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1. INTRODUCTION

Consider periodic solutions of the Hamiltonian system

(1.1)

{ii(t) = VF(t,u(t)) ae. tel0,T),
u(0) — u(T) = u(0) — a(T),

where T'> 0, F': R x R™ — R satisfies the following assumption:

(A) F(t,z) is measurable in ¢ for all z € R™ and continuously differentiable in x for
a.e. t € [0,T], and there exist a € C(RT,R*), b € L1([0,T]; RT) such that

[E(t, 2)| < a(lz))b(t), [VF(t )] < allz])b(t)

for all x € R™ and a.e. t € [0,T].

The corresponding functional ¢ on H1 . given by

T T
(1.2) o(u) = 5/0 |u(t)|2dt+/0 F(t,u(t))dt

* This work has been partially supported by the Scientific Research Foundation of Guilin
University of Technology and the NNSF (No. 11171351) of China.
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is continuously differentiable and weakly lower semicontinuous on H7., and

(' (u),v) = /0 [(a(t),o(t)) + (VE(t,u(t)),v(t))] dt
for any u,v € H}., where

Hi = {u: [0,T] — R":
u is absolutely continuous, u(0) = u(T), @ € L*([0,T],R™)}

is a Hilbert space with the norm defined by

[[ull = (/OTnu(t)F + |u(t)[?] dt)

for u € H}.. It is well known that the solutions of problem (1.1) correspond to the

1/2

critical points of .

It has been proved that problem (1.1) has at least one solution by the least action
principle and the minimax methods; we refer the readers to [1]-[15] and the references
therein. Particularly, when the nonlinearity VF (¢, ) is bounded, that is, there exists
g(t) € L([0,T],R™) such that

IVE(, )| < g(t)

for all x € R™ and a.e. ¢t € [0,T], and that
T
/ F(t,z)dt — too as |z] — oo,
0

Mawhin and Willem [3] proved that problem (1.1) admits a periodic solution. After
that, Tang [9] generalized these results to the sublinear case. In detail, he assumed
that the nonlinearity VF (¢, z) satisfies the following conditions:

(1.3) [VE(t, z)| < p(t)|z|® 4+ q(t) for all z € R™ and a.e. ¢t € [0,T],
and

T
(1.4) |x|_2“/ F(t,x)dt — oo as |z] — oo,

0

where p(t),q(t) € L*([0,7],R") and o € [0,1). Under these conditions, periodic
solutions of problem (1.1) have been obtained. Subsequently, Zhao in [14], [15]
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considered problem (1.1) when VF(t,z) was linear. He completed the results in [9]
corresponding to @ = 1. As pointed out in [16], there are functions not satisfying
the conditions in [9], [14], [15], thus the authors improved the conditions in [9], [14],
[15] and obtained some new results.

Recently, Zhang and Wang [17] used a control function h(|z|) instead of |z|*
in (1.3) and (1.4) and got some new results which improved many existed works.
More precisely, they obtained the following main results.

Theorem A ([17]). Suppose that F satisfies assumption (A) and the following
conditions:

(H1) There exist constants Cyp > 0, K1 > 0, Ko > 0, a € [0,1) and a nonnegative
function h € C([0,00),[0,00)) with the properties
(i) h(s) <h(t) Vs<t, s,te]0,00),
(ii) h(s+1t) < Co(h(s) + h(t)) Vs,te0,00),
(ifl) 0 < h(s) < K1s® + Ko Vs, t € [0,00),
(iv) h(s) = o0 as s — oo.
Moreover, there exist f,g € L'([0,T], R") such that

(1.5) IVE(t,z)| < f(t)h(Jz]) + g(t) for all x € R™ and a.e. t € [0,T].

(H2) There exists a function h € C([0,00),[0,00)) which satisfies the conditions
(i)—(iv) and

T
(1.6) h*2(|x|)/0 F(t,z)dt - o0 as |z| — oo.

Then (1.1) has at least one solution which minimizes the functional ¢ in H..

Theorem B ([17]). Suppose that (H1), assumption (A) and the following condi-
tion hold:

(H3) h=2(|z|) [y F(t,z)dt — —c0 as |z] — oo.

Then (1.1) has at least one solution in H}.

Motivated by the ideas of [16], [17], we will use weaker conditions instead of (H2)
and (H3). Here are our main results.
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Theorem 1.1. Suppose that F satisfies (H1), (A) and the following condition:

(H2) There exists a function h € C(]0,00),[0,00)) which satisfies the conditions
(1)—(iv) and

T%C3
(1.7) hmmfh (|=]) / F(t,xz)dt > 0/ At

|z]—o0
Then (1.1) has at least one solution which minimizes the functional ¢ in H..

Theorem 1.2. Suppose that F satisfies (H1), (A) and the following condition:
(H3)' limsup h=2(|z]) f; F(t,z)dt < —3(T2C3/x) [ f2(t)dt

|#]—o0

Then (1.1) has at least one solution in H}.

Theorem 1.3. Suppose that F satisfies (H1) with o = 1, assumption (A) and
that

(1.8) /T ft)dt < 12
' 0 TK;Cy
and
T 37202 T r2
(1.9) lim inf h*2(|x|)/ F(t,z)dt > Jy I
|z[—o0 0 212(12 — K, CoT fo dt)

Then (1.1) has at least one solution which minimizes the functional ¢ in H..

Theorem 1.4. Suppose that F satisfies (H1) with o = 1, assumption (A), (1.8),
and the following condition:

216T2C2 [, f2(t)
n2(24 — K, CoT ) f dt)

T
(H4) limsuph*2(|x|)/0 F(t,z)dt < —

|| —o0

Then (1.1) has at least one solution in H.
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2. PROOFS OF THEOREMS

For u € H:, let u=T""! fo t)dt and @ = u(t) — @, then one has
T T
Hu||oo < ﬁ |u(1§)|2 dt  (Sobolev’s inequality),
and

T
a3 < / ()2 dt (Wirtinger’s inequality),
0

where ||@]|oo := max |a(t)|. For the sake of convenience, we denote
0<t<T

M, = </OT f2(t) dt)m, My = /OTf(t) dt, Msz= /OTg(t) dt.

Proof of Theorem 1.1. Due to (1.7), we can choose a; > T?/4x* such that

T 2 T
. _9 alCO 2
(2.1) liminf h (|x|)/0 F(t,z)dt > 5 /0 fe@)de

|| —o00
It follows from (H1), Sobolev’s inequality and Wirtinger’s inequality that

T

| [F(t,u(t)) — F(t,u)] dt‘

| (VE(a+su), a) ds dt‘

//f h(|la + sua(t)])|u(t |dsdt+// (t)|dsdt
//f h(Ja) + ()l |dsdt+// ()| ds dt

/ / Cof()(h(|ul) + h(la@)))|a(t)| ds dt + Ms]|alle

< confja( / fQ(t)>1/2 (/ "l dt)m

T
e / FORAEDa®)] dt + Mo

T
< CoMyh([al)l|a > + Co/O FOEa®)]* + Ka)a(t)] dt + Ms||afle

< CoMih(lal)l[ll 2 + CoMaK|al| i + CoMa K|l oo + Ms]|il|o
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1 al(CoM1)2

< — lf3a + h2(|af) + CoMa I, [ 14
2&1 2
+ CoMaKs||t]| oo + Ms||T| 0o
T2 .12 al(C'OMl)Q 21— T (I+a)/2 14
< gz Il3s + =5 w2 () + CodKa (35 )l
T\/2 . TN\/2
+ CoMakn(75) il + Ma(55) " il e

Hence, we have

1 T T
e =5 [ li@Fat+ [P
1 T . ) T - T -
:5/ ()| dt+/ [F(t,u(t))—F(t,u)]dt—i—/ Pt ) dt
0 0 0
L T2 .12 al(COM1)2 2/~
> 1 il — g il — 2O )
T\(ta)/2
—CoMeKi(5) I
T2 T2, o
~ oMy (35) " Nillze = M (35 Hu||L2—|—/0 F(t, ) dt
1 T2 N oo oo [F o a1 CEM?
~ (5 s e+ 1200) (12 [ ey - M)
NI , T\(+a)/2 |
~(13) (CoMaKz+ My)lillzs = CoMaKa(75) eIt

As ||u|| — oo if and only if (|@|?+ |%]|2.)'/? — oo, the above inequality and (2.1) im-
ply that ¢(u) — co. Hence, by the least action principle, problem (1.1) has at least

one solution which minimizes the functional p(u) in Hr. O

Proof of Theorem 1.2.  First we prove that ¢ satisfies the (PS) condition.
Assume that u,, is a (PS) sequence of @, that is, ¢'(u,) — 0 as n — oo and {¢(un)}
is bounded. By (H3)’, we can choose as > T?/4r? such that

T T
(2.2) limsuph_2(|x|)/0 F(t,z)dt < —(a—;+ \/ZQTT)C(%/O £2(1) dt.

In a way similar to the proof of Theorem 1.1, we have

/OT(VF(t’u"(t))vﬁn(t)) dt‘

™ o az(CoMy)? 5 TN\OFe)/2 g,
< oz linllze + 5 W) + CoMa K (35) il 15
T \1/2 .
+ (ﬁ) (CoMyKs + Ms)||ty | 2.
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Hence, we get

(2.3) [tn ]l = (&' (un), in)

T
=Hwﬁ;+/(VmeﬁDﬂamdt
0

T? ) as(CoMy)? i
> (1= g il = =g W2
TN\(+a)/2
—CoMaKi(55) il

T \1/2 )
~(53) (CoMaEs + M) | ..

On the other hand, we find that

(T2 + 42)1

24 Un || <
(24) I =

[t 22
From (2.3) and (2.4), we obtain

GQC§M12 h2

(2.5) 9 (l’anl)
T2 ) T\(1+a)/2
> (1 - m) ||Un||2L2 - COM2K1<E) ||unH1L'g(’
T\1/2 . -
—(53) " (CodMaK + Ms)fin]| 12 — |l
T2 ) T \(Q+a)/2 . o
> (1 - m) i ||2e — COMQKI(E> [t |
(T2—|—4Tc2)1/2 T \1/2 T\L/2] . 9
{ ot (5) M (55) |l
1.
2 5 Hun||%2 + Cl;
where
4]12@2 — T2 T \(1+a)/2
Ch — . 72_(_) CoM-K 1+a
! séﬂig@{ 872ay 12 07215
(T2 +4TE2)1/2 (T)l/Q (T)l/Q}
[ o + CoM2 K> 3 + M; B s¢.

Notice that as > T?/4n? implies —oo < C; < 0. Hence, it follows from (2.5) that
(2.6) |22 < a2CEMPR?(Janl) - 2C1,
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and

(2.7) lin] 2 < VaeCoMih(|ty,|) + Ca,

where Cy > 0. By the proof of Theorem 1.1, we have

(2.8) /0 [F(t,un(t)) — F(t,uy,)] dt

< CoMih(| i) ||n || r2 + CoMa Ky ||| 33
+ (COMQKQ + Mg)HﬂnHOO
T - az TC2M? B
< a2 + Y2 2, )
Jar T in
+ C()MQKlHﬂnH;ra + (COM2K2 + M?))Hﬁn”oo

. a9 TC2M2 _
a3 + YT 12 ), )

<

T
dn/az
T \(1+a)/2 )
+(55)  CoMakyfu |
T

1/2 _
+ (ﬁ) (CoMa ks + Ms)|itn]| 2.

It follows from the boundedness of ¢(uy,) and from (2.6)—(2.8) that

CB < @(un)
T

L a2 ' — F(t,u u
:§Hun|\p+/0 [F'(t, un(t)) = F(t, n)]dt+/0 B(t, up) dt

1 T © 12 \/@Tchf 2/ —
< (= ) v®2 o1 .
h <2 + 47-[\/@)”“"”L + i h*(Jtin])
T \(+e)/2 o
() Corakalinl:
T\1/2 _ T
+ (ﬁ) (C0M2K2+M3)||un||Lz+/ F(t,uy,) dt
0
1 T 20 7212(- Vaa TCZME
<z —_— M. nl) —2 v%2 - o1 .
<2+4n\/@)(“200 07 (lan]) = 2C1) + S h*(Jun])
T\(1+a)/2
(E) Co M2 K1(y/azCoMih(|@y,|) + Co)' T
T\1/2 T
+ (ﬁ) (CoMa K2 + Ms)(v/a2ColM: h(lﬂn|)+Cz)+/ F(t,a,)dt
0
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= (2+ \/iT)CnghQ(mnD - (1+ 25@)01

T T \(14a)/2
+ / F(t,an)dt+ (5)  CoMaKi(y/azCoMih(Jan]) + Ca)'
0
T \1/2
+ (ﬁ) (CoMz Ky + Ms)(v/azCoMyh(|i,|) + Cs)
az \/a_2T 2A7212/( | N
<<2+ 9 )COMlh(|un|) (

— 12 (Jian]) {h2(|fun|) /OT F(t, i) dt + (@ + @)chf

o \/_)cl +/TF(t,ﬂn)dt

(14+a)/2
Co M K12°((v/asCoMh(Jun|) 1) + C3*]

T
+(33)
22) (CoMzKs + Ms)(y/azCo My h(|y|) + Ca)

2 2n
T (14a)/2
2o (Z5) R MM K b (fun)
T\1/2 o
+ (E) (COMQKQ =+ Mg)\/a/QCQMl h (|un|)
T \(+)/2 T \1/2
+ 20((12> CoMQchlJra (ﬁ) (C()MQKQ + Mg)CQ
T
—(1 C
( + 213/@)

The above inequality and (2.2) imply that {@,} is bounded. Hence, {u,} is bounded
by (2.6) and (H1). Arguing as in Proposition 4.1 in [3], we conclude that ¢ satisfies
the (PS) condition.

In order to use the saddle point theorem ([6, Theorem 4.6]), we only need to verify
the following conditions:

(1) ¢(u) = —o0 as |u| — oo in R™.

(2) p(u) — oo as |ju|| — oo in HE, where H}: = {u € H}: @ =0}.

In fact, from the property (iv) of (H1) and (H3)’, we have

T
/ F(t,u)dt - —o0 as |u|] — oo in R,
0
which together with (1.2) implies that
T
p(u) :/ F(t,u)dt — —oco as |u| — oo in R™.
0

Hence, (1) holds.
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Next, for all u € ﬁ%, by (H1) and Sobolev’s inequality, we have

/OT[F(t, u(t)) — F(t,0)] dt‘

/OT/OI(VF(tv su(t)), u(t)) ds dt‘

T T
</0 f(t)h(IU(t)I)IU(lﬁ)ldt+/O g(O)[u(t)] dt

T

< / FOE ()| + Ko)u(t)| dt + Ms|lulo
0

< Moo (K [ull% + K2) + M ]l

= MoKy ||ul| 35 + Mo Ko||ulloo + Ms||ulco

T \(1+a)/2 lta T \1/2 :
<() MKl + () MK+ M)l e,

which implies that

T T T
(2.9) @(u)z%/o |u(t)|2dt+/0 [F(t,u(t))—F(t,O)]dt+/O F(t,0)dt
T

(1+a)/2 e
) MKl

1.
> 5 llall3 - (
T \1/2

T
a (E) (MoK + Mg)||a] L2 +/ F(t,0)dt
0

for all u € H}. By Wirtinger’s inequality, ||u|| — oo in H} if and only if ||| > — oo,
so from (2.9) we obtain o(u) — oo as ||u] — oo in Hk, i.e. (2) is verified. Hence,
the proof of Theorem 1.2 is complete. O

Proof of Theorem 1.3. By virtue of (1.8) and (1.9), we can choose a constant
a3 € R such that

(2.10) as > 37 >0
’ 3 1'[2(12 — KlTMQCO) ’
and
T a,
(2.11) liminfh_2(|a:|)/ F(t,z)dt > = M?C?.
|| =00 0 2
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It follows from (H1) with oo = 1, Sobolev’s inequality and Wirtinger’s inequality that

[ (F(tutt) - F(e.0) dt\

[ (VE(ta+su0), a() dt‘
T
/ / F(OR(a-+ sa(t)])[ac)] ds dt + / o(t)]a(t)] dt
0
/ / Cof(H)(h([a]) + sh(1a(®))a(t)] ds dt + / ot) a(t)] dt
/ Cor () (lal) + 5 A(la(o)) ) 1a(t)| dt + My o

< con(lal / ' f2(t))1/2 (/ o) dt)m

1 A _
+ 5 MaGoh(||alloo)l|all oo + Ms]|d]lo

N 1 _ _ _
= CoMih([al)l|alz2 + 5 M2Coh([[aflco)|[llc + Msl|alleo

“3M100 )

1 _ _ i
+ 5 MaCo(Knlla]lco + K2)l|alloc + Mald]

<
< g0 Nl +

(L TMECy e (TY2 (3, Mooy

8n2as 24 12 2
asM?2C?
+ M g,

which implies that

o(u) = %/o |a(t)]? dt—i—/o [F'(t,u(t)) — F(t,u)) dt+/0 F(t,u)dt

1 T2 TMQKlCO .12 T\1/2 MQKQCO .
> (2 _ Y rerrev
~ (2 8m2as 24 )H“”LQ (12) (M3+ 2 )"“””
M T
— GMECE a4 / F(t,0) dt

1 T2 TMQKlCO T\1/2 MQKQCO .
(5 8712(13 24 )H ”L2_<12) (M3 2 )Hu||L2

2,2
+h%(|a ( /F dt—a?’MQC).
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As |Ju| — oo if and only if (|a|? + ||ul/2,)"/?

— 00, the above inequality and (2.10)
and (2.11) imply that ¢(u) — oco. Hence, by the least action principle, problem (1.1)

has at least one solution which minimizes the functional ¢(u) in Hr. O

Proof of Theorem 1.4.  First we prove that ¢ satisfies the (PS) condition.
Assume that u,, is a (PS) sequence of ¢, that is, ¢/(u,) — 0 asn — oo and {p(uy)} is
bounded. By (H4), we can choose a4 € R such that

672

2.12 0
(2.12) U B4 _TMzK.Co)

and

T
(2.13) 1imsupff2(|x|)/0 F(t,x)dt

|| —o0

_ (12 + TM2K1C0)G4 Z 6ay
24—TM2K100 T 24—TM2K100

]Mfcg.
In a way similar to the proof of Theorem 1.3, we obtain
T
[ P, a0
0

T2 TMs K1 C . T\/2 Mo K5C .
< (g + ) linlde + (55) 7 (Ms + =252 a2

8m2ay 24 12 2
ayM?C?
M b .

Hence, we have
|t > <¢l(un)aﬁn>

= in 2 + / (VF (£ (£)), i (1)) dt

T2  TMKiCo\, . 5  as(CoMi)?
o (1 B Cau(CoMn)?
> (1= g — o linllf — 2 k2,
T\/2 (CoMs K .
- (@) (5 )i
which together with (2.4) implies that
a4(COM1)2 2/ T2 TMQKlCO . 2
B it VA > — _ .
5 W (lnl) > (1= g — =g il
(T2+4n2)1/2 (T)1/2(00M2K2 ) )
[ om BANT 3+ M) |l
1/ TMKCoy .
4 (1= T
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where

C . (1 T2 TMQch()) 9
= min - — — S
4 s€[0,00) 2 81‘[2614 48

_ {W n (%)I/Q(%COMQKQ n Mg)}s}.

It follows from (2.12) that —oco < Cy < 0, so we obtain

. 24 a, M2C? B 480,

92.14 20 < e YR Ty
( ) HU’TLHLQ 24—TM2K1C0 (lunl) 24—TM2K1C0
and

_ V2 aa M, C
(2.15) litnl 22 < WL h(fan]) + Cs.

V24 —TMyK,Cy

By the proof of Theorem 1.3, we have

/OT(F(t, un(t)) — F(t,tn)) dt‘

- MyC
< CoMih([tn])in 12 + —5—

h(l[tinloo) |nloo + Mal|tin||o

T 24 — TMQKlCO - 12 T 3ay4 2212/~
< I [A- MK G = M2C2h
oT 6&4 HU’TLHL2 + o 2(24—TM2K1C0) 1~0 (lunl)

M>Cy | . . -
o il (K1 im0 + 2) + M|t o

< T [24 —TMsK1Cy n TMyK1Cy H H2
S A8y 6au 24 Unllzz

T 3a4 24272/ —
L M2C2h2 (|t
3 \/2(24 TR, Oy MGl ([un])

T \1/2 KyMoCo .
+(5) (s + =55 il

It follows from the boundedness of p(uy), (2.14), (2.15), and the above inequality
that

+

Cs < p(un)

T

= glinla + [P 0) = Feal e+ [P,
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1 | 24 —TM>K1Cy  TM2K1Col, . /T _
<|li+ L a2 F(t, u,)dt
[ - G 4 51 ln |72 + (t,n)

T 3aq 2272/~
- M2C2h2 (|
+ n\/2(24—TM2K1C0) 1 Coh™(Jn])

(L) (g 1 220y

12
1 T /24 —TMyK,C TMoK1C
<|l-+L 281 0+ 24410
8n 6ay 24
( 24a4M1C0 2(|a = 48CY )
24 — T MoK, Cy " 24 — T Mo K1Cy

+ T 3aq MZC2h%(|a |)+/T F(t,uy,)dt
n\ 224 - TMK,Co) 170 " 0 o
T \1/2 KQMQCO \/24a4M100
— M.
) (+ =522 V24— TMLK:Co
_ (12+TM2K1C0)G,4 Z 6ay
o 24—TM2K100 T 24—TM2K100

h(|@n|) +C5>

]Mfcgh%mn

T
T 1/2 KQMQCO \/24G4M100 _
F(t,u,)dt M. h(|tn
+/0 (¢, @) +(12) ( 3 2 )\/24—TM2K100 (Jnl)
T \1/2 Ky M>Cy
(53) (s + =572
B 480 1 T [24=TMK,Co N TM>K;Cy
24 — TMQchO 8n 6a4 24
- <|un|{ |un|/ F(t, ) d
(12 + TM2K1C0)0,4 T 6ay M202
24 — TM>K,C, V24— TMyK,Co| +7°

+(§)1/2( KQMQ) V2Aa; M, Cy _1(|u”|)}

4 TM2K100
()

12
_ 48C, 1 7T /24— TMyK1Cy TM2K100
24 — TMQchO 8n 6a4 24

The above inequality and (2.13) imply that {@,} is bounded. Hence, {u,} is bounded
by (H1) and (2.14).

Similarly to the proof of Theorem 1.2, we only need to verify (1) and (2). It is
easy to check (1) by (H4). Now, we verify that (2) holds. For u € H}, by (H1) and
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Sobolev’s inequality, we have

/OT(F(t,u(t)) ~F(t,0)) dt‘

/OT/OI(VF(@ su(t)),u(t)) ds dt‘

</0/0f(t)h(slu(t)l)lu(tndsdt+/0 g(t)[u(t)] dt
T r1 T
</O/0Cof<t)<h<s|u<t)|>+h(0>)|u<t)|dsdt+/0 g(t)[u(t)| dt

N

T 1
//Cof(t)(Kls|u(t)|+K2)|u(t)|dsdt
o Jo

+ M2Coh(0)||ulloc + Msllul|o

- T a5 220 ||u||200 (MQCOh(O) KzMZCO 3)”“”
TK]MZC .2 2 1/2 + ! L

Thus, we obtain

1 T T
ol = 5lill+ [ (Plu®) - Peopars [P0

12 —TM,K.Cy , . T \1/2 .
> # llaf|F2 — (E) (M2Coh(0) + Ko M2Co + M) ||| 12

T
+/ F(t,0)dt
0
for all u € H}. By Wirtinger’s inequality, ||u|| — oo in H} if and only if ||| > — oc.

So from the above inequality we have p(u) — oo as ||u|]| — oo, i.e. (2) is verified.
Hence, the proof of Theorem 1.4 is complete. O

3. EXAMPLES

In this section, we give four examples to illustrate our results.

Example 3.1. Let
1 3/2 2 2 2
F(t,x) = (§T—t> In* (1 4+ |z|*) + (gT— t) In(1 + |z|%).
It is easy to see that
31 2
VE(t2)| < 5|57 =t /21 + [2) + B t
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for all z € R™ and a.e. t € [0,T]. We can see that (1.5) holds with f(t) = 3|37 — t‘
g(t) = ‘%T - t‘ and h(|z]) = In'/2(1 + |z/?). Let Cy = 2. It is easy to check that
(H1) holds. However, F(t,z) does not satisfy (1.6). In fact,

82 96712
Let T3 < 16 72 , then we have

T 2 5 202 T
lim inf h*2(|x|)/ F(t,x)dt = = > o _ T & / f2(t)dt
0 0

|z]—o00 6 9672 82

Hence, according to Theorem 1.1, problem (1.1) has at least one solution which

minimizes the functional ¢ in Hl.

Example 3.2. Let

F(t,z) = w 1n3/2

(1+ =) + (%T - t) In(1 + |z[?).

It is easy to see that

3
F <

sin 21 ’11/2(1+||) ‘—T—t’

for all x € R™ and a.e. ¢t € [0,7]. We can see that (1.5) holds with f(t) =
3|sin(2nt/T)|, g(t) = |2T — t| and h(|z|) = In'2(1 + |2[?). Let Cp = 2. Tt is
easy to check that (H1) holds. However, F'(,z) does not satisfy (H3). In fact,

sr2cz (T, 27T
812 /0 fode= 64n2

Let T < 135Tc then we have

T T2 2773 31202 (T
li h? Flt,z)dt = —— < — =— 0/ 2(¢) dt
im sup (|x|)/O (t,x) 0 < 62 ) . f=(t)

|| —o0

Hence, by Theorem 1.2, problem (1.1) has at least one solution in H1..

Example 3.3. Let

F(t,z) = (gT - t) In%(1 + |z[2) + c(t) In(1 + |2]?),
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where c(t) € L'([0,T],R*). It is easy to see that
5 2
VF(t2)| 22T = t|n(1 +[af) + |e(t)

for all z € R" and a.e. t € [0,7]. Let f(t) = 2|37 —
In(1 + |z]?), Co = 2, K1 = 1, K5 = 10. Then we have
(i) h(s) <h(t) Vs <t, st €(0,00),
(i) (s+t) 2(h(s)+ h(t)) Vs, te]0,00),
(iii) 0 < h(s) <s+10 Vs,te[0,00),
(iv) h(s) — 00 as § — oo.

» 9(t) = le(®)]; h(jz]) =

By a direct computation, we get

T T 13772
/ f(t)dt:2/ ‘§T—t‘dt: 5
0 o 16 18
T T 2 T3
/ fQ(t)dt:4/ ‘§T—t‘ dt =
0 o 16 9

Let T3 < 10872 /(126 + 1372). Then we have

T 2
1372 6 12
£ dt = °_
/Of() 8 ST TK.C

and

and

3T? x 4 x 7T3/9
3 7 3@2(12 2T x 13T2/18)

B 3T2CQ f() f'2
C2m2(12— K\ GoT [ f(t)dt)

Hence, by Theorem 1.1, problem (1.1) has at least one solution which minimizes the
functional ¢ in H.

Example 3.4. Let
2 2 2 2
F(t,z) = (gT_t) In%(1 + |z[2) + c(t) In(1 + |2]?),
where c(t) € L1([0,T],RT). Tt is easy to see that
2 2
IVE(t, )| < Z‘ET - t‘ In(1 + |2[2) + |e(t)]
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for

all z € R™ and a.e. t € [0,T]. Let f(t) = Q%T—t‘, g(t) = |c(®)|, h(|z]) =

In(1 + |x]?), Cop = 2, K; = 1, K5 = 10. As shown in Example 3.3, we know that

h(s

) satisfies (i)—(iv). By a direct computation, we have

/OTf(t)dtzz/OT}gT—t}dtz 12:;2

and

Let

T T 2 2T3
/ fQ(t)dt:él/ PT—t‘ ar = 21
o ) 16 75

T3 < % Then we have

T 2
1372 6 12
Hdt = — < —
/Of() 18 ~ T TK,Cy

and

T
lim sup h~2(|z|) / F(t,x)dt
0

|z|— o0
T - 80647
10 2572(24 — 1.0473)2
216T2C2 [ f2(t)dt

(24— Ky GoT [T F(t)dt)®

Hence, by Theorem 1.1, problem (1.1) has at least one solution in H1-.
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