ 1 + N(R) ⊆ U(R). But
then r(1 − r) = 0 ensures that 1− r = 0 that is r = 1, as required. �

Another topological approach in proving the above can be based on the follow-
ing two standard facts in commutative ring theory:

Let A be any commutative unital ring. Then the following are true (e.g., cf. [1]):

(i) A has no non-trivial idempotents if and only if Spec(A), the set of prime
ideals of A equipped with the Zariski topology, is a connected topological
space;

(ii) the canonical surjection from Spec(A/N(A)) to Spec(A), sending P +
N(A) to P , is a homeomorphism (relative to the Zariski topology on each
space).

Proposition 5. Suppose R is a ring and φ : R → R/N(R) is the natural
map. Define Φ : RG → (R/N(R))G and its restriction ΦV (RG) : V (RG) →
V ((R/N(R))G) by Φ(

∑
g∈G rgg) =

∑
g∈G φ(rg)g =

∑
g∈G(rg + N(R))g. Then

the following relations are valid:

(a) Φ is a surjective homomorphism;
(b) kerΦ = N(R)G and kerΦV (RG) = 1 + I(N(R)G;G).

Proof: (a) That Φ is a ring (and hence a group) homomorphism follows easily
since so is φ.

As for the epimorphism (= surjection), we will restrict our attention only on
V (RG) because for RG this is evident. And so, choose x ∈ V ((R/N(R))G)
whence there is y ∈ RG with Φ(y) = x. Moreover, there are x′ ∈ (R/N(R))G
such that xx′ = 1 and y′ ∈ RG such that Φ(y′) = x′. Therefore, 1 = Φ(y)Φ(y′) =
Φ(yy′), so that Φ(yy′− 1) = 0 and point (b) below applies to write that yy′− 1 ∈
N(RG). Finally, yy′ ∈ 1 +N(RG) ⊆ U(RG) and thus y ∈ U(RG). Furthermore,
since U(RG) = V (RG)×U(R), U((R/N(R))G) = V ((R/N(R))G)×U(R/N(R))
and Φ(V (RG)) ⊆ V ((R/N(R))G), Φ(U(R)) ⊆ U(R/N(R)), it easily follows now
that Φ(V (RG)) = V ((R/N(R))G), as expected.
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(b) Clearly, 1 + I(N(R)G;G) ⊆ V (RG) because I(N(R)G;G) ⊆ N(R)G ⊆
N(RG).

On the other hand, it is plainly seen that kerΦ = N(R)G. Moreover, one
checks that kerΦV (RG) = (1 + I(RG;G)) ∩ (1 + N(R)G) = 1 + I(N(R)G;G) as
asserted. �
Remark 1. Actually, the pre-image y can be chosen with augmentation 1, and
therefore y ∈ U(RG) directly implies that y ∈ V (RG). In fact, if x = (r1 +
N(R))g1 + · · · + (rs + N(R))gs with r1 + · · · + rs − 1 = α ∈ N(R), then y =
r1g1+· · ·+rsgs−α1G satisfies the required property that Φ(y) = x and aug(y) = 1.

Proposition 6. Suppose G is a group and R is a ring. Then the following
equivalence holds:

V (RG) = G× (1 + I(N(R)G;G)) ⇐⇒ V ((R/N(R))G) = G.

Proof: “⇒”. Applying Proposition 5(a) and taking Φ in the both sides of the
given equality, we derive that Φ(V (RG)) = Φ(G)Φ(1 + I(N(R)G;G)). This is
equivalent to V ((R/N(R))G) = G because Φ(G) = G and Φ(1+ I(N(R)G;G)) =
1, as stated.

“⇐”. Choose an arbitrary element x∈V (RG). We have Φ(x)∈V ((R/N(R))G)
= G. Thus we may write Φ(x) = g = Φ(g) for some g ∈ G. Furthermore,
Φ(x)[Φ(g)]−1 = Φ(x)Φ(g−1) = Φ(xg−1) = 1. Hence xg−1 ∈ kerΦV (RG) =
1 + I(N(R)G;G) utilizing Proposition 5(b). Finally, x ∈ G× (1 + I(N(R)G;G))
as required. �

The following statement is an amended version of [3, Proposition].

Proposition 7. Suppose G is a group with |G| = 3 and R is a ring such that
3 ∈ inv(R). Then V (RG) = G if and only if U(R) = 1 and the equation r2+ f2+
rf + r + f = 0 has only trivial solutions in R.

Proof: “⇒”. What we need to show is that char(R) = 2. Assume the contrary,
2 6= 0. Then we observe that 2

3 + 2
3g − 1

3g
2 is a non-trivial unit with the inverse

2
3 − 1

3g +
2
3g

2. This contradiction allows us to conclude that 2 = 0. Furthermore,
we apply the proof of Proposition on p. 51 from [3] to deduce that U(R) = 1 and
r2 + f2 + rf + r + f = 0 is possible unique when r = 0, f = 0 or r = 1, f = 0 or
r = 0, f = 1.

“⇐”. Certainly U(R) = 1 implies that −1 = 1, i.e., 2 = 0. Thus char(R) = 2
and the further argument follows as that in [3, p. 51, Proposition]. �
Remark 2. Note also that 2 /∈ U(R) since otherwise 1

2 + 1
2g ∈ V (RG) with the

inverse 1− g + g2. Moreover, we point out that the equations here and in [3] are
the same, which follows via the substitutions a = 1 + r and b = 1 + f .

Now we list the following criterion from [4] which will be useful in the sequel.

Theorem A. Let R be a ring and G a group. Then V (RG) = G if and only
if id(R) = {0, 1}, N(R) = 0, V (RGt) = Gt and precisely one of the following
conditions is true:
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(1) G = Gt;
(2) G 6= Gt, supp(G) ∩ (inv(R) ∪ zd(R)) = ∅.
Now we are planning to give a new, more conceptual, proof of the following

result from [3].

Theorem B. Suppose G is a group and R is a ring such that supp(G)∩ inv(R) 6=
∅. Then V (RG) = G if and only if id(R) = {0, 1}, N(R) = 0 and at most one of
the following conditions holds:

(1) |G| = |U(R)| = 2;
(2) |G| = 3, U(R) = 1 and the equation a2 + b2 + ab+ 1 = 0 has only trivial

solutions in R for each pair (a, b).

Proof: “⇒”. If either the set id(R) contains a non-trivial idempotent e or the
nil-ideal N(R) contains a non-trivial nilpotent r, taking g ∈ G we can construct
one of the elements xe = eg+1−e or xr = 1−r+rg— for each of them it is easily
verified that xe ∈ V (RG) \G with inverse x−1

e = eg−1+1− e, or xr ∈ V (RG) \G
as the sum of 1 and the nilpotent −r + rg = r(g − 1), a contradiction in each of
the two situations. That is why both id(R) and N(R) are trivial.

Claim that G is finite of order 2 or 3. In fact, assume in a way of contradiction
that G is infinite. Since there is a prime, say q, such that Gq 6= 1 and q ∈ inv(R),
it is well known that there exists an idempotent e ∈ RF where F ≤ Gq is a
finite subgroup. Choose g /∈ F (this choice is possible since G is infinite while
F is finite) and in the same manner as above one can construct the element
xe = eg+1− e ∈ V (RG) \G. Thus G is necessarily finite. By the same reason, it
follows that G does not contain proper subgroups, that is, G is of prime cardinality
— thereby |G| is a prime, say q. Furthermore, we claim that G has cardinality 2
or 3. To show this, we assume the contrary that |G| ≥ 5 and consider the element

u = (1 + g)q−1 − 2q−1−1
q (1 + g+ · · ·+ gq−1) where G = 〈g〉 with gq = 1. It is well

known that u is a unit with augmentation 1 which does not lie in G (see, e.g.,
[12]). This contradiction shows that |G| ≤ 4. Finally, either |G| = 2 or |G| = 3 as
claimed.

Moreover, another approach is to notice that there is a nontrivial idempotent
e = 1

2 (1 + g) or e = 1
3 (1 + g + g2) where g is either of order 2 or 3. If g′ /∈ 〈g〉,

then 1− e+ eg′ is a nontrivial unit.
Next, we consider separately these two possibilities:

Case 1. G is cyclic of order 2.
Firstly, note that 2 ∈ U(R). We claim that if r ∈ U(R) is an arbitrary element,

then either r = 1 or r = −1; so 2 = −1 and hence 3 = 0 since 2 = 1 does not
hold. In fact, consider the element xr = 1

2 − r
2 + (12 + r

2 )g. It is simple checked

that xr ∈ V (RG) with the inverse xr−1 = 1
2 − r−1

2 +(12 +
r−1

2 )g. Since there exist

only trivial units, it must be fulfilled that r
2 = 1

2 or r
2 = − 1

2 , i.e., r = 1 or r = −1.
Thus U(R) has only two elements, as claimed.

Case 2. G is cyclic of order 3.
It follows immediately from Proposition 7.
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“⇐”. (1) First, note that 1 6= −1 and char(R) = 3 because 2 ∈ U(R) = {1,−1}
and thus 2 = −1; the equality 2 = 1 is impossible since it yields that 1 = 0. Let
xr = 1− r+ rg. Then, there is f ∈ R such that (1− r+ rg)(1− f + fg) = 1. This
is equivalent to f(2r−1) = r. Since 2rf − r−f = 0, we have (2r−1)(2f −1) = 1
and it must be that 2r − 1 ∈ U(R). Consequently, 2r − 1 = 1 or 2r − 1 = −1.
Thus 2r = 2, whence r = 1, or 2r = 0, whence r = 0. Finally, either xr = 1 or
xr = g. In both cases we observe that V (RG) = G, as expected.

(2) Follows by a direct application of Proposition 7. �
Remark 3. First, notice that in clause (2) we must have char(R) = 2 if char(R)
is a prime integer. In fact, always −1 ∈ U(R) and since U(R) = 1, we have that
−1 = 1 which is tantamount to 2 = 0 as asserted.

Certainly, in the Main Theorem from [3], point (1) G = 1 is not realistic and
cannot be happen since supp(G) 6= ∅.

The question of the triviality of units in commutative group rings will be com-
pletely exhausted if the following can be settled:

Problem 1. Find a criterion only in terms associated with R and G when
V (RG) = G holds, provided that G = Gt and supp(G) ∩ inv(R) = ∅.

We have now at our disposal all the information needed to prove the following.

Theorem 8. Suppose G is a group and R is a ring. Then V (RG) = G × (1 +
I(N(R)G;G)) if and only if id(R) = {0, 1}, V (RGt) = Gt × (1 + I(N(R)Gt;Gt))
and at most one of the following conditions holds:

(1) G = Gt;
(2) G 6= Gt, supp(G) ∩ (inv(R) ∪ np(R)) = ∅.

Proof: Employing Proposition 6 we equivalently reduce the decomposition of
V (RG) to the equality V ((R/N(R))G) = G. Next, we subsequently apply Theo-
rem A combined with Lemmas 2, 3 and 4. �
Theorem 9. Suppose G is a group and R is a ring such that supp(G)∩inv(R) 6= ∅.
Then V (RG) = G× (1 + I(N(R)G;G)) if and only if id(R) = {0, 1} and exactly
one of the following points is valid:

(1) |G| = |U(R/N(R))| = 2;
(2) |G| = 3, U(R/N(R)) = 1 and the relation a2 + b2 + ab + 1 ∈ N(R) has

only trivial solutions in R/N(R) for every pair (a, b) ∈ R.

Proof: By application of Proposition 6 we can write in an equivalent way that
V ((R/N(R))G) = G. Hereafter we subsequently employ Theorem B together
with Lemma 2 and Lemma 4. �

As a consequence, we deduce

Corollary 10 ([5]). Suppose char(R) = p is a prime integer and G 6= 1. Then
V (RG) = G × (1 + I(N(R)G;G)) if and only if id(R) = {0, 1} and at most one
of the following holds:
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(a) Gt = 1;
(b) |G| = p = 2, R = L+N(R) with |L| = 2;
(c) p = 3, |G| = 2 and U(R) = ±1 +N(R);
(d) p = 2, |G| = 3, U(R) = 1 + N(R) and the equation X2 + XY + Y 2 =

1 +N(R) possesses only trivial solutions in R/N(R).

Proof: First of all, observe that inv(R) contains all primes but p. That R is
indecomposable follows easily since 1−r+rg ∈ V (RG) is always a non-G-nilpotent
unit whenever r ∈ id(R) \ {0, 1} and g ∈ G \ {1}. Moreover, if G is torsion-free,
everything was done in [6], [7] (see [8] and [9] as well). So, assume Gt 6= 1.
Further, if Gt 6= Gp we see that supp(G) ∩ inv(R) 6= ∅ and hence Theorem 9
applies to get the result. If now G is p-mixed, i.e., Gt = Gp, it follows that
V (RG) = G(1 + I(RG;Gp) + I(N(R)G;G)). Hereafter, the proof goes on by
arguments similar to these from [5] considering the cases G = Gt and G 6= Gt.
The first one leads to |G| = 2 = p, while the second one is impossible. �

Finally, we will apply the results alluded to above to derive a recent achievement
from [2]. First, we need the following technicality.

Lemma 11. Let char(R) = p be a prime integer. Then

V (RG) = GVp(RG) ⇐⇒ V (R(G/Gp)) = (G/Gp)Vp(R(G/Gp)).

Proof: Consider the natural map ψ : G → G/Gp. It is well known that it
can be linearly extended to the homomorphism Ψ : V (RG) → V (R(G/Gp))
with kernel 1 + I(RG;Gp). Since 1 + I(RG;Gp) ⊆ Vp(RG), it easily follows by
standard arguments that Ψ is actually an epimorphism (= surjective homomor-
phism). Moreover, it is also clear that Ψ(Vp(RG)) = Vp(R(G/Gp)). So, under
the action of Ψ on the both sides of V (RG) = GVp(RG) we immediately obtain
that V (R(G/Gp)) = (G/Gp)Vp(R(G/Gp)) holds, as stated.

As for the sufficiency, choose an arbitrary element x ∈ V (RG) and observe that
there is y ∈ V (R(G/Gp)) such that Ψ(x) = y. Write y = g′v′ where g′ ∈ G/Gp

and v′ ∈ Vp(R(G/Gp)). Since by what we have shown above there exist g ∈ G
and v ∈ Vp(RG) such that Ψ(g) = g′ and Ψ(v) = v′, we get Ψ(x) = Ψ(gv).
Furthermore, Ψ(xg−1v−1) = 1 and thus xg−1v−1 ∈ kerΨ ⊆ Vp(RG) as previously
noticed. This leads to x ∈ GVp(RG), as required. �

So, we are ready to prove the following affirmation.

Proposition 12 ([2]). Suppose char(R) = p is a prime natural number. Then
V (RG) = GVp(RG) if and only if

(1) G = Gp or
(2) G 6= Gp, R is indecomposable and precisely one of the following points

holds:
(2.1) Gt = Gp;
(2.2) p = 3, U(R) = ±1 +N(R) and G = Gp × C with |C| = 2;
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(2.3) p = 2, U(R) = 1 +N(R), the equality X2 +XY + Y 2 = 1 +N(R)
has only trivial solutions in R/N(R) and G = Gp × C with |C| = 3.

Proof: By virtue of Lemma 11, we may with no harm of generality assume that
Gp = 1. Since it is plainly checked that then Vp(RG) = 1 + I(N(R)G;G), we
obviously deduce that V (RG) = G×(1+I(N(R)G;G)) — see also [5]. Henceforth,
we employ the main theorem from [5] or, respectively, Corollary 10. �

We close the work with the following:

Problem 2. Find a necessary and sufficient condition when the equality

V (RG) = G× (1 + I(N(R)G;G))

holds, provided that supp(G) ∩ inv(R) = ∅.
In particular, as an immediate consequences, we will extract the cases Gt = 1

(Karpilovsky) and R = Z (May).

In conclusion, one can expect that if supp(G)∩zd(R) 6= ∅, then there is a non-G-
nilpotent unit. However, this is not generally true. For instance, a counterexample
may be obtained for rings of characteristic 4 by taking R = Z4 = Z/(4) (i.e., R
to be the ring of all integers modulo 4) and G is of order 2. There are only four
elements of augmentation 1, so that the computations are minimal. If now a
counterexample of a ring of characteristic 0 is desired, let G be of order 2 again
and let R = Z[x] be the polynomial ring of x over Z where the element x is subject
to the relations x2 = 2x = 0.
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