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Abstract. In this paper, we introduce the notion of the (α, β)-weakly smooth fuzzy
continuous proper function and discuss its properties. We also study several notions of
connectedness in smooth fuzzy topological spaces and establish that the product of con-
nected sets (spaces) is not connected in any sense, as well as investigate continuous images
of smooth connected sets (spaces) under (α, β)-weakly smooth fuzzy continuous functions.
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1. Introduction

The concept of fuzzy topology was introduced in 1968 by Chang [4], and Chang’s

fuzzy topology on a fuzzy set was studied by Chakraborty and Ahsanullah [3]. In

1980, Höhle [13] suggested that a topology can be viewed as an L-subset of a pow-

erset. With this motivation, in 1985, Kubiak [17] and Šostak [26] independently

extended the idea to the more general setting of L-subsets of L-powersets, where L

is either a complete Heyting algebra with quasi-complementation [17], or its particu-

lar instance—the unit interval [0, 1] [26]. Höhle and Šostak [15], Kubiak and Šostak

[18] developed the concept of an L-fuzzy topological space even further to situations

where L is more general than [0, 1], in 1995 and 1997, respectively. The respective

categories of L-fuzzy topological spaces and L-fuzzy continuous maps are studied in

[14], [22], [23]. Ramadan [24] gave a similar definition of fuzzy topology on a fuzzy

set in Šostak’s sense under the name of “smooth fuzzy topological spaces”. In the

context of smooth fuzzy topological spaces, neighborhood structures [7], base and

subbase [21], product topology [27], compactness [1], [6], [8], [9], separation axioms

[27], gradation preserving functions [12], connectedness [2], [5], [20] were also studied.
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A fuzzy proper function from a fuzzy set into a fuzzy set was introduced by

Chakraborty and Ahsanullah [3] and discussed by various researchers [3], [5], [10],

[24], [25]. Since fuzzy proper functions between fuzzy sets generalize functions be-

tween sets, whereas smooth fuzzy topologies on fuzzy sets extend classical topologies

on sets, many standard results fail for fuzzy proper functions on smooth fuzzy topo-

logical spaces. In [25], it was pointed out that pointwise continuity of a fuzzy proper

function at every fuzzy point belonging to a fuzzy set does not imply fuzzy continu-

ity on the fuzzy set, with respect to different notions like smooth fuzzy continuity,

weakly smooth fuzzy continuity, etc. To get these results, the concepts of the α-

weakly smooth fuzzy continuity and the positive minimum smooth fuzzy topological

space were introduced.

In this paper, we point out some situations where smooth fuzzy continuity of a

fuzzy proper function F is not equivalent to any of the following statements.

⊲ F→(Cl(C)) 6 Cl(F→(C)), ∀C 6 µ.

⊲ F←(V ◦) 6 (F←(V ))◦, ∀V 6 ν.

(For the above-mentioned closure and interior operators on fuzzy subsets in a

smooth fuzzy topological space, we refer to Definition 2.4.) Further, we provide some

sufficient conditions to get one of them by introducing (α, β)-weakly smooth fuzzy

continuous functions. We also find the interrelations between α-weakly smooth fuzzy

continuous functions and (α, β)-weakly smooth fuzzy continuous functions. With

respect to connectedness in smooth fuzzy topological spaces, we note that for certain

notions of connectedness, image of a connected space under an (α, β)-weakly fuzzy

continuous function is connected with a weaker assumption than in Theorem 6.4 of

[5] and for some other notions this result fails. We also show that the product of two

connected smooth fuzzy topological spaces is not connected with respect to several

definitions of connectedness for smooth fuzzy topological spaces.

2. Preliminaries

Throughout this paperX , S denote fixed non-empty sets, µ, ν denote fuzzy subsets

of X , S, respectively, I denotes the unit interval [0, 1], I0 denotes (0, 1] and IX

denotes the set of all fuzzy subsets of X . For X = {x1, x2, . . . , xn} and λi ∈ I, for

every i ∈ {1, 2, . . . , n}, by µ
[λ1,λ2,...,λn]
[x1,x2,...,xn] we shall mean the fuzzy subset µ of X which

maps xi to λi for every i = 1, 2, . . . , n. A fuzzy point [20] in X is defined by

Pλ
x (t) =

{

λ if t = x,

0 if t 6= x,

where 0 < λ 6 1. By Pλ
x ∈ µ we mean that λ 6 µ(x).
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If {Aα : α ∈ J} ⊆ IX , where J is an arbitrary index set, then the union and inter-

section of this collection of fuzzy subsets are defined respectively by
(

∨

α∈J

Aα

)

(x) =

sup
α∈J

Aα(x) and
(

∧

α∈J

Aα

)

(x) = inf
α∈J

Aα(x), for every x ∈ X . If A, B ∈ IX such that

A > B, then we define the complement of B in A by (A − B)(x) = A(x) − B(x) for

every x ∈ X . We also use the notation A ∨ B and A ∧ B to denote the union of A,

B and the intersection of A, B respectively.

Lemma 2.1 [25]. If A ∈ IX , then A =
∨

{

Pλ
x : Pλ

x ∈ A
}

.

Definition 2.2 [24]. A smooth fuzzy topology on a fuzzy set µ ∈ IX is a map

τ : Iµ → I, where Iµ =
{

U ∈ IX : U 6 µ
}

, satisfying the following axioms:

(1) τ(0) = τ(µ) = 1,

(2) τ(A1 ∧ A2) > τ(A1) ∧ τ(A2), ∀A1, A2 ∈ Iµ,

(3) τ
(

∨

i∈Γ

Ai

)

>
∧

i∈Γ

τ(Ai) for every family (Ai)i∈Γ ⊆ Iµ.

The pair (µ, τ) is called a smooth fuzzy topological space or simply sfts.

Definition 2.3 [2]. Let (µ, τ) be a smooth fuzzy topological space and A ∈ Iµ.

The mapping τA : IA → I defined by

τA(U) =
∨

{τ(K) : K ∈ Iµ, K ∧ A = U}

is a subspace smooth fuzzy topology induced over A by τ .

Definition 2.4. Let (µ, τ) be a smooth fuzzy topological space, U ∈ Iµ and

α ∈ I0. Define

(1) U◦ =
∨

{V ∈ Iµ : τ(V ) > 0, V 6 U} [6],

(2) (U, α)◦ =
∨

{V ∈ Iµ : τ(V ) > α, V 6 U} [2],

(3) Cl(U) =
∧

{K ∈ Iµ : U 6 K, τ(µ − K) > 0} [6],

(4) Cl(U, α) =
∧

{K ∈ Iµ : U 6 K, τ(µ − K) > α} [2].

Definition 2.5 [27]. Let {(µj , τj) : j ∈ J} be a family of smooth fuzzy topolog-

ical spaces and Pk :
∏

Xj → Xk the kth projection map. Let

S = {P←k (U) : τk(U) > 0, k ∈ J}, where P←k (U)(x) = U(Pk(x)), ∀x ∈
∏

Xj

and let BS be the collection of all finite intersections of members of S . Define
∏

j

µj ∈ I
∏

j
Xj by

(

∏

j

µj

)

(x) =
∧

j

µj(xj) for every x = (xj) ∈
∏

j

Xj and define
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τ : I∏
j

µj
→ I by

τ(U) =























τk(V ), if U = P←k (V ),

τ(E1) ∧ τ(E2), U = E1 ∧ E2 where E1, E2 ∈ S ,
∨

i

τ(Wi), U =
∨

i

Wi where each Wi ∈ BS ,

0, otherwise.

Then τ is called the product smooth fuzzy topology on
∏

j

µj .

Definition 2.6 [3]. Let µ ∈ IX and ν ∈ IS . A fuzzy subset F of X × S is said

to be a fuzzy proper function from µ to ν if

(1) F (x, s) 6 min {µ(x), ν(s)} for each (x, s) ∈ X × S,

(2) for each x ∈ X there exists a unique s0 ∈ S such that F (x, s0) = µ(x) and

F (x, s) = 0 if s 6= s0.

Definition 2.7 [3]. Let F be a fuzzy proper function from µ to ν. If U 6 µ and

V 6 ν, then F←(V ) : X → I and F→(U) : S → I are defined by

(F→(U))(s) =
∨

x∈X

{F (x, s) ∧ U(x)} , ∀s ∈ S,

(F←(V ))(x) =
∨

s∈S

{F (x, s) ∧ V (s)} , ∀x ∈ X.

The inverse image of a fuzzy subset V under a fuzzy proper function F can be

easily obtained as (F←(V ))(x) = µ(x) ∧ V (s), where s ∈ S is unique such that

F (x, s) = µ(x).

Definition 2.8 [10]. A fuzzy proper function F : µ → ν is said to be

(1) injective (or one-to-one) if F (x1, s) > 0 and F (x2, s) > 0 for some x1, x2 ∈ X

and s ∈ S imply x1 = x2;

(2) surjective (or onto) if for every s ∈ S with ν(s) > 0 there exists x ∈ X such

that F (x, s) = µ(x) > 0.

For a fuzzy proper function F : µ → ν, the following properties hold (see,

e.g., [10]).

(1) F→(F←(V )) 6 V , ∀V 6 ν.

(2) F←(F→(U)) > U , ∀U 6 µ.

(3) F←
(

∨

j∈J

Vj

)

=
∨

j∈J

F←(Vj) where Vj 6 ν, ∀j ∈ J .

(4) F←
(

∧

j∈J

Vj

)

=
∧

j∈J

F←(Vj) where Vj 6 ν, ∀j ∈ J .

(5) If F is injective, then F←(F→(U)) = U , ∀U 6 µ.
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The following example shows that F→(F←(V )) 6= V for some V 6 ν, even if F is

surjective. Let X = {x, y}, S = {s, t}, µ[0.7,0.4]
[x,y] ∈ IX and ν

[0.8,0.7]
[s,t] ∈ IS . If a fuzzy

proper function F : µ → ν is defined by

F (x, s) = 0.7, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.4,

then for V
[0,0.5]
[s,t] ∈ IS we get V 6 ν and F→(F←(V ))

[0,0.4]
[s,t] 6= V .

Lemma 2.9 [25]. If Pλ
x ∈ F←(V ), then F→(Pλ

x ) ∈ V .

Definition 2.10 [24]. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let

(µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be smooth fuzzy

continuous on µ if τ(F←(V )) > σ(V ), ∀V 6 ν.

Definition 2.11 [24]. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and

let (µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be weakly

smooth fuzzy continuous on µ if τ(F←(V )) > 0 whenever σ(V ) > 0, ∀V 6 ν.

Definition 2.12 [25]. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and

let (µ, τ), (ν, σ) be smooth fuzzy topological spaces. Then F is said to be α-weakly

smooth fuzzy continuous on µ if τ(F←(V )) > α whenever σ(V ) > α, ∀V 6 ν.

Definition 2.13 [25]. Let (µ, τ) be a smooth fuzzy topological space. Then τ

is said to be a positive minimum smooth fuzzy topology if
∧

i∈Γ

τ(Ui) > 0 whenever

Ui ∈ Iµ and τ(Ui) > 0 for all i ∈ Γ.

Lemma 2.14. Let F : (µ, τ) → (ν, σ) be a smooth fuzzy continuous fuzzy proper

function. If G : (µ, τ) → (F→(µ), σF→(µ)) is defined by G(x, s) = F (x, s), ∀(x, s) ∈

X × S, then G is smooth fuzzy continuous.

P r o o f. Let F be smooth fuzzy continuous and let V 6 F→(µ). If T ∈ Iν is

such that V = T ∧ F→(µ), then F←(V ) = F←(T ) ∧ F←(F→(µ)) > F←(T ) ∧ µ =

F←(T ) and F←(T ) > F←(V ). Therefore, F←(T ) = F←(V ). Since τ(G←(V )) =

τ(F←(V )) = τ(F←(T )) > σ(T ), by smooth fuzzy continuity of F : (µ, τ) → (ν, σ)

and σF→(µ)(V ) =
∨

{σ(T ) : T ∈ Iν such that T ∧ F→(µ) = V }, the claimed result

of the lemma follows. �

Lemma 2.15. Let F : (µ, τ) → (ν, σ) be a weakly smooth fuzzy continuous

fuzzy proper function. If G is defined as in the previous lemma, then G : (µ, τ) →

(F→(µ), σF (µ)) is weakly smooth fuzzy continuous.

P r o o f. Let V 6 F→(µ) be such that σF→(µ)(V ) > 0. Then there exists T ∈ Iν

such that T ∧F→(µ) = V and σ(T ) > 0. Since F is weakly smooth fuzzy continuous,

the equality τ(G←(V )) = τ(F←(T )) from the proof of the previous lemma provides

τ(G←(V )) > 0. Hence, G is weakly smooth fuzzy continuous. �
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3. (α, β)-weakly smooth fuzzy continuous functions

We first discuss two expected equivalent statements for continuous functions, in

the context of (weakly) smooth fuzzy continuous functions.

Theorem 3.1. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. If F is weakly

smooth fuzzy continuous, then F←(V ◦) 6 (F←(V ))◦ for every V 6 ν.

P r o o f. Let V 6 ν. Then

F←(V ◦) = F←
(

∨

{K ∈ Iν : σ(K) > 0, K 6 V }
)

6
∨

{F←(K) : σ(K) > 0, F←(K) 6 F←(V )}

6
∨

{F←(K) : τ(F←(K)) > 0, F←(K) 6 F←(V )}

6
∨

{U ∈ Iµ : τ(U) > 0, U 6 F←(V )}

= (F←(V ))◦.

Hence, F←(V ◦) 6 (F←(V ))◦. �

The converse of the above theorem is not true.

Counterexample 3.2. LetX = {x, y}, S = {s, t}, µ[0.6,0.7]
[x,y] ∈ IX , ν[0.8,0.9]

[s,t] ∈ IS ,

U
[0.5− 1

n+1
,0.6− 1

n+1
]

n[x,y] , ∀n = 1, 2 . . .,
∨

Un = W
[0.5,0.6]
[x,y] and V

[0.5,0.6]
1[s,t] . If τ : Iµ → I is

defined by

τ(U) =











1, U = 0 or µ,

1/n, U = Un,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =











1, V = 0 or ν,

0.6, V = V1,

0, otherwise,

then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper

function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.7.

First, we claim that F is not weakly smooth fuzzy continuous. Since F←(V1)(x) =

µ(x)∧V1(s) = 0.6∧0.5 = 0.5 and F←(V1)(y) = µ(y)∧V1(t) = 0.7∧0.6 = 0.6, we get

that F←(V1) = W and hence σ(V1) = 0.6 > 0 = τ(W ) = τ(F←(V1)). Therefore, F

is not smooth fuzzy continuous. Next, we show that F←(V ◦) 6 (F←(V ))◦ for every

V ∈ Iν . Let V ∈ Iν be arbitrary.
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Case 1. V1 6 V .

Subcase (i). V = V1. Then F←(V ◦) = F←(V ◦1 ) = F←(V1) = W = W ◦ =

(F←(V1))
◦ = (F←(V ))◦.

Subcase (ii). V = ν. Hence, F←(V ◦) = F←(ν) = µ = µ◦ = (F←(ν))◦ =

(F←(V ))◦.

Subcase (iii). V1 
 V 
 ν. Since V ◦ = V1, it follows that F←(V ◦) = F←(V1) =

W = W ◦ = (F←(V1))
◦ 6 (F←(V ))◦.

Case 2. V1 
 V . In this case V ◦ = 0. Thus, F←(V ◦) = 0 6 (F←(V ))◦.

Theorem 3.3. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and (µ, τ) a

positive minimum smooth fuzzy topological space. Then F is weakly smooth fuzzy

continuous if and only if F←(V ◦) 6 (F←(V ))◦ for every V 6 ν.

P r o o f. As one part of the proof of this theorem is similar to the proof of

Theorem 3.1, we show the other part of this proof only. Let V 6 ν be such that

σ(V ) > 0. Then we have V = V ◦. Now, F←(V ) = F←(V ◦) 6 (F←(V ))◦. Hence,

F←(V ) = (F←(V ))◦. Since (µ, τ) is a positive minimum smooth fuzzy topological

space, we have τ(U◦) > 0, ∀U ∈ Iµ. Therefore, τ(F←(V )) > 0. Thus, F is weakly

smooth fuzzy continuous. �

Next, we show that neither smooth fuzzy continuity nor weakly smooth fuzzy

continuity of F implies or is implied by F→(Cl(C)) 6 Cl(F→(C)), ∀C ∈ Iµ. Since

smooth fuzzy continuity implies weakly smooth fuzzy continuity, the following two

counterexamples justify our statement.

Counterexample 3.4. Let X = {x, y}, S = {s, t} and let µ
[0.7,0.6]
[x,y] , ν[0.8,0.7]

[s,t] be

fuzzy subsets of X and S, respectively. Define fuzzy subsets U1 6 µ, V1 6 ν by

U1
[0.6,0.5]
[x,y] , V1

[0.6,0.5]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =











1, U = 0 or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =











1, V = 0 or ν,

0.5, V = V1,

0, otherwise,

then obviously, (µ, τ), (ν, σ) are smooth fuzzy topological spaces.
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Let the fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.7, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

Since F←(0) = 0, F←(ν) = µ, F←(V1)
[0.6,0.5]
[x,y] = U1, and τ(U1) = 0.6 > 0.5 = σ(V1),

it follows that F is smooth fuzzy continuous on µ. For C = F←(ν − V1)
[0.2,0.2]
[x,y] we

get that Cl(C) = Cl(F←(ν−V1)) = µ. Therefore, F→(Cl(C))
[0.7,0.6]
[s,t] . But F→(C) =

F→(F←(ν − V1)) 6 ν − V1 implies that Cl(F→(C)) 6 Cl(ν − V1) = (ν − V1)
[0.2,0.2]
[s,t] .

Hence, F→(Cl(C)) > Cl(F→(C)).

Counterexample 3.5. Let X = {x, y}, S = {s, t}, µ
[0.8,0.7]
[x,y] , ν

[0.9,0.7]
[s,t] . Define

fuzzy subsets U1 6 µ and V1 6 ν by U1
[0.1,0.1]
[x,y] , V1

[0.2,0.1]
[s,t] .

If τ : Iµ → I is defined by

τ(U) =











1, U = 0 or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =











1, V = 0 or ν,

0.5, V = V1,

0, otherwise,

then obviously, (µ, τ), (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy

proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.7.

Since τ(F←(V1)
[0.2,0.1]
[x,y] ) = 0 and σ(V1) > 0, we have that F is not weakly smooth

fuzzy continuous on µ. Next, we claim that F→(Cl(C)) 6 Cl(F→(C)), ∀C ∈ Iµ.

Let C ∈ Iµ.

Case 1. F→(C) 6 ν − V1.

Subcase (i). F→(C) = 0. Then C = 0. Hence, F→(Cl(C)) = 0 = Cl(F→(C)).

Subcase (ii). 0 
 C 6 ν − V1. It follows that 0 
 C 6 F←(F→(C)) 6 F←(ν −

V1) = µ − U1. Therefore, Cl(C) = µ − U1 and hence we get F→(Cl(C)) = F→(µ −

U1) = ν − V1 = Cl(F→(C)).

Case 2. F→(C) 
 ν − V1. Then, we get F→(Cl(C)) 6 ν = Cl(F→(C)).

Definition 3.6. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let (µ, τ),

(ν, σ) be smooth fuzzy topological spaces. Then F is said to be (α, β)-weakly smooth

fuzzy continuous on µ if τ(F←(V )) > α whenever V ∈ Iν and σ(V ) > β.

318



Definition 3.7. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let (µ, τ),

(ν, σ) be smooth fuzzy topological spaces and Pλ
x ∈ µ. Then F is said to be (α, β)-

weakly smooth fuzzy continuous at Pλ
x if F→(Pλ

x ) ∈ V ∈ Iν and σ(V ) > β imply

the existence of U ∈ Iµ such that τ(U) > α, Pλ
x ∈ U and F→(U) 6 V .

Theorem 3.8. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function and let (µ, τ),

(ν, σ) be smooth fuzzy topological spaces. Then F is (α, β)-weakly smooth fuzzy

continuous at Pλ
x , ∀Pλ

x ∈ µ if and only if it is (α, β)-weakly smooth fuzzy continuous

on µ.

Though the proof of this theorem is similar to the proof of Theorem 3.15 in [25],

for the sake of completeness we present the proof here.

P r o o f. Assume that F is (α, β)-weakly smooth fuzzy continuous on µ. Let

Pλ
x ∈ µ and let V 6 ν be given such that σ(V ) > β and F→(Pλ

x ) ∈ V . If we take

U = F←(V ), then F→(U) = F→(F←(V )) 6 V . We note that if s ∈ S is unique such

that F (x, s) = µ(x), then it follows immediately that F→(Pλ
x ) = Pλ

s . Since Pλ
x ∈ µ

and Pλ
s ∈ V , we get U(x) = F←(V )(x) = µ(x) ∧ V (s) > λ and hence, Pλ

x ∈ U .

Next, by using the assumption on F , we also get that τ(U) = τ(F←(V )) > α. Thus,

F is (α, β)-weakly smooth fuzzy continuous at Pλ
x . Conversely, assume that F is

(α, β)-weakly smooth fuzzy continuous at every fuzzy point Pλ
x ∈ µ. Let V 6 ν and

σ(V ) > β. For every Pλ
x ∈ F←(V ), by Lemma 2.9, we have F→(Pλ

x ) ∈ V . Therefore,

there exists Uxλ
6 µ such that Pλ

x ∈ Uxλ
, τ(Uxλ

) > α and F→(Uxλ
) 6 V . Then, by

Lemma 2.1, we get F←(V ) =
∨

Uxλ
and τ(F←(V )) = τ(

∨

Uxλ
) >

∧

τ(Uxλ
) > α.

Thus, F is (α, β)-weakly smooth fuzzy continuous on µ. �

Proposition 3.9. If F : (µ, τ) → (ν, σ) is (α, β)-weakly smooth fuzzy continuous

and α > β, then F is α-weakly smooth fuzzy continuous as well as β-weakly smooth

fuzzy continuous.

P r o o f. Let V 6 ν with σ(V ) > α. Clearly, σ(V ) > β. Then, by hypothesis,

τ(F←(V )) > α. Hence, F is α-weakly smooth fuzzy continuous.

Let V 6 ν with σ(V ) > β. Then, by hypothesis, τ(F←(V )) > α > β. Hence, F is

β-weakly smooth fuzzy continuous. �

Proposition 3.10. Let α 6 β. If F : (µ, τ) → (ν, σ) is α-weakly smooth fuzzy

continuous or β-weakly smooth fuzzy continuous, then F is (α, β)-weakly smooth

fuzzy continuous.

P r o o f. Let V 6 ν with σ(V ) > β. Clearly, σ(V ) > α. Then, by our hypothesis,

τ(F←(V )) > α. Hence, F is (α, β)-weakly smooth fuzzy continuous. Similarly, we

can prove the other part of this theorem. �
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Obviously, every α-weakly smooth fuzzy continuous function is an (α, α)-weakly

smooth fuzzy continuous function. In fact, we justify by the following counterexample

that the collection of all α-weakly smooth fuzzy continuous functions is properly

contained in the collection of all (α, β)-weakly smooth fuzzy continuous functions.

Counterexample 3.11. Let X = {x, y}, S = {s, t} and let µ
[0.7,0.4]
[x,y] , ν[0.9,1]

[s,t] be

fuzzy subsets of X and S, respectively. Define fuzzy subsets U1 6 µ, V1, V2 6 ν by

U
[0.5,0.4]
1[x,y] and V

[0.5,0]
1[s,t] , V

[0.5,0.6]
2[s,t] . If τ : Iµ → I is defined by

τ(U) =











1, U = 0 or µ,

0.6, U = U1,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =























1, V = 0 or ν,

0.7, V = V1,

1, V = V2,

0, otherwise,

then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper

function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.7, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.4.

Fix α = 0.6 and β = 0.75. First, we claim that F is (α, β)-weakly smooth fuzzy

continuous. Here σ(0) > β, σ(ν) > β, σ(V2) > β. Clearly, τ(F←(0)) = τ(0) > α,

τ(F←(ν)) = τ(µ) > α and τ(F←(V2)) = τ(U1) = α. Hence, F is (α, β)-weakly

smooth fuzzy continuous. Next, we claim that F is not γ-weakly smooth fuzzy

continuous for every γ ∈ I0.

Case 1. 0 < γ 6 0.7. We note that σ(V1) = 0.7 > γ but τ(F←(V1)) = 0 < γ.

Hence, F is not γ-weakly smooth fuzzy continuous.

Case 2. 0.7 < γ 6 1. Here σ(V2) = 1 > γ and τ(F←(V2)) = τ(U1) = 0.6 < γ.

Hence, F is not γ-weakly smooth fuzzy continuous.

Theorem 3.12. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. Then F is

(α, β)-weakly smooth fuzzy continuous if and only if F←((V, α)◦) 6 (F←(V ), β)◦ for

every V 6 ν.

P r o o f. The proof of this theorem is similar to the proof of Theorem 3.3. �
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However, (α, β)-weakly smooth fuzzy continuity of F does not imply (and is not

implied by) F→(Cl(C, α)) 6 Cl(F→(C), β), ∀C ∈ Iµ. Counterexamples 3.4, 3.5

justify this statement for the case α = β = 0.5.

4. Connectedness

In this section we discuss smooth connectedness, smooth α-connectedness, smooth

Q-connectedness and α-fuzzy µ-connectedness of smooth fuzzy topological spaces.

4.1. Smooth connectedness.

Definition 4.1 [5]. Let µ be a fuzzy subset of X . Then E 6 µ is said to be

maximal if for every x ∈ X , E(x) 6= 0 implies E(x) = µ(x).

Definition 4.2 [5]. Let (µ, τ) be a smooth fuzzy topological space. Then U 6 µ

is said to be clopen if τ(U) > 0 and τ(µ − U) > 0.

Definition 4.3 (Cf. [5]). A smooth topological space (µ, τ) is said to be smooth

connected if it has no proper non-zero maximal fuzzy clopen set.

Definition 4.4 (Cf. [5]). E 6 µ is said to be smooth connected if (E, τE) is

smooth connected.

Theorem 6.4 of [5] states that a continuous image of a connected Chang’s fuzzy

topological space is connected if the fuzzy proper function is one-to-one and onto.

We claim that the assumptions one-to-one and onto on the fuzzy proper function are

redundant. Actually, we prove our claim in a more general setup, in the form of the

following theorem.

Theorem 4.5. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. If F is weakly

smooth fuzzy continuous and µ is smooth connected, then F→(µ) is also smooth

connected.

P r o o f. Assume that F→(µ) is not smooth connected. Then F→(µ) has a non-

zero proper maximal fuzzy clopen set V . Since V is non-zero and maximal, there

exists s ∈ S with 0 6= V (s) = (F→(µ))(s). If F (x, s) = 0 for every x ∈ X , then

(F→(µ))(s) =
∨

x∈X

{F (x, s) ∧ µ(x)} = 0, which leads to a contradiction. Therefore,

we conclude that there exists x0 ∈ X such that F (x0, s) 6= 0 and hence, µ(x0) =

F (x0, s) 6= 0. Therefore, (F←(V ))(x0) = µ(x0) ∧ V (s) 6= 0. To prove that F←(V )

is a maximal fuzzy set in µ, let (F←(V ))(x1) 6= 0 for some x1 ∈ X . If s1 ∈ S is

unique such that F (x1, s1) 6= 0, from 0 6= (F←(V ))(x1) = µ(x1)∧V (s1) we conclude
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that V (s1) 6= 0 and µ(x1) 6= 0. Since V is a maximal subset of F→(µ), we have

V (s1) = (F→(µ))(s1). From

(F←(V ))(x1) = µ(x1) ∧ (F→(µ))(s1)

= µ(x1) ∧
∨

x∈X

{F (x, s1) ∧ µ(x)}

> µ(x1) ∧ F (x1, s1) ∧ µ(x1)

= µ(x1) ∧ µ(x1) ∧ µ(x1) = µ(x1)

and (F←(V ))(x1) = µ(x1) ∧ (F→(µ))(s1) 6 µ(x1), it follows that (F←(V ))(x1) =

µ(x1) 6= 0. Next, we show that F←(V ) is a fuzzy clopen set in µ. Since V is a

fuzzy clopen set in F→(µ), we have σF→(µ)(V ) > 0 and σF→(µ)(F
→(µ) − V ) >

0. Since F : (µ, τ) → (ν, σ) is weakly smooth fuzzy continuous, by Lemma 2.15,

F : (µ, τ) → (F→(µ), τF→(µ)) is also weakly smooth fuzzy continuous. Therefore,

immediately we obtain τ(F←(V )) > 0 and τ(F←(F→(µ) − V )) > 0. We claim that

F←(F→(µ)−V ) = µ−F←(V ). We note that if s ∈ S is unique such that F (x, s) 6= 0,

then (F→(µ))(s) =
∨

y∈X

{F (y, s) ∧ µ(y)} > F (x, s) ∧ µ(x) = µ(x) and if V (s) 6= 0,

then V (s) = F→(µ)(s). Therefore, we get

(F←(F→(µ) − V ))(x) = µ(x) ∧ ((F→(µ))(s) − V (s))

=

{

µ(x) if V (s) = 0,

(µ(x) ∧ ((F→(µ))(s) − (F→(µ))(s)) = 0 if V (s) 6= 0

and

(µ − F←(V ))(x) = µ(x) − (µ(x) ∧ V (s))

=

{

µ(x) if V (s) = 0,

µ(x) − (µ(x) ∧ F→(µ)(s)) = 0 if V (s) 6= 0.

Therefore, τ(µ−F←(V )) > 0 and hence, F←(V ) is a non-zero proper maximal fuzzy

clopen set of µ, which contradicts the assumption that µ is connected. Thus, F→(µ)

is connected. �

Corollary 4.6. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. If F is smooth

fuzzy continuous and µ is smooth connected, then F→(µ) is also smooth connected.

P r o o f. It is easy to prove that every smooth fuzzy continuous function is weakly

smooth fuzzy continuous. Hence, the corollary follows from Theorem 4.5. �

Definition 4.7. Let (µ, τ) be a smooth fuzzy topological space and let α ∈ I0.

Then U 6 µ is said to be α-clopen if τ(U) > α and τ(µ − U) > α.
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Definition 4.8. A smooth fuzzy topological space (µ, τ) is said to be smooth

α-connected if it has no proper non-zero maximal fuzzy α-clopen set.

Definition 4.9. Let (µ, τ) be a smooth fuzzy topological space and E 6 µ. E

is said to be smooth α-connected if (E, τE) is smooth α-connected, where τE is the

subspace smooth fuzzy topology on E induced by µ.

Theorem 4.10. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. If F is (α, β)-

weakly smooth fuzzy continuous and µ is smooth α-connected, then F→(µ) is smooth

β-connected in ν.

Proof of this theorem is similar to that of Theorem 4.5.

Theorem 4.11. Let (µ, τ) be a smooth fuzzy topological space. (µ, τ) is smooth

connected iff (µ, τ) is smooth α-connected for every α ∈ I0.

P r o o f. Assume that (µ, τ) is connected. Suppose (µ, τ) is not smooth α-

connected. Then it has a non-zero proper maximal fuzzy α-clopen set V . By using

τ(V ) > α > 0 and τ(µ − V ) > α > 0, we get that V is a non-zero proper maximal

fuzzy clopen set V of (µ, τ), which is a contradiction. Conversely, assume that (µ, τ)

is smooth α-connected for every α ∈ I0. If (µ, τ) is not smooth connected, then it

has a non-zero proper maximal fuzzy clopen set V . Hence, it follows that τ(V ) > 0

and τ(µ − V ) > 0. If β = min{τ(V ), τ(µ − V )}, then β ∈ I0, τ(V ) > β and

τ(µ − V ) > β. Therefore, V is a non-zero proper maximal fuzzy β-clopen set in

(µ, τ). Thus, (µ, τ) is not smooth β-connected for some β ∈ I0, which contradicts

the assumption. Hence, (µ, τ) is smooth connected. �

Next, we show by a counterexample that there exists a smooth fuzzy topological

space which is α-smooth connected for some α ∈ I0 but not smooth connected.

Counterexample 4.12. Let X = {x, y}. Define µ ∈ IX by µ
[0.7,0.8]
[x,y] and

U1, U2 6 µ by U
[0.7,0]
1[x,y] , U

[0,0.8]
2[x,y] . If τ : Iµ → I is defined by

τ(U) =























1, U = 0 or µ,

0.4, U = U1,

0.3, U = U2,

0, otherwise,

then (µ, τ) is a smooth fuzzy topological space. Here, (µ, τ) has no non-zero proper

maximal fuzzy 0.5-clopen set but it has a non-zero proper maximal fuzzy clopen set

U1. Hence, (µ, τ) is smooth 0.5-connected but not smooth connected.
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Next, we show that the product of smooth connected spaces need not be smooth

connected.

Counterexample 4.13. Let X = {x, y}, S = {s, t}, µ[0.7,0.6]
[x,y] , ν[0.8,0.9]

[s,t] , V [0.7,0]
1[s,t] ,

V
[0,0.7]
2[s,t] and V

[0.7,0.7]
3[s,t] . We define τ : Iµ → I by

τ(U) =

{

1, U = 0 or µ,

0, otherwise

and σ : Iν → I by

σ(V ) =



































1, V = 0 or ν,

0.5, V = V1,

0.3, V = V2,

0.6, V = V3,

0, otherwise.

Clearly, (µ, τ) and (ν, σ) are smooth connected. We claim that µ × ν is not smooth

connected, where (µ × ν)(x, s) = µ(x) ∧ ν(s) for every (x, s) ∈ X × S. The product

topology (see Definition 2.5) on µ × ν is given by

̺(U) =























1, U = 0 or µ × ν,

0.5, U = µ × V1,

0.3, U = µ × V2,

0, otherwise.

One can verify that

µ × ν
[0.7,0.7,0.6,0.6]
[(x,s),(x,t),(y,s),(y,t)], (µ × V1)

[0.7,0,0.6,0]
[(x,s),(x,t),(y,s),(y,t)], (µ × V2)

[0,0.7,0,0.6]
[(x,s),(x,t),(y,s),(y,t)]

and µ×V3 = µ× ν. Hence, µ×V1 is a non-zero proper maximal fuzzy clopen subset

of µ × ν. Thus, µ × ν is not smooth connected.

4.2. Smooth Q-connectedness.

Definition 4.14 (Cf. [20]). Let (µ, τ) be a smooth fuzzy topological space. Two

fuzzy sets U1 and U2 in (µ, τ) are said to be smooth Q-separated if there exists Gi

with τ(µ−Gi) > 0 (i = 1, 2) such that Gi > Ui (i = 1, 2) and G1∧U2 = 0 = G2∧U1.

It is obvious that U1 and U2 are smooth Q-separated if and only if Cl(U1) ∧U2 =

0 = Cl(U2) ∧ U1.
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Definition 4.15 (cf. [20]). A fuzzy set U ∈ Iµ is called smooth Q-disconnected

if it can be written as a union of two non-empty smooth Q-separated sets C and D.

(µ, τ) is said to be smooth Q-connected if it is not smooth Q-disconnected. The

following example shows that the image of a smooth Q-connected space need not be

smooth Q-connected under a smooth continuous injective function.

Counterexample 4.16. Let X = {x, y}, S = {s, t}. If µ[0.5,0.6]
[x,y] , ν[1,1]

[s,t] , U
[0.5,0.5]
1[x,y] ,

V
[0.5,1]
1[s,t] , V

[1,0.5]
2[s,t] , V

[0.5,0.5]
3[s,t] , then U1 6 µ ∈ IX , V1, V2, V3 6 ν ∈ IS . We define smooth

fuzzy topologies τ on µ and σ on ν by

τ(U) =











1, U = 0 or µ,

0.5, U = U1,

0, otherwise,

σ(V ) =



































1, V = 0 or ν,

0.4, V = V1,

0.3, V = V2,

0.5, V = V3,

0, otherwise.

It is clear that (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy

proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

Obviously, F is injective. Since F←(0) = 0, F←(ν) = µ, F←(V1) = µ, F←(V2) = U1

and F←(V3) = U1, we get that F is smooth fuzzy continuous. Next, we claim that

U1 is smooth Q-connected. Suppose U1 = C1 ∨ C2, where C1, C2 ∈ Iµ \ {0}.

Case 1. C1(x) = 0.5, C1(y) = 0.5, 0 6 C2(x) 6 0.5, 0 6 C2(y) 6 0.5.

Since C1, Cl(C1) are non-zero at both points of X and C2 is non-zero on X , it

obviously follows that Cl(C1) ∧ C2 6= 0 and C1 ∧ Cl(C2) 6= 0.

Case 2. C1(x) = 0.5, C2(y) = 0.5, 0 6 C1(y) 6 0.5, 0 6 C2(x) 6 0.5.

Here, Cl(C1) = µ and Cl(C2) = µ. Hence, C1 ∧ Cl(C2) 6= 0, C2 ∧ Cl(C1) 6= 0.

One can verify the remaining cases by interchanging C1 and C2 in both Case 1

and Case 2. Hence, U1 is smooth Q-connected. But (F→(U1))
[0.5,0.5]
[s,t] is not smooth

Q-connected, because F→(U1) = A
[0.5,0]
[s,t] ∨B

[0,0.5]
[s,t] and A∧Cl(B) = A∧ (ν − V2) = 0

and Cl(A) ∧ B = (ν − V1) ∧ B = 0.

The following example shows that the product of smooth Q-connected spaces need

not be smooth Q-connected
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Counterexample 4.17. Let X = {x, y}, S = {s, t}, µ[0.7,0.6]
[x,y] ∈ IX , ν[0.8,0.9]

[s,t] ∈

IS , V [0.7,0]
1[s,t] , V

[0,0.7]
2[s,t] and V

[0.7,0.7]
3[s,t] . If τ : Iµ → I is defined by

τ(U) =

{

1, U = 0 or µ,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =



































1, V = 0 or ν,

0.6, V = V1,

0.5, V = V2,

0.5, V = V3,

0, otherwise,

then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. We claim that µ is smooth

Q-connected. Suppose µ = A ∨ B, where A, B ∈ Iµ \ {0}. Then Cl(A) = Cl(B) = µ

and hence, A ∧ Cl(B) 6= 0 and B ∧ Cl(A) 6= 0. Therefore, we conclude that µ is

smooth Q-connected. Suppose ν = W1 ∨ W2, where W1, W2 ∈ Iν \ {0}.

Since the possible K ∈ Iν with σ(ν − K) > 0 are

K = 0, ν, (ν − V1)
[0.1,0.9]
[s,t] , (ν − V2)

[0.8,0.2]
[s,t] and (ν − V3)

[0.1,0.2]
[s,t] ,

the closure of any non-zero fuzzy subset of ν is non-zero at both points of S and

hence, W1 ∧ Cl(W2) 6= 0, W2 ∧ Cl(W1) 6= 0. Hence, ν is smooth Q-connected. Next,

we show that µ × ν is not smooth Q-connected. The product topology (cf. Coun-

terexample 4.13) on µ × ν is given by

̺(U) =























1, U = 0 or µ × ν,

0.6, U = µ × V1,

0.5, U = µ × V2,

0, otherwise.

We can write µ×ν = (µ×V1)∨(µ×V2). Since Cl(µ×V1) = µ×V1 and Cl(µ×V2) =

µ× V2, we get that (µ× V1)∧Cl(µ× V2) = 0 and (µ× V2)∧Cl(µ× V1) = 0. Hence,

µ × ν is not smooth Q-connected.
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4.3. α-fuzzy µ-connectedness.

Definition 4.18 [2]. Let µ ∈ IX and let U, V ∈ Iµ. Then U and V are said

to be quasi-coincident with respect to µ (written as U q V [µ]) if there exists x ∈ X

such that U(x) + V (x) > µ(x). If U and V are not quasi-coincident with respect to

µ, we write U 6 q V [µ].

Definition 4.19 [2]. Let (µ, τ) be a smooth fuzzy topological space, α ∈ I0 and

U1, U2 ∈ Iµ. Then U1, U2 are said to be α-fuzzy µ-separated if U1 6 q Cl(U2, α)[µ] and

U2 6 q Cl(U1, α)[µ].

Definition 4.20 [2]. U ∈ Iµ is said to be α-fuzzy µ-connected if it cannot be

expressed as the union of two α-fuzzy µ-separated sets.

Theorem 4.21 [2]. Let (µ, τ) be a smooth fuzzy topological space. Then U1, U2 ∈

Iµ are α-fuzzy µ-separated if and only if there are V1, V2 ∈ Iµ with τ(V1) > α and

σ(V2) > α such that U1 6 V1, U2 6 V2, U1 6 q V2[µ] and U2 6 q V1[µ].

Theorem 4.22. Let (µ, τ), (ν, σ) be smooth fuzzy topological spaces and let F :

(µ, τ) → (ν, σ) be an (α, β)-weakly smooth fuzzy continuous and injective mapping.

If U ∈ Iµ is α-fuzzy µ-connected, then F→(U) is β-fuzzy F→(µ)-connected.

P r o o f. Suppose F→(U) is not β-fuzzy F→(µ)-connected. Then F→(U) =

U1 ∨ U2, where U1, U2 are β-fuzzy µ-separated. Then by Theorem 4.21, there are

V1, V2 ∈ Iµ with σ(V1) > β and σ(V2) > β such that U1 6 V1, U2 6 V2, U1 6 q

V2[F
→(µ)] and U2 6 q V1[F

→(µ)]. Since F is (α, β)-weakly smooth fuzzy continuous,

we have τ(F←(V1)) > α, τ(F←(V2)) > α. Since V1 6 F→(µ) and F is injective, we

also have F←(V1) 6 F←(F→(µ)) = µ and hence, F←(U1) 6 µ. Now,

(F←(U1))(x) + (F←(V2))(x) = µ(x) ∧ U1(s) + µ(x) ∧ V2(s)

6 U1(s) + V2(s) 6 (F→(µ))(s) = µ(x).

Hence, F←(U1) 6 q F←(V2)[µ]. Similarly, we obtain that F←(U2) 6 q F←(V1)[µ]. Em-

ploying Theorem 4.21 once more, we conclude that F←(U1) and F←(U2) are α-

fuzzy µ-separated sets. Since F is injective, U = F←(F→(U)) = F←(U1 ∨ U2) =

F←(U1) ∨ F←(U2), which is a contradiction. �

The following example shows that the image of an α-fuzzy µ-connected space

need not be β-fuzzy ν-connected under a non-injective (α, β)-weakly smooth fuzzy

continuous function.
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Counterexample 4.23. Let X = {x, y, z}, S = {s, t} and let µ
[0.5,0.5,0.1]
[x,y,z] , ν[1,1]

[s,t]

be fuzzy subsets ofX and S, respectively. Define the fuzzy subset V1 6 ν by V
[0.5,0.5]
1[s,t] .

If τ : Iµ → I is defined by

τ(U) =

{

1, U = 0 or µ,

0, otherwise

and σ : Iν → I is defined by

σ(V ) =











1, V = 0 or ν,

0.5, V = V1,

0, otherwise,

then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper

function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.5,

F (y, s) = 0,

F (z, s) = 0,

F (x, t) = 0,

F (y, t) = 0.5,

F (z, t) = 0.1.

It is clear that F is not injective. Let α = β = 0.5. We observe that F←(0) = 0 and

F←(ν) = µ, F←(V1) = µ. Hence, F is (α, β)-weakly smooth fuzzy continuous. Next,

we claim that µ is α-fuzzy µ-connected. Let µ = C1 ∨ C2, where C1, C2 ∈ Iµ \ {0}.

Case 1. Ci = µ for some i ∈ {1, 2} and Cj 6= 0 for j ∈ {1, 2} \ {i}.

Since Cl(Ci, α) = µ and Cl(Cj , α) 6= 0 we get C1 q Cl(C2, α)[µ] and C2 q

Cl(C1, α)[µ].

Case 2. 0 
 Ci 
 µ for each i ∈ {1, 2}.

In this case, µ = C1 ∨ C2 implies that there exist two points a, b ∈ X such that

C1(a) = µ(a) and C2(b) = µ(b). Since Ci 6= 0, we have Cl(Ci, α) = µ, i = 1, 2.

Therefore, C1 q Cl(C2, α)[µ] and C2 q Cl(C1, α)[µ]. Hence, µ is α-fuzzy µ-connected.

Next, we claim that (F→(µ))
[0.5,0.5]
[s,t] is not β-fuzzy ν-connected. We write F→(µ) =

A ∨ B, where A
[0.5,0]
[s,t] and B

[0,0.5]
[s,t] . Since Cl(A, β) = Cl(B, β) = (ν − V1)

[0.5,0.5]
[s,t] , we

have A 6 q Cl(B, β)[ν] and B 6 q Cl(A, β)[ν]. Hence, F→(µ) is not β-fuzzy ν-connected.

The following example shows that the product of α-fuzzy connected spaces need

not be α-fuzzy connected.

Counterexample 4.24. Let X = {x, y} and S = {s, t}. Define µ
[0.7,0.6]
[x,y] ∈ IX ,

ν
[0.8,0.9]
[s,t] ∈ IS , V1, V2, V3 6 ν by V

[0.7,0]
1[s,t] , V

[0,0.7]
2[s,t] , V

[0.7,0.7]
3[s,t] . Define τ on µ and σ on ν

by

τ(U) =

{

1, U = 0 or µ,

0, otherwise
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and

σ(V ) =



































1, V = 0 or ν,

0.6, V = V1,

0.5, V = V2,

0.5, V = V3,

0, otherwise.

Assume that µ = A ∨ B, where A, B ∈ Iµ \ {0}. Fix α = 0.5. Since Cl(A, 0.5) =

Cl(B, 0.5) = µ, we get A q Cl(B, 0.5)[µ] and B q Cl(A, 0.5)[µ]. Thus, µ is α-fuzzy

µ-connected. To prove that ν is α-fuzzy ν-connected, let ν = W1 ∨ W2, where

W1, W2 ∈ Iν \ {0}. First, we observe that if K ∈ Iν is such that σ(ν −K) > 0, then

K is non-zero at both points of S. Hence, for every non-zero fuzzy subset W of ν,

Cl(W, 0.5) is non-zero at both points of S.

Case 1. W1(s) = 0.8, W1(t) = 0.9, 0 6 W2(s) 6 0.8 and 0 6 W2(t) 6 0.9.

SinceW1 = ν = Cl(W1, 0.5) and 0 6= W2 6 Cl(W2, 0.5), we getW2 q Cl(W1, 0.5)[ν]

and Cl(W2, 0.5) q W1[ν].

Case 2. W1(s) = 0.8, W2(t) = 0.9, 0 6 W1(t) 6 0.9 and 0 6 W2(s) 6 0.8.

W1 6= 0 implies that Cl(W1, 0.5) 6= 0. Therefore, W2(t) + Cl(W1, 0.5)(t) > ν(t).

Similarly, since Cl(W2, 0.5) 6= 0, we getW1(s)+Cl(W2, 0.5)(s) > ν(s). The remaining

cases can be verified by interchangingW1 andW2 in both Case 1 and Case 2. Hence,

ν is α-fuzzy connected.

Recall that the product topology on µ × ν is given by

̺(U) =























1, U = 0 or µ × ν,

0.6, U = µ × V1,

0.5, U = µ × V2,

0, otherwise.

Now, we write µ × ν = (µ × V1) ∨ (µ × V2). Here Cl(µ × V1, 0.5) = µ × V1, Cl(µ ×

V2, 0.5) = µ×V2 and hence, µ×V1+Cl(µ×V2, 0.5) = µ×ν, µ×V2+Cl(µ×V1, 0.5) =

µ× ν. Hence, (µ× V1) 6 q Cl(µ× V2, 0.5)[µ× ν] and (µ× V2) 6 q Cl(µ× V1, 0.5)[µ× ν].

Hence, µ × ν is not α-fuzzy connected.

329



5. Conclusion

In this article we have properly generalized the concept of α-weak smooth fuzzy

continuity [25] of a fuzzy proper function to (α, β)-weakly smooth fuzzy continuity,

in the framework of smooth fuzzy topological spaces. We proved that weak smooth

fuzzy continuity of a fuzzy proper function F : (µ, τ) → (ν, σ) implies F←(V ◦) 6

(F←(V ))◦, ∀V 6 ν, and the converse is not true. However, by imposing a con-

dition, namely, positive minimum smooth topology on the domain of F , the con-

verse follows. At the same time, (α, β)-weak smooth fuzzy continuity is equiva-

lent to F←((V, β)◦) 6 (F←(V ), α)◦, ∀V 6 ν. But weak smooth fuzzy continuity

((α, β)-weak smooth fuzzy continuity) neither implies nor is implied by F→(Cl(A)) 6

Cl(F→(A)), ∀A 6 µ (F→(Cl(A, α)) 6 Cl(F→(A), β), ∀A 6 µ). As one of the main

results, we proved that a fuzzy proper function F is (α, β)-weakly smooth fuzzy con-

tinuous on a fuzzy set µ if and only if it is (α, β)-weakly smooth fuzzy continuous at

every fuzzy point Pλ
x ∈ µ.

Regarding connectedness in smooth fuzzy topological spaces, we observed that the

product of two connected spaces need not be connected, with respect to any of the

three notions of connectedness introduced in [2], [5], [20]. As a better version of “The

image of a smooth connected space under a smooth fuzzy continuous, injective fuzzy

proper function is connected” (Theorem 6.4 of [5]), we proved that the image of a

smooth fuzzy connected space is connected under a weakly smooth fuzzy continuous

function. We also proved that the image of a smooth Q-connected space need not

be smooth Q-connected under a smooth continuous injective fuzzy proper function,

whereas the image of an α-fuzzy µ-connected fuzzy set under an (α, β)-weakly smooth

fuzzy continuous injective fuzzy proper function is β-fuzzy F→(µ)-connected.

Therefore, many classical results in crisp topological spaces do not hold in the

context of smooth fuzzy topological spaces. Hence, there is a good scope for further

research in this area. To be specific, one can further extend the work presented in

this paper to the more general setting of L-fuzzy topological spaces [16], (L; M)-fuzzy

topological spaces [19], orM -fuzzy topological L-fuzzy spaces [11] (which incorporate

smooth fuzzy topological spaces of this paper, but not their respective smooth fuzzy

continuous functions), where L, M are lattices with convenient properties. The

next step would be then the variable-basis approach in the sense of S. E.Rodabaugh

[22], where both L and M can vary through a category of certain lattice-theoretic

structures.

A c k n ow l e d g em e n t. The authors express their deep gratitude to the referee

for his/her valuable comments towards the improvement of the paper.
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