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Abstract. In this paper, we present a new one-step smoothing Newton method for solv-
ing the second-order cone programming (SOCP). Based on a new smoothing function of
the well-known Fischer-Burmeister function, the SOCP is approximated by a family of pa-
rameterized smooth equations. Our algorithm solves only one system of linear equations
and performs only one Armijo-type line search at each iteration. It can start from an ar-
bitrary initial point and does not require the iterative points to be in the sets of strictly
feasible solutions. Without requiring strict complementarity at the SOCP solution, the
proposed algorithm is shown to be globally and locally quadratically convergent under suit-
able assumptions. Numerical experiments demonstrate the feasibility and efficiency of our
algorithm.
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1. Introduction

Second-order cone programming (SOCP) problem is a convex programming prob-

lem in which a linear function is minimized over the intersection of an affine space

with the Cartesian product of second-order (or Lorentz or ice-cream) cones. A typical

second-order cone (SOC) in R
l has the form

Ll := {x = (x1; x̄) ∈ R× R
l−1 : x1 > ‖x̄‖},

*This work was supported by National Natural Science Foundation of China (10971122),
Natural Science Foundation of Shandong Province (Y2008A01), Specialized Research
Foundation for the Doctoral Program of Higher Education (20093718110005) and Project
of Shandong Province Higher Educational Science and Technology Program (J10LA51).
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where ‖ · ‖ refers to the standard Euclidean norm, and x1 is the first element of x

and x̄ is the vector containing the remaining elements of x. For simplicity, we use

the semi-colon “;” to join vectors in a column. Thus, for instance, for column vectors

x, y, and z we use (x; y; z) to represent (xT, yT, zT)T.

Let L ⊂ R
n be the Cartesian product of several second-order cones, i.e.,

L := L1 × L2 × . . . × Lr

with Li ⊂ R
ni for each i, i = 1, 2, . . . , r, and n =

r
∑

i=1

ni. In this paper we con-

sider SOCP in the standard format

(1) (P) min{cTx : Ax = b, x ∈ L}

and the dual problem of (P) is given by

(2) (D) max{bTy : ATy + s = c, s ∈ L}

where A ∈ R
m×n, c ∈ R

n and b ∈ R
m. Without loss of generality, we assume

that r = 1 and n1 = n in the subsequent analysis, since our analysis can be easily

extended to the general case.

The sets of strictly feasible solutions of (1) and (2) are

F0(P) = {x : Ax = b, x ∈ L0},
F0(D) = {(y, s) : ATy + s = c, s ∈ L0},

respectively, where

L0 := {x = (x1; x̄) ∈ R× R
n−1 : x1 > ‖x̄‖, x1 > 0}.

Throughout the paper, we make the following assumptions:

Assumption 1.1. Both (1) and (2) are strictly feasible, i.e., F0(P)×F0(D) 6= ∅.

Assumption 1.2. A has full row rank.

Under Assumption 1.1, it can be shown that both (1) and (2) have optimal solu-

tions and their optimal values coincide [1].

SOCP problem includes the linear programming problem, the convex quadratic

programming problem, and the quadratically constrained convex quadratic program-

ming problem as special cases [1]. In recent years the SOCP problem has received

considerable attention from researchers for its wide range of applications in many
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fields, such as engineering, optimal control and design, machine learning, robust

programming and combinatorial programming and so on (see, e.g., [6], [13], [18],

[23], [25]). Many researchers have studied interior-point methods (IPMs) for solv-

ing SOCP and achieved plentiful and beautiful results (see, e.g., [2], [7], [8], [12], [14],

[17], [19]).

Recently, smoothing Newton methods have attracted a lot of attention partially

due to their superior numerical performances (see, e.g., [3], [4], [9]–[11], [15], [16], [20],

[21], [24], [28]). However, the available smoothing methods are mostly for solving the

complementarity problems (see, e.g., [3], [4], [9]–[11], [15], [20], [21], [24]). The results

of smoothing methods for solving the SOCP are rather rare. Moreover, the global

convergence and locally superlinear (or quadratic) convergence of some algorithms

depend on the assumptions of uniform nonsingularity and strict complementarity

(see, e.g., [3], [20]). Without the uniform nonsingularity assumption, the algorithm

given in [28] usually needs to solve two linear systems of equations and to perform at

least two line searches per iteration. Lastly, Qi, Sun, and Zhou [21] proposed a class

of new smoothing Newton methods for nonlinear complementarity problems and box

constrained variational inequalities under a nonsingularity assumption. The method

in [21] was shown to be locally superlinearly/quadratically convergent without strict

complementarity.

Motivated by these ideas, in this paper we present a new one-step smoothing

Newton method for solving the SOCP based on a new smoothing function. Without

requiring strict complementarity at the SOCP solution, the proposed algorithm is

proved to be globally and locally quadratically convergent. Our algorithm has the

following nice properties:

(i) it is well-defined and any accumulation point of the iteration sequence is a

solution to the SOCP;

(ii) it can start from an arbitrary initial point and does not require the iterative

points to be in the sets of strictly feasible solutions;

(iii) it solves only one linear system of equations and performs only one Armijo-type

line search per iteration;

(iv) if an accumulation point of the iteration sequence satisfies a nonsingularity

assumption, then the whole iteration sequence converges to the accumulation

point globally and locally quadratically without strict complementarity;

(v) it has an effective numerical performance in many situations.

Some notation is used throughout the paper as follows. Rn, Rn
+ and R

n
++ denote

the set of vectors with n components, the set of nonnegative vectors and the set

of positive vectors, respectively. The product Rn × R
m is identified with R

n+m,

I represents the identity matrix with suitable dimension, and ‖·‖ denotes the 2-norm
of the vector x defined by ‖x‖ =

√
xTx. For any α, β > 0, α = O(β) or α = o(β)
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means that α/β is uniformly bounded or, respectively, tends to zero as β → 0. For

any x, y ∈ R
n, we write x �L y or x ≻L y if x − y ∈ L or, respectively, x − y ∈ L0.

For any square matrix A ∈ R
n×n, we write A � 0 or A ≻ 0 if the symmetric part

of A is positive semi-definite or, respectively, positive definite.

The rest of this paper is organized as follows. In Section 2, we introduce some

preliminaries which are used in the subsequent sections. Based on the Fischer-

Burmeister function, a new smoothing function and its properties are given in Sec-

tion 3. In Section 4, we present a one-step smoothing Newton method for solving

the SOCP and state some preliminary results. The global convergence and locally

quadratic convergence of the algorithm are investigated in Section 5. Numerical re-

sults are reported in Section 6. Finally, some conclusions are summarized in the last

section.

2. Preliminaries

In this section, we briefly recall some algebraic properties of the SOC L and its
associated Euclidean Jordan algebra. Our main sources for this section are [1], [8].

For any vectors x = (x1; x̄), s = (s1; s̄) ∈ R×R
n−1, their Jordan product associated

with the SOC L is defined by

x ◦ s := (xTs; x1s̄ + s1x̄).

One easily checks that this operator is commutative and (Rn, ◦) is a Euclidean Jordan
algebra with the vector

e := (1; 0; . . . ; 0)

as the identity element.

Spectral factorization is one of the basic and important concepts in Euclidean

Jordan algebra. We have the following theorem [1] with respect to the SOC L.

Theorem 2.1 (Spectral factorization). For any vector x = (x1; x̄) ∈ R × R
n−1,

its spectral factorization with respect to the SOC L is

(3) x = λ1u1 + λ2u2,

where λ1, λ2 are the spectral values given by

(4) λi = x1 + (−1)i‖x̄‖, i = 1, 2,
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and u1, u2 are the spectral vectors of x given by

(5) ui =















1

2

(

1, (−1)i x̄

‖x̄‖
)

, x̄ 6= 0,

1

2
(1, (−1)iκ), x̄ = 0,

i = 1, 2,

with any κ ∈ R
n−1 such that ‖κ‖ = 1.

Using (4), for each x = (x1; x̄) ∈ R×R
n−1 we can define the following notions [1]:

square root: x1/2 := λ
1/2

1 u1 + λ
1/2

2 u2 for x ∈ L;
inverse: x−1 := λ−1

1 u1 + λ−1
2 u2, if x ∈ L0; otherwise, x is singular;

square: x2 := λ2
1u1 + λ2

2u2.

Indeed, one has x2 = x ◦ x and (x1/2)2 = x. If x−1 is defined, then x ◦ x−1 = e.

Moreover, x2 ∈ L for all x ∈ R
n.

Given an element x = (x1; x̄) ∈ R× R
n−1, we define the symmetric matrix

(6) Lx :=

(

x1 x̄T

x̄ x1I

)

,

where I represents the n− 1 × n− 1 identity matrix. The matrix Lx can be viewed

as a linear mapping from R
n to Rn with the following properties.

P r o p e r t i e s 2.2. For any x = (x1; x̄), y = (y1; y) ∈ R × R
n−1, Lx has the

following properties:

(a) Lxy = x ◦ y and Lx + Ly = Lx+y;

(b) x ∈ L ⇔ Lx � 0 and x ∈ L0 ⇔ Lx ≻ 0;

(c) if x ∈ L0, then Lx is invertible and the inverse L−1
x is given by

L−1
x =

1

det(x)

(

x1 −x̄T

−x̄
det(x)

x1

I +
x̄x̄T

x1

)

,

where det(x) := x2
1 − ‖x̄‖2 denotes the determination of x.

Now we recall the concepts of semismoothness and smoothing function. Given a

mapping F : R
n → R

m, if F is locally Lipschitz continuous, then the set

∂BF (z) := {V ∈ R
m×n : ∃ {zk} ⊆ DF : zk → z, F ′(zk) → V }

is nonempty and is called the B-subdifferential of F at z, whereDF ⊂ R
n denotes the

set of points at which F is differentiable. The convex hull ∂F (z) := conv(∂BF (z)) is

the generalized Jacobian of F at z in the sense of Clarke [5]. Semismoothness was
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originally introduced by Mifflin [16] for functionals. Convex functions, smooth func-

tions, and piecewise linear functions are examples of semismooth functions. The

composition of (strongly) semismooth functions is still a (strongly) semismooth func-

tion [16]. In [22], Qi and Sun extended the definition of semismooth functions to

vector-valued functions.

Definition 2.3 ([22]). Suppose that F : R
n → R

m is locally Lipschitz contin-

uous around x ∈ R
n. Then F is said to be semismooth at x if F is directionally

differentiable at x and for any V ∈ ∂F (x + h) and h → 0,

F (x + h) − F (x) − V h = o(‖h‖);

F is said to be strongly semismooth at x if F is directionally differentiable at x and

for any V ∈ ∂F (x + h) and h → 0,

F (x + h) − F (x) − V h = O(‖h‖2);

F is said to be (strongly) semismooth if it is (strongly) semismooth everywhere in Rn.

The concept of a smoothing function of a nondifferentiable function was introduced

by Hayashi, Yamashita, and Fukushima [10].

Definition 2.4 ([10]). For a nondifferentiable function g : R
n → R

m, we consider

a function gµ : R
n → R

m with a parameter µ > 0 that has the following properties:

(i) gµ is differentiable for any µ > 0;

(ii) lim
µ↓0

gµ(x) = g(x) for any x ∈ R
n.

Such a function gµ is called a smoothing function of g.

3. The new smoothing function and its properties

In this section, we present a new smoothing function and give its properties. Based

on this new function, we reformulate the SOCP as a nonlinear system of equations.

In [9], it has been shown that the Fischer-Burmeister (FB) function ϕFB(x, s) :

R
n × R

n → R
n defined by

(7) ϕFB(x, s) = x + s −
√

x2 + s2

possesses the following important property

(8) ϕFB(x, s) = 0 ⇔ x ◦ s = 0, x �L 0, s �L 0.
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The Fischer-Burmeister function ϕFB(x, s) is globally Lipschitz continuous, contin-

uously differentiable around any (x, s) ∈ R
n × R

n if v1 6= ‖v‖, where v := x2 + s2,

and strongly semismooth [26]. However, ϕFB is typically nonsmooth, because it is

not differentiable at (0; 0) ∈ R
n × R

n, which limits its practical applications. Many

smoothing functions based on ϕFB have been presented for solving the complemen-

tarity problems (see [9], [11] and the references therein).

In this paper, by smoothing the symmetric perturbed Fischer-Burmeister function,

we obtain the new vector-valued function ϕ(µ, x, s) : R++ × R
n × R

n → R
n defined

by

ϕ(µ, x, s) = (cos µ + sin µ)(x + s)(9)

−
√

(x cosµ + s sinµ)2 + (x sin µ + s cosµ)2 + 2µ2e.

As we will show, the function ϕ(µ, x, s) has many good properties. These properties

play an important role in the analysis of the convergence of our one-step smoothing

Newton method. In the next theorem, we show that the function ϕ given by (9) is

a smoothing function of ϕFB.

Theorem 3.1. Let (µ, x, s) ∈ R++×R
n ×R

n and let ϕ(µ, x, s) be defined by (9).

Then the following results hold.

(I) ϕ(µ, x, s) is globally Lipschitz continuous and strongly semismooth for any

µ > 0. Moreover, ϕ(µ, x, s) is continuously differentiable at any (µ, x, s) ∈
R++ × R

n × R
n with its Jacobian

ϕ′(µ, x, s)

=









(cosµ − sinµ)(x + s)

− L−1
ω [Lω1

(s cosµ − x sin µ) + Lω2
(x cos µ − s sin µ) + 2µe]

(cos µ + sin µ)I − L−1
ω (Lω1

cosµ + Lω2
sinµ)

(cos µ + sin µ)I − L−1
ω (Lω1

sin µ + Lω2
cosµ)









,

where

ω1 := ω1(µ, x, s) = x cosµ + s sinµ,(10)

ω2 := ω2(µ, x, s) = x sin µ + s cosµ,(11)

ω := ω(µ, x, s) =
√

ω2
1 + ω2

2 + 2µ2e.(12)

(II) lim
µ↓0

ϕ(µ, x, s) = ϕFB(x, s) for any (x, s) ∈ R
n×R

n. Thus, ϕ(µ, x, s) is a smooth-

ing function of ϕFB(x, s).
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P r o o f. (I) By Theorem 3.2 in [26], it is not difficult to show that ϕ(µ, x, s) is

globally Lipschitz continuous, strongly semismooth everywhere and continuously dif-

ferentiable at any (µ, x, s) ∈ R++×R
n×R

n. Now we prove the Jacobian of ϕ(µ, x, s).

By (9)–(12), we find

ϕ(µ, x, s) = (cosµ + sin µ)(x + s) − ω.

Thus

ϕ′
µ(µ, x, s) = (cosµ − sin µ)(x + s) − ω′

µ,(13)

ϕ′
x(µ, x, s) = (cosµ + sin µ)I − ω′

x,(14)

ϕ′
s(µ, x, s) = (cosµ + sin µ)I − ω′

s.(15)

For any (µ, x, s) ∈ R++ × R
n × R

n we have ω ∈ L0 and therefore Lω is invertible.

Due to the definition of ω, we get

ω2 = ω2
1 + ω2

2 + 2µ2
e.

By finding the derivative on both sides of the last relation, we obtain that

ω′
µ(µ, x, s) = L−1

ω [Lω1
(s cosµ − x sin µ) + Lω2

(x cos µ − s sin µ) + 2µe],(16)

ω′
x(µ, x, s) = L−1

ω (Lω1
cosµ + Lω2

sin µ),(17)

ω′
s(µ, x, s) = L−1

ω (Lω1
sin µ + Lω2

cosµ).(18)

Then, from (13)–(18) we have the desired Jacobian formula.

Next we prove (II). For any x = (x1; x̄), s = (s1; s̄) ∈ R × R
n−1, it follows from

the spectral factorization of ω2 that

ϕ(µ, x, s) = (cosµ + sin µ)(x + s) −
(
√

λ1(µ)u1(µ) +
√

λ2(µ)u2(µ)
)

,

where

λi(µ) = ‖ω1‖2 + ‖ω2‖2 + 2µ2 + 2(−1)i‖v(µ)‖, i = 1, 2,

ui(µ) =















1

2

(

1, (−1)i v(µ)

‖v(µ)‖
)

, v(µ) 6= 0,

1

2
(1, (−1)iκ), v(µ) = 0,

i = 1, 2,

v(µ) = (x1 cosµ + s1 sinµ)(x̄ cosµ + s̄ sinµ) + (x1 sin µ + s1 cosµ)(x̄ sin µ + s̄ cosµ)

with any κ ∈ R
n−1 such that ‖κ‖ = 1. In a similar way, we can easily obtain that

ϕFB(x, s) = x + s −
(
√

λ1u1 +
√

λ2u2

)

,
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where
λi = ‖x‖2 + ‖s‖2 + 2(−1)i‖v‖, i = 1, 2,

ui =















1

2

(

1, (−1)i v

‖v‖
)

, v 6= 0,

1

2
(1, (−1)iκ), v = 0,

i = 1, 2,

v = x1x̄ + s1s̄

with any κ ∈ R
n−1 such that ‖κ‖ = 1. Without loss of generality, we choose the

same κ ∈ R
n−1 as in ui(µ). It is easy to find that

lim
µ↓0

v(µ) = v, lim
µ↓0

‖ω1‖2 = ‖x‖2, lim
µ↓0

‖ω2‖2 = ‖s‖2.

Thus, we have

lim
µ↓0

λi(µ) = λi, lim
µ↓0

ui(µ) = ui, i = 1, 2,

which implies that lim
µ↓0

ϕ(µ, x, s) = ϕFB(x, s). Therefore, it follows from (I) and

Definition 2.4 that ϕ(µ, x, s) is a smoothing function of ϕFB(x, s). This completes

the proof. �

Under Assumption 1.1, it is well known that an optimal solution to (1) and (2)

has to satisfy the optimality conditions [1]

(19)

Ax = b,

ATy + s = c,

x ◦ s = 0, x, s ∈ L, y ∈ R
m.

Let z := (µ, x, y) ∈ R++ ×R
n ×R

m. By using the smoothing function (9), we define

the function H(z) : R++ × R
n × R

m → R++ × R
m × R

n by

(20) H(z) :=

(

eµ − 1

G(z)

)

,

where

(21) G(z) :=

(

b − Ax

ϕ(µ, x, c − ATy)

)

.

In view of (8) and Theorem 3.1, z∗ = (µ∗, x∗, y∗) is a solution to the system H(z) = 0

if and only if (x∗, y∗, c−ATy∗) satisfies the optimality conditions (19), which occurs

if and only if (x∗, y∗, c − ATy∗) is the optimal solution to (1) and (2). Then we can

apply Newton’s method to the nonlinear system of equations H(z) = 0.
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The following theorem shows that the function H(z) defined by (20) and (21) is

Lipschitz continuous, strongly semismooth and continuously differentiable. More-

over, we also derive the computable formula for the Jacobian of the function H(z)

and give a condition for its Jacobian to be invertible.

Theorem 3.2. Let z := (µ, x, y) ∈ R++ ×R
n ×R

m and H : R
1+n+m → R

1+m+n

be defined by (20) and (21). Then the following results hold.

(i) H is globally Lipschitz continuous, strongly semismooth everywhere on R1+n+m

and continuously differentiable at any z := (µ, x, y) ∈ R++ × R
n × R

m with its

Jacobian

(22) H ′(z) =





eµ 0 0

0 −A 0

B(z) C(z) −D(z)AT



 ,

where

B(z) = (cos µ − sin µ)(x + c − ATy) − L−1
ω [Lω1

((c − ATy) cosµ − x sin µ)

+ Lω2
(x cosµ − (c − ATy) sin µ) + 2µe],

C(z) = (cos µ + sin µ)I − L−1
ω (Lω1

cosµ + Lω2
sin µ),

D(z) = (cos µ + sin µ)I − L−1
ω (Lω1

sinµ + Lω2
cosµ),

ω1 := ω1(µ, x, c − ATy) = x cosµ + (c − ATy) sin µ,

ω2 := ω2(µ, x, c − ATy) = x sin µ + (c − ATy) cosµ,

ω := ω(µ, x, s) =
√

ω2
1 + ω2

2 + 2µ2e.

(ii) If A has full row rank, then H ′(z) is invertible for any µ > 0.

P r o o f. By Theorem 3.1, it is not difficult to show that (i) holds. Now we

prove (ii). Fix any µ > 0 and let ∆z := (∆µ, ∆x, ∆y) ∈ R×R
n ×R

m be a vector in

the null space of H ′(z). It is sufficient to prove that the linear system of equations

(23) H ′(z)∆z = 0

has only the zero solution, i.e., ∆µ = 0, ∆x = 0, and ∆y = 0. By (22) and (23), we

have

∆µ = 0,(24)

A∆x = 0,(25)

C(z)∆x − D(z)AT∆y = 0.(26)

Premultiplying (26) by Lω yields

(27) LωC(z)∆x − LωD(z)AT∆y = 0.
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From the definitions of C(z) and D(z), a simple calculation reveals that

LωC(z) = (cos µ + sin µ)Lω − (Lω1
cosµ + Lω2

sinµ),

LωD(z) = (cos µ + sin µ)Lω − (Lω1
sin µ + Lω2

cosµ).

Since

ω2 − (ω2
1 + ω2)

2 = 2µ2
e ∈ L0,

Lemma 3.5 in [11] shows that

(cos µ + sin µ)Lω − (Lω1
cosµ + Lω2

sinµ) ≻ 0,(28)

(cos µ + sin µ)Lω − (Lω1
sin µ + Lω2

cosµ) ≻ 0,(29)

[(cos µ + sin µ)Lω − (Lω1
cosµ + Lω2

sin µ)](30)

× [(cosµ + sin µ)Lω − (Lω1
sin µ + Lω2

cosµ)] ≻ 0.

Thus, both LωC(z) and LωD(z) are positive definite and hence invertible. Premul-

tiplying (27) by ∆xT(LωD(z))−1 and taking into account A∆x = 0, we have

(31) ∆xT(LωD(z))−1(LωC(z))∆x = 0.

From (30) we obtain that the symmetric part of (LωC(z))(LωD(z)) is positive defi-

nite. Denoting ∆x = (LωD(z))−1∆x, we have

∆xT(LωD(z))−1(LωC(z))∆x = ∆x
T
(LωC(z))(LωD(z))∆x > 0.

Then, it follows from (31) that ∆x = 0, which gives ∆x = 0. Since A has full row

rank, (26) implies ∆y = 0. Thus, the null space of H ′(z) comprises only the origin,

and hence H ′(z) is invertible. The proof is completed. �

4. Algorithm description

Based on the smoothing function (9) introduced in the previous section, we propose

a one-step smoothing Newton method for solving the SOCP as defined by (1) and (2).

Under suitable assumptions, we show the well-definedness of our algorithm.

For any z := (µ, x, y) ∈ R++ × R
n × R

m, we denote Ψ(z) = ‖G(z)‖2 and

(32) f(z) := ‖H(z)‖2 = (eµ − 1)2 + Ψ(z).

Now we give a formal description of our algorithm.
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A l g o r i t hm 4.1 (A one-step smoothing Newton method for SOCP).

Step 0 : Choose an accuracy parameter ε > 0. Choose constants δ ∈ (0, 1),

σ ∈ (0, 1/2) and µ0 ∈ R++ and let z := (µ0, 0, 0). Let (x0, y0) ∈ R
n × R

m be an

arbitrary initial point. Let z0 := (µ0, x0, y0) and η = ‖H(z0)‖+ 1. Choose γ ∈ (0, 1)

such that µ0ηγ < 1. Set k := 0.

Step 1 : If ‖H(zk)‖ 6 ε, then stop. Else, let

(33) βk := β(zk) = eµkγ min{1, f(zk)}.

Step 2 : Compute ∆zk := (∆µk, ∆xk, ∆yk) ∈ R× R
n × R

m by

(34) H(zk) + H ′(zk)∆zk = βkz.

Step 3 : Let lk be the smallest nonnegative integer l such that

(35) f(zk + δl∆zk) 6 [1 − 2σ(1 − µ0ηγ)δl]f(zk).

Let αk := δlk .

Step 4 : Set zk+1 := zk + αk∆zk and k := k + 1. Go to Step 1.

Note that Algorithm 4.1 solves only one system of linear equations and performs

only one Armijo-type line search at each iteration. Moreover, from Step 3 and

Step 4, it is easy to see that the sequence {f(zk)} is monotonically decreasing, and
hence, the sequence {‖H(zk)‖} is monotonically decreasing. In order to show the
well-definedness of the algorithm, we need the following two lemmas.

Lemma 4.1 ([11]). For any µ > 0, one has

−µ 6
1 − eµ

eµ
6 −µe−µ.

Lemma 4.2. For any zk = (µk, xk, yk) ∈ R++ × R
n × R

m generated by Algo-

rithm 4.1, one has,

eµk − 1 6
√

f(zk), and eµk 6 η.

P r o o f. From (32) it is easy to find that eµk − 1 6
√

f(zk). Thus, we have

eµk 6
√

f(zk) + 1 = ‖H(zk)‖ + 1.

Since the sequence {‖H(zk)‖} is monotonically decreasing, i.e., ‖H(zk+1)‖ 6

‖H(zk)‖ for all k > 0, we have

eµk 6 ‖H(zk)‖ + 1 6 ‖H(z0)‖ + 1 = η.

This completes the proof. �
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The following theorem shows that Algorithm 4.1 is well-defined and generates an

infinite sequence with some good features.

Theorem 4.3. Suppose that A has full row rank. Then Algorithm 4.1 is well-

defined and generates an infinite sequence {zk := (µk, xk, yk)} with µk > 0 and

zk ∈ Ω for all k > 0, where

Ω := {z := (µ, x, y) ∈ R++ × R
n × R

m : µ > µ0γ min{1, f(z)}}.

P r o o f. First, we prove that µk > 0 and Step 2 is well-defined for all k > 0.

The proof is done by induction. Suppose that µk > 0 for some k, e.g., it is sat-

isfied for k = 0. Since A has full row rank, Theorem 3.2 shows that the ma-

trix H ′(zk) is non-singular. Thus, the system of equations (34) is solvable. Let

∆zk := (∆µk, ∆xk, ∆yk) ∈ R× R
n × R

m be the unique solution to (34). Then

(36) ∆µk =
1 − eµk

eµk

+
βkµ0

eµk

.

Since µk > 0, from (33) and Lemma 4.1 we obtain that for any α ∈ (0, 1)

µk + α∆µk = µk + α
(1 − eµk

eµk

+
βkµ0

eµk

)

(37)

> (1 − α)µk + αγµ0 min{1, f(zk)} > 0,

which implies that µk+1 > 0. Therefore, µk > 0 for all k > 0 and Step 2 is well-

defined at the kth iteration.

Next we prove that Step 3 is well-defined. For any α ∈ (0, 1), by the Taylor

expansion and (36), we have

eµk+α∆µk − 1 = eµkeα∆µk − 1

= eµk [1 + α∆µk + O(α2)] − 1

= eµk − 1 + αeµk∆µk + O(α2)

= (1 − α)(eµk − 1) + αβkµ0 + O(α2).

Due to the definition of βk, we have

βk = eµkγ 6 eµkγ
√

f(zk), or βk = eµkγf(zk) 6 eµkγ
√

f(zk).

Thus, from Lemma 4.2, we obtain that

(eµk+α∆µk − 1)2 = (1 − α)2(eµk − 1)2 + 2α(1 − α)µ0βk(eµk − 1)(38)

+ α2β2
kµ2

0 + O(α2)

6 (1 − 2α)(eµk − 1)2 + 2αµ0γ
√

f(zk)eµk(eµk − 1) + O(α2)

6 (1 − 2α)(eµk − 1)2 + 2αµ0ηγf(zk) + O(α2).
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On the other hand, by (34) we have

G(zk) + G′(zk)∆zk = 0,

which yields

Ψ′(zk)∆zk = −2‖G(zk)‖2 = −2Ψ(zk).

Denote

g(α) := Ψ(zk + α∆zk) − Ψ(zk) − αΨ′(zk)∆zk.

Noting that g(α) = o(α), we have

‖G(zk + α∆zk)‖2 = Ψ(zk + α∆zk)(39)

= Ψ(zk) + αΨ′(zk)∆zk + g(α)

= Ψ(zk) − 2αΨ(zk) + o(α)

= (1 − 2α)Ψ(zk) + o(α).

Therefore,

f(zk + α∆zk) = ‖H(zk + α∆zk)‖2(40)

= (eµk+α∆µk − 1)2 + ‖G(zk + α∆zk)‖2

6 (1 − 2α)(eµk − 1)2 + 2αµ0ηγf(zk) + (1 − 2α)Ψ(zk) + o(α)

= (1 − 2α)f(zk) + 2αµ0ηγf(zk) + o(α)

= [1 − 2(1 − µ0ηγ)α]f(zk) + o(α).

Since µ0ηγ < 1, there exists a constant α ∈ (0, 1) such that

f(zk + α∆zk) 6 [1 − 2σ(1 − µ0ηγ)α]f(zk)

holds for any α ∈ (0, α] and σ ∈ (0, 1/2). This demonstrates that Step 3 is well-

defined at the kth iteration.

Finally, we prove zk ∈ Ω for all k > 0 by induction on k. Obviously,

µ0 > µ0γ min{1, f(z0)}
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which gives z0 ∈ Ω. Suppose that zk ∈ Ω, i.e., µk > µ0γ min{1, f(zk)}. Then by (33)
and (36), also using Lemma 4.1, we have

µk+1 = µk + αk∆µk

= µk + αk

(1 − eµk

eµk

+
βkµ0

eµk

)

> µk + αk

(

−µk +
eµkγ min{1, f(zk)}µ0

eµk

)

> (1 − αk)µk + αkµ0γ min{1, f(zk)}
> (1 − αk)µ0γ min{1, f(zk)} + αkµ0γ min{1, f(zk)}
= µ0γ min{1, f(zk)}
> µ0γ min{1, f(zk+1)},

where the last inequality follows from the fact that f(zk+1) 6 f(zk). The proof is

completed. �

5. Convergence analysis

In this section we show that any accumulation point of the iteration sequence

{zk := (µk, xk, yk)} is a solution to the system H(z) = 0. If the accumulation

point z∗ satisfies a nonsingularity assumption, then the iteration sequence converges

to z∗ locally quadratically without strict complementarity. First, we establish its

global convergence.

Theorem 5.1 (Global convergence). Suppose that A has full row rank and that

{zk} is the iteration sequence generated by Algorithm 4.1. Then any accumulation
point z∗ = (µ∗, x∗, y∗) of {zk} is a solution to H(z) = 0.

P r o o f. Without loss of generality, we assume that z∗ is the limit point of the

sequence {zk} as k → ∞. Since {f(zk)} is monotonically decreasing and bounded
from below by zero, it follows from the continuity of f(·) that {f(zk)} converges to
a non-negative number f(z∗). If f(z∗) = 0, i.e., H(z∗) = 0, we obtain the desired

result. Suppose that f(z∗) > 0. Since z∗ ∈ Ω, we have

µ∗ > µ0γ min{1, f(z∗)} > 0

by Theorem 4.3. It follows from Theorem 3.2 that H ′(z∗) exists and is invertible.

Hence, there exists a closed neighborhood N(z∗) of z∗ such that for any z ∈ N(z∗)
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we have µ ∈ R++ and H ′(z) is invertible. Then, for any z ∈ N(z∗), let ∆z :=

(∆µ, ∆x, ∆y) ∈ R× R
n × R

m be the unique solution to the system of equations

H(z) + H ′(z)∆z = β(z)z.

Denote

gz(α) := Ψ(z + α∆z) − Ψ(z) − αΨ′(z)∆z.

Then, for any z ∈ N(z∗), we have lim
α→0

|gz(α)|/α = 0. Similarly to the proof of

Theorem 4.3, for any α ∈ (0, 1) and z ∈ N(z∗), we have

µ + α∆µ > 0,

(eµ+α∆µ − 1)2 6 (1 − 2α)(eµ − 1)2 + 2αµ0ηγf(z) + O(α2),

‖G(z + α∆z)‖2 = (1 − 2α)Ψ(z) + o(α).

Thus

f(z + α∆z) = (eµ+α∆µ − 1)2 + ‖G(z + α∆z)‖2
6 [1 − 2(1 − µ0ηγ)α]f(z) + o(α).

Hence, we can find a positive number α ∈ (0, 1] such that

f(z + α∆z) 6 [1 − 2σ(1 − µ0ηγ)α]f(z)

holds for any α ∈ (0, α], σ ∈ (0, 1/2), and z ∈ N(z∗). Therefore, for all sufficiently

large k, there exists a nonnegative integer l̄ such that δl̄ ∈ (0, α] and

f(zk + δl̄∆zk) 6 [1 − 2σ(1 − µ0ηγ)δl̄]f(zk).

For all sufficiently large k, since αk = δlk > δl̄, it follows from Step 3 and Step 4 in

Algorithm 4.1 that

f(zk+1) 6 [1 − 2σ(1 − µ0ηγ)δlk ]f(zk) 6 [1 − 2σ(1 − µ0ηγ)δl̄]f(zk),

which implies that f(zk+1) 6 Cf(zk), where C = 1−2σ(1−µ0ηγ)δl̄ < 1 is a constant

and thus {f(zk)} → 0 as k → ∞. This contradicts the fact that the sequence {f(zk)}
converges to f(z∗) > 0. The proof is completed. �

Next, we give the rate of convergence for Algorithm 4.1. To establish the locally

quadratic convergence of our smoothing Newton method, we assume that z∗ satisfies

the nonsingularity condition but may not satisfy the strict complementarity.
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Theorem 5.2 (Local convergence). Suppose that A has full row rank and that

z∗ = (µ∗, x∗, y∗) is an accumulation point of the iteration sequence {zk} generated
by Algorithm 4.1. If all V ∈ ∂H(z∗) are nonsingular, then we have

(i) zk+1 = zk + ∆zk for all zk sufficiently close to z∗.

(ii) The whole sequence {zk} converges to z∗ quadratically, i.e.,

‖zk+1 − z∗‖ = O(‖zk − z∗‖2);

moreover,

µk+1 = O(µ2
k).

P r o o f. By using Theorem 3.1 and Theorem 3.2, we can prove the theorem

similarly to Theorem 8 in [21]. For brevity, we omit the details here. �

6. Numerical experiments

In order to evaluate the efficiency of Algorithm 4.1, we have conducted some

numerical experiments. All experiments were performed on a personal computer

with 2.0GB memory and Intel(R) Pentium(R) Dual-Core CPU 2.93GHz×2. The

operating system was Windows XP (SP3) and the computer codes were all written

in Matlab 7.0.1.

Throughout the experiments, we used ‖H(zk)‖ 6 ε as the stopping criterion. The

starting points were chosen to be x0 = e ∈ R
n, y0 = 0 ∈ R

m, and the parameters

used in the algorithm were chosen as follows:

µ0 = 0.01, σ = 0.25, δ = 0.75, γ =
1

1 + ‖H(z0)‖
.

First, we test the following problems with random data which are representative

to some extent.

P r o b l e m P . We consider the SOCP problem (1) with a single SOC. Its data
are given as follows:

B =















100 2

−2 100 2
. . .

. . .
. . .

−2 100 2

−2 100















∈ R
m×m, A = [B randn(m, n − m)],

b = 10em + 4 rand(m, 1) − 2 ones(m, 1) c = 10en + 4 rand(n, 1) − 2 ones(n, 1),

where ones(m, 1) = (1, . . . , 1)T ∈ R
m and en := (1; 0) ∈ R× R

n−1.
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Numerical results for Algorithm 4.1 on problem P are displayed in Tab. 1, in
which IT denotes the number of iterations and CPU denotes the CPU time in

seconds needed for obtaining the optimal solution satisfying the stopping rule. Let

FV and MU denote the values of ‖H(zk)‖ and µk at the final iterate, respectively.

The results in Tab. 1 indicate that our smoothing method is efficient and can deal

with sparse SOCP problems.

m n IT CPU FV MU

5 10 6 0.006 2.6947× 10−7 2.1580× 10−10

10 20 7 0.009 1.5946× 10−8 1.4718× 10−11

20 40 7 0.014 2.3326× 10−8 1.8568× 10−11

25 50 7 0.025 2.6041× 10−8 2.4911× 10−11

30 60 8 0.042 2.0317× 10−9 1.7866× 10−12

80 120 11 0.174 9.1693× 10−8 6.1451× 10−11

150 200 15 0.262 4.2141× 10−9 6.2541× 10−11

Table 1. Numerical results for Algorithm 4.1 on problem P with ε = 10−6.

Next, we randomly generate test problems with size n (= 2m) and r = 1. In

detail, we generate a random matrix A ∈ R
m×n with full row rank and random

vectors x ∈ L0, s ∈ L0, y ∈ R
m, and then let b := Ax, c := ATy + s. Thus

the generated problems (1) and (2) have optimal solutions and their optimal values

coincide, because they have strictly feasible points. The random problems of each

case are generated 10times, and the tested results are listed in Tabs. 2–3, where LIT

denotes the largest value of the iterative numbers; AIT denotes the average value of

the iterative numbers; LCPU denotes the largest value of the CPU time in seconds;

ACPU denotes the average value of the CPU time in seconds; LFV and LMU

denote the largest values of ‖H(zk)‖ and µk, and SFV and SMU denote the smallest

values of ‖H(zk)‖ and µk, and AFV denotes the average values of ‖H(zk)‖ when
the algorithm terminates within ten testings. From Tab. 2, we see that our algorithm

can solve all the test problems and can deal with large-scale SOCP problems. The

algorithm can find a solution point meeting the desired accuracy in very few iterations

and in short CPU time. Moreover, we may observe that the number of iterations

obviously does not change, but the CPU time grows with the problem size. To

compare Tab. 2 and Tab. 3, we can find that the number of iterations and the

CPU time have slightly changed when the stopping criterion becomes smaller. In

addition, we also did our numerical experiments with different µ0, σ, δ and it is

shown that there are slight changes in results for other values of µ0, σ, δ.

Finally, for given sizes m and n, we randomly generate 6 test problems. For

comparison purpose, we also use SDPT3 [27] to solve the same problems. The results

are listed in Tab. 4 which indicates that Algorithm 4.1 performs very well. We also
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m n LIT AIT LCPU ACPU LFV SFV LMU SMU

50 100 6 5.8 0.08 0.05 3.772×10−7 3.529×10−10 1.321×10−8 9.135×10−12

100 200 6 6.0 0.25 0.22 3.941×10−7 1.096×10−9 1.834×10−8 4.363×10−11

150 300 6 6.0 1.15 1.12 8.141×10−7 8.055×10−10 3.144×10−8 4.202×10−11

200 400 6 6.0 2.60 2.55 2.115×10−7 4.059×10−9 1.213×10−8 1.764×10−10

250 500 7 6.1 5.65 4.91 8.577×10−7 6.127×10−13 6.203×10−8 1.097×10−14

300 600 7 6.2 9.38 8.17 8.690×10−7 9.887×10−13 6.965×10−8 1.662×10−14

350 700 7 6.3 15.08 13.58 9.903×10−7 5.573×10−13 7.960×10−8 4.844×10−13

400 800 7 6.3 21.24 18.86 8.749×10−7 1.037×10−12 7.701×10−8 1.289×10−14

450 900 7 6.5 29.68 28.32 9.890×10−7 1.274×10−12 9.481×10−8 1.393×10−14

500 1000 7 6.8 41.21 39.19 9.981×10−7 1.462×10−12 1.034×10−8 1.697×10−14

Table 2. Numerical results for Algorithm 4.1 with ε = 10−6.

ε = 10−8 ε = 10−12

m n
AIT ACPU AFV AIT ACPU AFV

100 200 6.8 0.388 5.7858× 10−10 7.0 0.409 9.6677 × 10−14

200 400 7.0 2.947 3.3171× 10−13 7.0 3.008 3.3171 × 10−13

300 600 7.0 9.761 7.3236× 10−13 7.2 10.913 5.7595 × 10−13

400 800 7.0 20.675 1.5158× 10−12 7.6 22.603 8.2433 × 10−13

500 1000 7.0 40.429 2.5215× 10−12 8.0 44.568 8.9905 × 10−13

Table 3. Numerical results for Algorithm 4.1 with different stopping criterion.

Algorithm 4.1 SDPT3
m n

IT CPU FV IT CPU FV

50 50 5 0.07 3.8172×10−11 6 0.09 2.5967×10−10

50 100 5 0.08 1.5764×10−12 7 0.14 3.2475×10−11

80 80 6 0.12 2.2513×10−11 8 0.17 1.8143×10−9

80 150 7 0.10 7.1125×10−10 8 0.19 3.6571×10−8

100 200 6 0.16 3.1569×10−9 9 0.23 4.3627×10−7

150 150 8 0.20 5.3411×10−10 9 0.26 2.7124×10−7

Table 4. Comparison of Algorithm 4.1 and SDPT3 on SOCPs with ε = 10−6.

obtained similar results for other random examples. Therefore, Algorithm 4.1 may

be of practical interest.

7. Conclusions

In this paper, we introduce a new smoothing function of the well-known Fischer-

Burmeister function. Based on this new function, we present a one-step smoothing

Newton method for solving second-order cone programming. The proposed algorithm

solves only one system of linear equations and performs only one line search at each
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iteration. This algorithm can start from an arbitrary point and is quadratically con-

vergent under a mild assumption. We also report some preliminary computational

experiments. The preliminary numerical results demonstrate that the proposed al-

gorithm is promising.
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