Peter Vassilev Danchev
 G-nilpotent units of commutative group rings

Commentationes Mathematicae Universitatis Carolinae, Vol. 53 (2012), No. 2, 179--187
Persistent URL: http://dml.cz/dmlcz/142883

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //project.dml.cz

G-nilpotent units of commutative group rings

Peter Danchev

Abstract

Suppose R is a commutative unital ring and G is an abelian group. We give a general criterion only in terms of R and G when all normalized units in the commutative group ring $R G$ are G-nilpotent. This extends recent results published in [Extracta Math., 2008-2009] and [Ann. Sci. Math. Québec, 2009].

Keywords: group rings, normalized units, nilpotents, idempotents, decompositions, abelian groups

Classification: 16S34, 16U60, 20K10, 20K20, 20K21

1. Introduction

Throughout the present paper, let it be agreed that all groups are mult tively written and abelian as is customary when studying group rings, and a are commutative with identity 1 (further called commutative unital). For ring R and a group G, suppose $N(R)$ is the nil-radical of R and G_{t} is the part of G with p-component G_{p}. Likewise, suppose $R G$ is the group ring of R with group of normalized units $V(R G)$. Standardly, $I(L G ; G)$ is the fund tal ideal of $L G$ where $L \leq R$ and $I(R G ; H)$ is the relative augmentation i $R G$ with respect to $H \leq G$. As usual, imitating [13], $\operatorname{id}(R)=\left\{e \in R \mid e^{2}\right.$ $\operatorname{inv}(R)=\{p \mid p \cdot 1 \in U(R)\}$, where p is a prime number, $U(R)$ is the unit gr $R, \operatorname{zd}(R)=\{p \mid \exists r \in R \backslash\{0\}: p r=0\}$, and $\operatorname{supp}(G)=\left\{p \mid G_{p} \neq 1_{G}\right\}$.

Following [8], [9] we define the idempotent subgroup $\operatorname{Id}(R G)$ as follows:

$$
\begin{aligned}
& \operatorname{Id}(R G)=\left\{e_{1} g_{1}+\cdots+e_{k} g_{k} \mid e_{i} \in \operatorname{id}(R),\right. \\
& \qquad \sum_{i} e_{i}=1, e_{i} e_{j}=0(i \neq j), g_{i} \in G ; 1 \leq i, j \leq
\end{aligned}
$$

It is self-evident that $\operatorname{Id}(R G)$ is a group and that $\operatorname{Id}(R G) \leq V(R G)$.

Definition. A normalized unit $v \in V(R G)$ is said to be G-nilpotent if v uniquely expressed as $v=g w$ where $g \in G$ and $w \in 1+I(N(R) G ; G)$.

This is tantamount to ask when the decomposition

$$
V(R G)=G \times(1+I(N(R) G ; G))
$$

holds; note that $G \cap(1+I(N(R) G ; G))=1$.
Some explorations that are closely related to this theme are given in and [5] (compare with Section 2). Here we shall amend our technique an result, we will generalize the main assertions from these papers.

2. Preliminaries and main results

Before proving the chief statements, we need some technicalities.
Lemma 1. For each ring R the following equality is fulfilled:

$$
U(R / N(R))=\{r+N(R) \mid r \in U(R)\} .
$$

Proof: Clearly the left hand-side contains the right one because ther $r, f \in R$ with $r f=1$ and hence $(r+N(R))(f+N(R))=r f+N(R)=1+$

As for the converse inclusion, let $x \in U(R / N(R))$ be given. Then, $x=r$ for some $r \in R$ such that there exists $f \in R$ with $(r+N(R))(f+N($ $r f+N(R)=1+N(R)$. Consequently, $r f-1 \in N(R)$ which means tha $1+N(R) \subseteq U(R)$. Therefore, it is easily seen that $r \in U(R)$ as required.

Lemma 2. For any ring R the following equality holds:

$$
\operatorname{inv}(R)=\operatorname{inv}(R / N(R))
$$

Proof: Assume that $p \in \operatorname{inv}(R)$. Then $p \cdot 1 \in U(R)$ and hence in view of Le we have $p(1+N(R))=p \cdot 1+N(R) \in U(R / N(R))$. Thus $p \in \operatorname{inv}(R / N(R$ the inclusion " \subseteq " is obtained.

As for the converse containment " \supseteq ", choose $p \in \operatorname{inv}(R / N(R))$, whence $N(R)) \in U(R / N(R))$. In accordance with Lemma 1 we may write $p \cdot 1+N$ $\alpha+N(R)$ where $\alpha \in U(R)$. Furthermore, $p \cdot 1 \in U(R)+N(R)=U(R) \mathrm{s}$ $p \in \operatorname{inv}(R)$, as required.

Let R be a ring. Define $\operatorname{np}(R)=\{p \mid \exists r \in R \backslash N(R): p r \in N(R)\}$ following claim is useful.

Proof: Given $p \in \operatorname{zd}(R / N(R))$, there is $r \notin N(R)$ such that $p(r+N($ $p r+N(R)=N(R)$. Thus $p r \in N(R)$ and $p \in \operatorname{np}(R)$.

Conversely, let $p \in \operatorname{np}(R)$. Then there is $r \in R \backslash N(R)$ with $p r \in$ Consequently, $p(r+N(R))=N(R)$ and $r+N(R) \neq N(R)$ which implie $p \in \operatorname{zd}(R / N(R))$.

Lemma 4. Suppose R is a ring. Then

$$
\operatorname{id}(R)=\{0,1\} \Longleftrightarrow \operatorname{id}(R / N(R))=\{0,1\}
$$

Proof: " \Rightarrow ". Because of the classical fact that idempotents can always be through $N(R)$ (see, e.g., [1]) if $R / N(R)$ has a non-trivial idempotent, th same must be true of R, a contradiction.
" \Leftarrow ". Choose an arbitrary element $r \in R$ with $r^{2}=r$, hence $r+N$ $r^{2}+N(R)=(r+N(R))^{2}$. Therefore, either $r+N(R)=N(R)$, whence $r \in$ and thus $r=0$, or $r+N(R)=1+N(R)$, whence $r \in 1+N(R) \subseteq U(R$ then $r(1-r)=0$ ensures that $1-r=0$ that is $r=1$, as required.

Another topological approach in proving the above can be based on the ing two standard facts in commutative ring theory:

Let A be any commutative unital ring. Then the following are true (e.g.,
(i) A has no non-trivial idempotents if and only if $\operatorname{Spec}(A)$, the set of ideals of A equipped with the Zariski topology, is a connected topo space;
(ii) the canonical surjection from $\operatorname{Spec}(A / N(A))$ to $\operatorname{Spec}(A)$, sendin $N(A)$ to P, is a homeomorphism (relative to the Zariski topology o space).

Proposition 5. Suppose R is a ring and $\phi: R \rightarrow R / N(R)$ is the 1 map. Define $\Phi: R G \rightarrow(R / N(R)) G$ and its restriction $\Phi_{V(R G)}: V(R$ $V((R / N(R)) G)$ by $\Phi\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G} \phi\left(r_{g}\right) g=\sum_{g \in G}\left(r_{g}+N(R)\right) g$. the following relations are valid:
(a) Φ is a surjective homomorphism;
(b) $\operatorname{ker} \Phi=N(R) G$ and $\operatorname{ker} \Phi_{V(R G)}=1+I(N(R) G ; G)$.

Proof: (a) That Φ is a ring (and hence a group) homomorphism follows since so is ϕ.

As for the epimorphism (= surjection), we will restrict our attention o $V(R G)$ because for $R G$ this is evident. And so, choose $x \in V((R / N($ whence there is $y \in R G$ with $\Phi(y)=x$. Moreover, there are $x^{\prime} \in(R / N$ such that $x x^{\prime}=1$ and $y^{\prime} \in R G$ such that $\Phi\left(y^{\prime}\right)=x^{\prime}$. Therefore, $1=\Phi(y) \Phi$ $\Phi\left(y y^{\prime}\right)$, so that $\Phi\left(y y^{\prime}-1\right)=0$ and point (b) below applies to write that $y y$
(b) Clearly, $1+I(N(R) G ; G) \subseteq V(R G)$ because $I(N(R) G ; G) \subseteq N(1$ $N(R G)$.

On the other hand, it is plainly seen that $\operatorname{ker} \Phi=N(R) G$. Moreove checks that $\operatorname{ker} \Phi_{V(R G)}=(1+I(R G ; G)) \cap(1+N(R) G)=1+I(N(R) G$ asserted.
Remark 1. Actually, the pre-image y can be chosen with augmentation therefore $y \in U(R G)$ directly implies that $y \in V(R G)$. In fact, if $x=$ $N(R)) g_{1}+\cdots+\left(r_{s}+N(R)\right) g_{s}$ with $r_{1}+\cdots+r_{s}-1=\alpha \in N(R)$, the $r_{1} g_{1}+\cdots+r_{s} g_{s}-\alpha 1_{G}$ satisfies the required property that $\Phi(y)=x$ and aug $(?$ Proposition 6. Suppose G is a group and R is a ring. Then the fol equivalence holds:

$$
V(R G)=G \times(1+I(N(R) G ; G)) \Longleftrightarrow V((R / N(R)) G)=G
$$

Proof: " \Rightarrow ". Applying Proposition $5(\mathrm{a})$ and taking Φ in the both sides given equality, we derive that $\Phi(V(R G))=\Phi(G) \Phi(1+I(N(R) G ; G))$. equivalent to $V((R / N(R)) G)=G$ because $\Phi(G)=G$ and $\Phi(1+I(N(R) G$; 1, as stated.
" \Leftarrow ". Choose an arbitrary element $x \in V(R G)$. We have $\Phi(x) \in V((R / N($ $=G$. Thus we may write $\Phi(x)=g=\Phi(g)$ for some $g \in G$. Furthe $\Phi(x)[\Phi(g)]^{-1}=\Phi(x) \Phi\left(g^{-1}\right)=\Phi\left(x g^{-1}\right)=1$. Hence $x g^{-1} \in \operatorname{ker} \Phi_{V(}($ $1+I(N(R) G ; G)$ utilizing Proposition 5(b). Finally, $x \in G \times(1+I(N(R)$ as required.

The following statement is an amended version of [3, Proposition].
Proposition 7. Suppose G is a group with $|G|=3$ and R is a ring suc $3 \in \operatorname{inv}(R)$. Then $V(R G)=G$ if and only if $U(R)=1$ and the equation r^{2} $r f+r+f=0$ has only trivial solutions in R.
Proof: " \Rightarrow ". What we need to show is that $\operatorname{char}(R)=2$. Assume the col $2 \neq 0$. Then we observe that $\frac{2}{3}+\frac{2}{3} g-\frac{1}{3} g^{2}$ is a non-trivial unit with the $\frac{2}{3}-\frac{1}{3} g+\frac{2}{3} g^{2}$. This contradiction allows us to conclude that $2=0$. Furthe we apply the proof of Proposition on p. 51 from [3] to deduce that $U(R)=$ $r^{2}+f^{2}+r f+r+f=0$ is possible unique when $r=0, f=0$ or $r=1, f$ $r=0, f=1$.
" $\Leftarrow "$. Certainly $U(R)=1$ implies that $-1=1$, i.e., $2=0$. Thus char $($ and the further argument follows as that in [3, p. 51, Proposition].
Remark 2. Note also that $2 \notin U(R)$ since otherwise $\frac{1}{2}+\frac{1}{2} g \in V(R G)$ wi inverse $1-g+g^{2}$. Moreover, we point out that the equations here and in the same, which follows via the substitutions $a=1+r$ and $b=1+f$.
G-nilpotent units of commutative group rings
(1) $G=G_{t}$;
(2) $G \neq G_{t}, \operatorname{supp}(G) \cap(\operatorname{inv}(R) \cup \operatorname{zd}(R))=\emptyset$.

Now we are planning to give a new, more conceptual, proof of the fol result from [3].
Theorem B. Suppose G is a group and R is a ring such that $\operatorname{supp}(G) \cap$ inv \emptyset. Then $V(R G)=G$ if and only if $\operatorname{id}(R)=\{0,1\}, N(R)=0$ and at most the following conditions holds:
(1) $|G|=|U(R)|=2$;
(2) $|G|=3, U(R)=1$ and the equation $a^{2}+b^{2}+a b+1=0$ has only solutions in R for each pair (a, b).
Proof: " \Rightarrow ". If either the set $\operatorname{id}(R)$ contains a non-trivial idempotent e nil-ideal $N(R)$ contains a non-trivial nilpotent r, taking $g \in G$ we can cor one of the elements $x_{e}=e g+1-e$ or $x_{r}=1-r+r g$ - for each of them it is verified that $x_{e} \in V(R G) \backslash G$ with inverse $x_{e}^{-1}=e g^{-1}+1-e$, or $x_{r} \in V(R$ as the sum of 1 and the nilpotent $-r+r g=r(g-1)$, a contradiction in ϵ the two situations. That is why both $\operatorname{id}(R)$ and $N(R)$ are trivial.

Claim that G is finite of order 2 or 3 . In fact, assume in a way of contra that G is infinite. Since there is a prime, say q, such that $G_{q} \neq 1$ and $q \in \mathrm{i}$ it is well known that there exists an idempotent $e \in R F$ where $F \leq C$ finite subgroup. Choose $g \notin F$ (this choice is possible since G is infinite F is finite) and in the same manner as above one can construct the e $x_{e}=e g+1-e \in V(R G) \backslash G$. Thus G is necessarily finite. By the same rea follows that G does not contain proper subgroups, that is, G is of prime card - thereby $|G|$ is a prime, say q. Furthermore, we claim that G has cardin or 3 . To show this, we assume the contrary that $|G| \geq 5$ and consider the e $u=(1+g)^{q-1}-\frac{2^{q-1}-1}{q}\left(1+g+\cdots+g^{q-1}\right)$ where $G=\langle g\rangle$ with $g^{q}=1$. It known that u is a unit with augmentation 1 which does not lie in G (se [12]). This contradiction shows that $|G| \leq 4$. Finally, either $|G|=2$ or $|G|$ claimed.

Moreover, another approach is to notice that there is a nontrivial idem $e=\frac{1}{2}(1+g)$ or $e=\frac{1}{3}\left(1+g+g^{2}\right)$ where g is either of order 2 or 3 . If g^{\prime} then $1-e+e g^{\prime}$ is a nontrivial unit.

Next, we consider separately these two possibilities:
Case 1. G is cyclic of order 2.
Firstly, note that $2 \in U(R)$. We claim that if $r \in U(R)$ is an arbitrary el then either $r=1$ or $r=-1$; so $2=-1$ and hence $3=0$ since $2=1$ do hold. In fact, consider the element $x_{r}=\frac{1}{2}-\frac{r}{2}+\left(\frac{1}{2}+\frac{r}{2}\right) g$. It is simple that $x_{r} \in V(R G)$ with the inverse $x_{r^{-1}}=\frac{1}{2}-\frac{r^{-1}}{2}+\left(\frac{1}{2}+\frac{r^{-1}}{2}\right) g$. Since ther
$" \Leftarrow "$. (1) First, note that $1 \neq-1$ and $\operatorname{char}(R)=3$ because $2 \in U(R)=$ and thus $2=-1$; the equality $2=1$ is impossible since it yields that $1=$ $x_{r}=1-r+r g$. Then, there is $f \in R$ such that $(1-r+r g)(1-f+f g)=$ is equivalent to $f(2 r-1)=r$. Since $2 r f-r-f=0$, we have $(2 r-1)(2 f-$ and it must be that $2 r-1 \in U(R)$. Consequently, $2 r-1=1$ or $2 r-1$ Thus $2 r=2$, whence $r=1$, or $2 r=0$, whence $r=0$. Finally, either x_{r} $x_{r}=g$. In both cases we observe that $V(R G)=G$, as expected.
(2) Follows by a direct application of Proposition 7.

Remark 3. First, notice that in clause (2) we must have $\operatorname{char}(R)=2$ if cl is a prime integer. In fact, always $-1 \in U(R)$ and since $U(R)=1$, we hav $-1=1$ which is tantamount to $2=0$ as asserted.

Certainly, in the Main Theorem from [3], point (1) $G=1$ is not realist cannot be happen since $\operatorname{supp}(G) \neq \emptyset$.

The question of the triviality of units in commutative group rings will b pletely exhausted if the following can be settled:

Problem 1. Find a criterion only in terms associated with R and G $V(R G)=G$ holds, provided that $G=G_{t}$ and $\operatorname{supp}(G) \cap \operatorname{inv}(R)=\emptyset$.

We have now at our disposal all the information needed to prove the foll
Theorem 8. Suppose G is a group and R is a ring. Then $V(R G)=G$ $I(N(R) G ; G))$ if and only if $\operatorname{id}(R)=\{0,1\}, V\left(R G_{t}\right)=G_{t} \times(1+I(N(R) G$ and at most one of the following conditions holds:
(1) $G=G_{t}$;
(2) $G \neq G_{t}, \operatorname{supp}(G) \cap(\operatorname{inv}(R) \cup \operatorname{np}(R))=\emptyset$.

Proof: Employing Proposition 6 we equivalently reduce the decomposi $V(R G)$ to the equality $V((R / N(R)) G)=G$. Next, we subsequently apply rem A combined with Lemmas 2, 3 and 4.

Theorem 9. Suppose G is a group and R is a ring such that $\operatorname{supp}(G) \cap \operatorname{inv}(I$ Then $V(R G)=G \times(1+I(N(R) G ; G))$ if and only if $\operatorname{id}(R)=\{0,1\}$ and ϵ one of the following points is valid:
(1) $|G|=|U(R / N(R))|=2$;
(2) $|G|=3, U(R / N(R))=1$ and the relation $a^{2}+b^{2}+a b+1 \in N($ only trivial solutions in $R / N(R)$ for every pair $(a, b) \in R$.

Proof: By application of Proposition 6 we can write in an equivalent wa $V((R / N(R)) G)=G$. Hereafter we subsequently employ Theorem B to with Lemma 2 and Lemma 4.
G-nilpotent units of commutative group rings
(a) $G_{t}=1$;
(b) $|G|=p=2, R=L+N(R)$ with $|L|=2$;
(c) $p=3,|G|=2$ and $U(R)= \pm 1+N(R)$;
(d) $p=2,|G|=3, U(R)=1+N(R)$ and the equation $X^{2}+X Y+$ $1+N(R)$ possesses only trivial solutions in $R / N(R)$.

Proof: First of all, observe that $\operatorname{inv}(R)$ contains all primes but p. Tha indecomposable follows easily since $1-r+r g \in V(R G)$ is always a non- G-nil unit whenever $r \in \operatorname{id}(R) \backslash\{0,1\}$ and $g \in G \backslash\{1\}$. Moreover, if G is torsio everything was done in [6], [7] (see [8] and [9] as well). So, assume G Further, if $G_{t} \neq G_{p}$ we see that $\operatorname{supp}(G) \cap \operatorname{inv}(R) \neq \emptyset$ and hence Thed applies to get the result. If now G is p-mixed, i.e., $G_{t}=G_{p}$, it follow $V(R G)=G\left(1+I\left(R G ; G_{p}\right)+I(N(R) G ; G)\right)$. Hereafter, the proof goes arguments similar to these from [5] considering the cases $G=G_{t}$ and G The first one leads to $|G|=2=p$, while the second one is impossible.

Finally, we will apply the results alluded to above to derive a recent achie from [2]. First, we need the following technicality.

Lemma 11. Let $\operatorname{char}(R)=p$ be a prime integer. Then

$$
V(R G)=G V_{p}(R G) \Longleftrightarrow V\left(R\left(G / G_{p}\right)\right)=\left(G / G_{p}\right) V_{p}\left(R\left(G / G_{p}\right)\right)
$$

Proof: Consider the natural map $\psi: G \rightarrow G / G_{p}$. It is well known can be linearly extended to the homomorphism $\Psi: V(R G) \rightarrow V(R(C$ with kernel $1+I\left(R G ; G_{p}\right)$. Since $1+I\left(R G ; G_{p}\right) \subseteq V_{p}(R G)$, it easily foll standard arguments that Ψ is actually an epimorphism ($=$ surjective hom phism). Moreover, it is also clear that $\Psi\left(V_{p}(R G)\right)=V_{p}\left(R\left(G / G_{p}\right)\right)$. So, the action of Ψ on the both sides of $V(R G)=G V_{p}(R G)$ we immediately that $V\left(R\left(G / G_{p}\right)\right)=\left(G / G_{p}\right) V_{p}\left(R\left(G / G_{p}\right)\right)$ holds, as stated.

As for the sufficiency, choose an arbitrary element $x \in V(R G)$ and obser there is $y \in V\left(R\left(G / G_{p}\right)\right)$ such that $\Psi(x)=y$. Write $y=g^{\prime} v^{\prime}$ where $g^{\prime} \in$ and $v^{\prime} \in V_{p}\left(R\left(G / G_{p}\right)\right)$. Since by what we have shown above there exist and $v \in V_{p}(R G)$ such that $\Psi(g)=g^{\prime}$ and $\Psi(v)=v^{\prime}$, we get $\Psi(x)=$ Furthermore, $\Psi\left(x g^{-1} v^{-1}\right)=1$ and thus $x g^{-1} v^{-1} \in \operatorname{ker} \Psi \subseteq V_{p}(R G)$ as pre noticed. This leads to $x \in G V_{p}(R G)$, as required.

So, we are ready to prove the following affirmation.
Proposition 12 ([2]). Suppose $\operatorname{char}(R)=p$ is a prime natural number. $V(R G)=G V_{p}(R G)$ if and only if
(2.3) $p=2, U(R)=1+N(R)$, the equality $X^{2}+X Y+Y^{2}=1+$ has only trivial solutions in $R / N(R)$ and $G=G_{p} \times C$ with $\mid C$

Proof: By virtue of Lemma 11, we may with no harm of generality assum $G_{p}=1$. Since it is plainly checked that then $V_{p}(R G)=1+I(N(R) G$; obviously deduce that $V(R G)=G \times(1+I(N(R) G ; G))$ - see also [5]. Henc we employ the main theorem from [5] or, respectively, Corollary 10.

We close the work with the following:
Problem 2. Find a necessary and sufficient condition when the equality

$$
V(R G)=G \times(1+I(N(R) G ; G))
$$

holds, provided that $\operatorname{supp}(G) \cap \operatorname{inv}(R)=\emptyset$.
In particular, as an immediate consequences, we will extract the cases (Karpilovsky) and $R=\mathbb{Z}$ (May).

In conclusion, one can expect that if $\operatorname{supp}(G) \cap \mathrm{zd}(R) \neq \emptyset$, then there is a nilpotent unit. However, this is not generally true. For instance, a counterex may be obtained for rings of characteristic 4 by taking $R=\mathbb{Z}_{4}=\mathbb{Z} /(4)$ to be the ring of all integers modulo 4) and G is of order 2 . There are on elements of augmentation 1, so that the computations are minimal. If counterexample of a ring of characteristic 0 is desired, let G be of order 2 and let $R=\mathbb{Z}[x]$ be the polynomial ring of x over \mathbb{Z} where the element x is s to the relations $x^{2}=2 x=0$.

Acknowledgment. The author would like to thank Professor David Dol his valuable communication. The author is also deeply appreciated to the r for their competent comments and suggestions.

References

[1] Bourbaki N., Commutative Algebra, Chapters 1-7, Elements of Mathematics Springer, Berlin, 1989.
[2] Danchev P., On a decomposition of normalized units in abelian group algebras, Aı Bucuresti Mat. 57 (2008), no. 2, 133-138.
[3] Danchev P., Trivial units in commutative group algebras, Extracta Math. 23 (2008 49-60.
[4] Danchev P., Trivial units in abelian group algebras, Extracta Math. 24 (2009), no. 1
[5] Danchev P., G-unipotent units in commutative group rings, Ann. Sci. Math. Que (2009), no. 1, 39-44.
[6] Karpilovsky G., On units in commutative group rings, Arch. Math. (Basel) 38 420-422.
[7] Karpilovsky G., On finite generation of unit groups of commutative group rings
G-nilpotent units of commutative group rings
[11] Polcino Milies C., Sehgal S., An Introduction to Group Rings, Algebras and Appli 1, Kluwer, Dordrecht, 2002.
[12] Sehgal S., Topics in Group Rings, Marcel Dekker, New York, 1978.
[13] May W., Group algebras over finitely generated rings, J. Algebra 39 (1976), 483-5
Department of Mathematics, Plovdiv State University, 24 Tzar Assen S Plovdiv 4000, Bulgaria
E-mail: pvdanchev@yahoo.com
(Received November 16, 2011)

