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Abstract. A smoothing sample average approximation (SAA) method based on the log-
exponential function is proposed for solving a stochastic mathematical program with com-
plementarity constraints (SMPCC) considered by Birbil et al. (S. I. Birbil, G. Gürkan,
O. Listes: Solving stochastic mathematical programs with complementarity constraints us-
ing simulation, Math. Oper. Res. 31 (2006), 739–760). It is demonstrated that, under
suitable conditions, the optimal solution of the smoothed SAA problem converges almost
surely to that of the true problem as the sample size tends to infinity. Moreover, un-
der a strong second-order sufficient condition for SMPCC, the almost sure convergence of
Karash-Kuhn-Tucker points of the smoothed SAA problem is established by Robinson’s
stability theory. Some preliminary numerical results are reported to show the efficiency of
our method.

Keywords: smoothing SAA method, log-exponential function, stochastic mathematical
program with complementarity constraints, almost sure convergence
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1. Introduction

Our concern in this paper is to investigate the almost sure convergence of a numeri-

cal method for the following stochastic mathematical program with complementarity

constraints (SMPCC):

min E[f(x, y, ξ(ω))](1.1)

s.t. Ψ(x, y) > 0, y > 0,

Ψ(x, y)Ty = 0,

*This research was supported by the National Natural Science Foundation of China under
project No. 11071029 and the Fundamental Research Funds for the Central Universities.
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where Ψ(x, y) := E[F (x, y, ξ(ω))], F : R
n × R

m × R
k → R

m is a random map-

ping, ξ : Ω → Ξ ⊂ R
k is a random vector defined on a probability space (Ω,F , P),

E denotes the mathematical expectation. Throughout the paper, we assume that

E[f(x, y, ξ(ω))] and E[F (x, y, ξ(ω))] are all well defined and finite for any (x, y) ∈
R

n ×R
m. To ease the notation, we write ξ(ω) as ξ and this should be distinguished

from ξ being a deterministic vector of Ξ in a context.

Over the past several decades, the mathematical program with complementarity

constraints (MPCC) has been intensively studied for its extensive application in en-

gineering, economics, game theory and networks, see [10] and [11] for systematic

expositions, examples, and applications. While in practice, there are some impor-

tant instances where problem data contain some uncertain factors, and consequently

various formulations of SMPCC models are proposed to reflect the uncertainties.

See [26], [22], [9], [2], [12], and references therein. Among these formulations, Birbil

et al. [2] were the first to treat SMPCC (1.1) and presented the so-called sample-path

method for solving it.

Evidently, if the integral involved in the mathematical expectation of problem (1.1)

exists or is computable, then problem (1.1) is reduced to the usual MPCC problem.

However, in many cases, exact evaluation of the expected value in (1.1) is either im-

possible or prohibitively expensive. Sample average approximation (SAA) method,

also known as sample path optimization (SPO) method [18], is suggested by many

authors to handle this difficulty, see the recent works [15], [23], [6] and a comprehen-

sive review by Shapiro [24]. The basic idea of SAA is to generate an independent

identically distributed (iid) sample ξ1, . . . , ξN of ξ and then approximate the ex-

pected value by sample average. In this context, let ξ1, . . . , ξN be an iid sample,

then the SMPCC (1.1) is approximated by the following SAA problem:

min f̂N (x, y)(1.2)

s.t. 0 6 y ⊥ F̂N (x, y) > 0,

where f̂N (x, y) := N−1
N
∑

i=1

f(x, y, ξi) is the sample-average function of f(x, y, ξ) and

F̂N (x, y) = N−1
N
∑

i=1

F (x, y, ξi) is the sample-average mapping of F (x, y, ξ). We refer

to (1.1) as the true problem and (1.2) as the SAA problem to (1.1).

In this paper, we propose a smoothing SAA method based on the log-exponential

function [20] for solving (1.1). That is, utilizing the properties of the log-exponential

function, we reformulate the SAA problem (1.2) as a smooth nonlinear program-

ming (NLP) problem by displacing the difficult equilibrium constraints of (1.2) with

a smooth function, and then solve the true problem (1.1) by solving a sequence of

such smoothed SAA problem.
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Recently, the smoothing SAA method has caught great attention among re-

searchers in SMPCC, see e.g., Shapiro and Xu [22], Xu [26], Xu and Meng [27].

However, most available results discuss an application of the SAA method to SMPCC

with the assumption that the constraint of (1.1) has a unique solution for every x.

Our paper, without such assumption, focuses on the sufficient conditions ensuring

the almost sure convergence of the proposed smoothing SAA method. Also notice

that although the idea of the SAA method is essentially the same as that of the

sample-path method, our method differs from the work of Birbil et at. [2] which

discusses the almost sure convergence of the optimal solutions of SAA problem (1.2)

without referring to a particular smoothing function.

By the notion of epi-convergence in [20], we establish the almost sure convergence

of the optimal solution of a smoothed SAA problem as the sample size tends to

infinity. As it is more practical to find a stationary point than a global minimizer of

the true problem, under the MPCC strong second order sufficient condition (MPCC-

SSOSC) in [21], we investigate the almost sure convergence of the stationary points

of smoothed SAA problem.

This paper is organized as follows: Section 2 gives preliminaries needed throughout

the whole paper. In Section 3, by introducing an iid sample and the log-exponential

function, we formulate the SAA problem (1.2) as a smooth NLP problem. In what

follows, we discuss the almost sure convergence of optimal solutions and stationary

points of the smoothed SAA problem as the sample size tends to infinity in Section 4.

In Section 5, we report some preliminary numerical results.

2. Preliminaries

Throughout this paper we use the following notation. Let ‖·‖ denote the Euclidean
norm of a vector or the Frobenius norm of a matrix. For an m × n matrix A,

Aij denotes the element of the ith row and jth column of A. We use B to denote

the closed unit ball and B(x, δ) the closed ball around x of radius δ > 0. For

an extended real-valued function ϕ : R
n → R ∪ {±∞}, epi ϕ, ∇ϕ(x), and ∇2ϕ(x)

denote its epigraph i.e. the set {(x, α) : ϕ(x) 6 α}, the gradient of ϕ at x, and the

Hessian matrix of ϕ at x, respectively. If a mapping F : R
n ×R

m → R
m is Fréchet-

differentiable at (x, y) ∈ R
n × R

m, then we use JF (x, y) and JxF (x, y) to denote

respectively the Fréchet-derivative of F at (x, y) and the partial Fréchet-derivative

of F at (x, y) with respect to x. Moreover, if F is twice Fréchet-differentiable at

(x, y), we define

J 2F (x, y) := J (JF )(x, y), J 2
xxF (x, y) := Jx(JxF )(x, y).
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In the following, we introduce some concepts of the convergence of set sequences

and mapping sequences from [20] which will be used in the next section. Define

N∞ := {N ⊂ N : N \ N finite} and N#
∞ := {N ⊂ N : N infinite},

where N denotes the set of all positive integer numbers.

Definition 2.1. For sets Cν and C in R
n with C closed, the sequence {Cν}ν∈N

is said to converge to C (written Cν → C) if

lim sup
ν→∞

Cν ⊂ C ⊂ lim inf
ν→∞

Cν

with

lim sup
ν→∞

Cν :=
{

x : ∃N ∈ N#
∞, ∃xν ∈ Cν(ν ∈ N) such that xν N→ x

}

,

lim inf
ν→∞

Cν :=
{

x : ∃N ∈ N∞, ∃xν ∈ Cν(ν ∈ N) such that xν N→ x
}

.

The continuity properties of a set-valued mapping S can be developed by the

convergence of sets.

Definition 2.2. A set-valued mapping S : R
n ⇒ R

m is continuous at x̄, sym-

bolized by lim
x→x̄

S(x) = S(x̄), if

lim sup
x→x̄

S(x) ⊂ S(x̄) ⊂ lim inf
x→x̄

S(x).

Definition 2.3. Consider now a family of functions fν : R
n → R̄, where R̄ =

R ∪ {±∞}. One says that fν epi-converges to a function f : R
n → R̄ as ν → ∞,

written

f = e − lim
ν→∞

fν ,

if the sequence of sets epi fν converges to epi f in R
n × R as ν → ∞.

The characterization of the epi-convergence can be described by the following

result.

Proposition 2.1 ([20, Proposition 7.2]). Let {fν} be any sequence of functions
on R

n and let x be any point of Rn. Then fν epi-converges to f if and only if at

each point x, the following two conditions both hold:

(a) lim inf
ν→∞

fν(xν) > f(x) for every sequence xν → x,

(b) lim sup
ν→∞

fν(xν) 6 f(x) for some sequence xν → x.
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Next, we recall some basic concepts that are often employed in the literature on

the mathematical program with complementarity constraints problem.

Let (x̄, y) be a feasible point of problem (1.1) and for convenience let us define the

index sets

α = {i ∈ {1, 2, . . . , m} : yi = 0 < Ψi(x̄, y)},(2.1)

β = {i ∈ {1, 2, . . . , m} : yi = 0 = Ψi(x̄, y)},
γ = {i ∈ {1, 2, . . . , m} : yi > 0 = Ψi(x̄, y)}.

The linear independence constraint qualification for SMPCC is as follows.

Definition 2.4. Assume Ψ is continuously differentiable at (x̄, y). We say the

MPCC linear independence constraint qualification (MPCC-LICQ) holds at (x̄, y) if

the vectors of the set

{(

0

ei

)

: i ∈ α ∪ β

}

∪ {∇Ψi(x̄, y) : i ∈ β ∪ γ}

are linearly independent, where ei denotes the vector with 1 in the ith component

but 0’s everywhere else.

For a deterministic MPCC, it is well known that the usual nonlinear program-

ming constraint qualifications such as the Mangasarian-Fromovitz constraint qual-

ification (MFCQ) do not hold (see [28, Proposition 1.1]). Since there are several

different approaches to reformulate MPCC, various stationarity concepts arise (see

e.g. [21] and [29]). We use the following two stationarity concepts for SMPCC.

Definition 2.5. Assume (x̄, y) is a feasible point of SMPCC (1.1), Ψ(·, ·),
E[f(·, ·, ξ)] are continuously differentiable at (x̄, y). Suppose there exist vectors

ū ∈ R
m and v ∈ R

m such that (x̄, y) satisfies the condition

0 = ∇E[f(x̄, y, ξ(ω))] −
∑

i∈α∪β

ūi

(

0

ei

)

−
∑

i∈β∪γ

vi∇Ψi(x̄, y).

(i) (C-stationary point) We call (x̄, y) a Clarke stationary point of (1.1) if ūi, vi > 0,

i ∈ β.

(ii) (S-stationary point) We call (x̄, y) a strongly stationary point of (1.1) if ūi > 0,

vi > 0, i ∈ β.
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By [21, Lemma 1], the C-stationary condition in Definition 2.5 is the nonsmooth

Karash-Kuhn-Tucker (KKT) condition using the Clarke generalized gradient [3] by

reformulating SMPCC as a nonsmooth stochastic nonlinear programming problem

min E[f(x, y, ξ(ω))]

s.t. yi = 0, i ∈ α, Ψi(x, y) = 0, i ∈ γ,

min{yi, Ψi(x, y)} = 0, i ∈ β.

The S-stationary condition [13] is the KKT condition for the relaxed SMPCC

min E[f(x, y, ξ(ω))]

s.t. yi = 0, i ∈ α, Ψi(x, y) = 0, i ∈ γ,

yi > 0, Ψi(x, y) > 0, i ∈ β.

The following upper level strict complementarity condition was used in [21] in the

context of sensitivity analysis for MPCC.

Definition 2.6. We say that the upper level strict complementarity condi-

tion (ULSC) holds at (x̄, y) if ūi and vi, the multipliers corresponding to ȳi and

Ψi(x̄, y), respectively, satisfy ūivi 6= 0 for all i ∈ β.

It is well known that a point (x̄, y) satisfies the lower level strict complementarity

condition (LLSC) if yi + Ψi(x̄, y) > 0 holds for all i ∈ {1, . . . , m}. We can see
from an example from [21] that the ULSC condition is considerably weaker than the

LLSC condition, and in practice, it may make more sense than the latter.

We use the following second order condition based on the MPCC-Lagrangian:

(2.2) L(x, y, u, v) = E[f(x, y, ξ(ω))] −
∑

i∈α∪β

uiyi −
∑

i∈β∪γ

viΨi(x, y)

of (1.1).

Definition 2.7 ([21]). Let (x̄, y) be an S-stationary point of (1.1) and (ū, v) the

corresponding multiplier at (x̄, y). Suppose Ψ(·, ·) and E[f(·, ·, ξ)] are twice continu-
ously differentiable at (x̄, y). We say that the MPCC strong second order sufficient

condition (MPCC-SSOSC) holds at (x̄, y) if

dT∇2
(x,y)L(x̄, y, ū, v)d > 0

for every nonvanishing d with

(0, eT
i )d = 0, i ∈ α,

∇Ψi(x̄, y)Td = 0, i ∈ γ,

min{(0, eT
i )d,∇Ψi(x̄, y)Td} = 0, i ∈ β.
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Assume (x̄, y) is an S-stationary point of (1.1) and (ū, v) is a corresponding mul-

tiplier. Then we know from [21, Theorem 7] that if MPCC-SSOSC holds at (x̄, y),

it is a strict local minimizer of the SMPCC (1.1).

3. Formulating the smoothing SAA method

The log-exponential function is a smoothing function for max-type functions. Let

w : R
n → R, w(x) = max{w1(x), w2(x), . . . , wm(x)}, where wi, i = 1, . . . , m, are

continuously differentiable functions. It is clear that w(·) is continuous in R
n but

not differentiable everywhere. For any t > 0, the log-exponential function of w(x),

denoted as w(t, x) : R
n+1 → R, is defined by

(3.1) w(t, x) := t ln

m
∑

i=1

exp(wi(x)/t),

which was studied by many authors, see Rockafellar and Wets [19], [20], Li [7], [8].

An interesting feature of w(t, x) (see [20, Example 1.30]) is that

(3.2) 0 6 w(t, x) − w(x) 6 t lnm,

which implies lim
t↓0

w(t, x) = w(x) and the convergence is uniform with respect to x.

We know from the definition that w(t, x) is a smoothing function with respect to x for

t > 0 and hence utilizing this property, over the past decade, some authors have used

the log-exponential function to propose smoothing methods for generalized linear

complementarity problems, nonlinear complementarity problems, and mathematical

programs with complementarity constraints, see [14], [16], [30] and references therein.

Notice that G(x, y) = min{Ψ(x, y), y} = 0 can be approximated by the equation

(3.3) Gt(x, y) :=







gt(y1, Ψ1(x, y))
...

gt(ym, Ψm(x, y))






= 0

in the sense that lim
t↓0

Gt(x, y) = G(x, y), where gt(a, b) = −t ln(exp(−a/t) +

exp(−b/t)), t > 0 for a, b ∈ R and Ψi(x, y) is the ith component of Ψ(x, y).

Therefore, it is natural to define g0(yi, Ψi(x, y)) = min{yi, Ψi(x, y)}, i = 1, . . . , m,

and G0(x, y) = G(x, y). By taking independently and identically distributed random

samples ξi, i = 1, . . . , N , and introducing the smoothing function Gt(·, ·) (3.3), we
obtain the approximation of problem (1.1)

min f̂N(x, y)(3.4)

s.t. ĜN (x, y) = 0,
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where

ĜN (x, y) :=







gtN
(y1, F̂N (x, y)1)

...

gtN
(ym, F̂N (x, y)m)







with

tN > 0, f̂N(x, y) =
1

N

N
∑

i=1

f(x, y, ξi),

F̂N (x, y)j =
1

N

N
∑

i=1

F (x, y, ξi)j , j = 1, . . . , m,

where F (x, y, ξi)j is the jth component of F (x, y, ξi).

4. Convergence of the smoothing SAA method

Throughout the paper, we assume the sample ξ1, . . . , ξN of the random vector ξ is

iid and introduce the following assumptions to make (1.1) more clearly defined and

to facilitate the analysis.

Assumption 1. The mappings f(·, ·, ξ) and F (·, ·, ξ) are twice continuously
differentiable on R

n+m a.e. ξ ∈ Ξ.

Assumption 2. For any (x̄, y) ∈ R
n+m, there exist a neighborhood D of (x̄, y)

and a nonnegative measurable function g(ξ) such that E[g(ξ)] < ∞ and

sup
(x,y)∈D

max{‖∇f(x, y, ξ)‖, ‖∇2f(x, y, ξ)‖, ‖JF (x, y, ξ)‖, ‖J 2F (x, y, ξ)‖} 6 g(ξ)

for all ξ ∈ Ξ.

Assumptions 1–2 are popularly used conditions for the analysis of SAA method

for stochastic programming. Under these two assumptions, we know from [24,

Chapter 7] that E[f(x, y, ξ(ω))] and E[F (x, y, ξ(ω))] are twice continuously dif-

ferentiable on R
n+m. In particular, ∇E[f(x, y, ξ(ω))] = E[∇f(x, y, ξ(ω))] and

JE[F (x, y, ξ(ω))] = E[JF (x, y, ξ(ω))].

The following lemma results straightforwardly from the Uniform Laws of Large

Numbers in [24, Theorem 6.36].

Lemma 4.1. Suppose that Assumptions 1–2 are satisfied. Let (x̄N , yN ) be a feasi-

ble point of (3.4). If the sequence (x̄N , yN ) converges to a random vector (x̄, y) w.p. 1
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as N tends to infinity, then we obtain

F̂N (x̄N , yN) → Ψ(x̄, y) w.p. 1,(4.1)

J F̂N (x̄N , yN) → E[JF (x̄, y, ξ)] w.p. 1,

∇2f̂N(x̄N , yN) → E[∇2f(x̄, y, ξ)] w.p. 1,

J 2F̂N (x̄N , yN) → E[J 2F (x̄, y, ξ)] w.p. 1.

4.1. Almost sure convergence of optimal solutions

In this subsection, by using the notion of epi-convergence in [20], we establish the

almost convergence of optimal solutions of smoothed SAA problem (3.4) to those of

SMPCC (1.1) as the sample size tends to infinity.

Let us introduce some notions:

ON := {(u, v) ∈ R
m × R

m : gtN
(ui, vi) = 0, i = 1, . . . , m},

O0 := {(u, v) ∈ R
m × R

m : min{ui, vi} = 0, i = 1, . . . , m},
Z0 := {(x, y) ∈ R

n × R
m : min{yi, Ψi(x, y)} = 0, i = 1, . . . , m},

ZN := {(x, y) ∈ R
n × R

m : ĜN (x, y) = 0},
fN (x, y) := f̂N (x, y) + δZN

(x, y),

f(x, y) := E[f(x, y, ξ)] + δZ0
(x, y),

κ0 := inf{E[f(x, y, ξ)] : (x, y) ∈ Z0},
S0 = argmin{E[f(x, y, ξ)] : (x, y) ∈ Z0},
SN := argmin{f̂N(x, y) : (x, y) ∈ ZN}.

Lemma 4.2. Let tN ց 0 as N → ∞. Then

O0 ⊂ lim inf
N→∞

ON .

P r o o f. Note that by (3.2), for any (u, v) ∈ ON , (u, v) satisfies

0 6 min{ui, vi} 6 tN ln 2, i = 1, . . . , m.

For any positive numbers γ and ε, let N ∈ N be such that
√

mtN ln 2 < ε for all

N > N . Then for all N > N we obtain

O0 ∩ γB ⊂ ON + εB.

The conclusion follows. �
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Now we give a conclusion about the almost sure convergence of the set ZN as

N tends to infinity in the following proposition.

Proposition 4.1. Suppose Assumptions 1–2 hold and JxΨ(x, y) is of maximal

rank for any (x, y) ∈ R
m+n. If tN ց 0 as N tends to infinity, then

lim
N→∞

ZN = Z0 w.p. 1.

P r o o f. We first show that lim sup
N→∞

ZN ⊂ Z0 w.p. 1. It suffices to prove that

for a sequence {(xN , yN )} satisfying (xN , yN) ∈ ZN w.p. 1 for each N , if (xN , yN )

converges to (x̄, y) w.p. 1 as N → ∞, then (x̄, y) ∈ Z0 w.p. 1. Indeed, by (3.2) we

have w.p. 1 that

0 6 min{(yN )i, F̂N (xN , yN )i} 6 tN ln 2, i = 1, . . . , m,

which, by Lemma 4.1, means that (x̄, y) ∈ Z0 w.p. 1.

Let (x̄, y) ∈ Z0. Next we show that (x̄, y) ∈ lim inf
N→∞

ZN w.p. 1. Let ū = Ψ(x, y),

v = y, then (ū, v) ∈ O0 and we know from Lemma 4.2 that there exists (uN , vN ) ∈
ON converging to (ū, v) as N → ∞. Let

Φ(x, y, u, v) =

[

Ψ(x, y) − u

y − v

]

,

then Φ(x̄, y, ū, v) = 0 and

J(x,y)Φ(x̄, y, ū, v) =

[JxΨ(x̄, y) JyΨ(x̄, y)

0 Im

]

is of maximal rank due to the maximal rank of JxΨ(x, y). Therefore, by Clarke’s

implicit theorem [3], there exist positive numbers ε, δ and a Lipschitz function z(·) =

(x(·), y(·)) : B((ū, v), δ) → B((x̄, y), ε) with modular c > 0 such that z(ū, v) = (x̄, y)

and for any (u, v) ∈ B((ū, v), δ),

(4.2) Φ(z(u, v), u, v) = 0.

Let

HN (x, y) =

[

Ψ(x, y) − F̂N (x, y) + uN

vN

]

and δ′ = {δ, (2c)−1ε}. Then, using the Uniform Laws of Large Numbers in [24,
Theorem 6.36], we have w.p. 1 for N large enough

max
(x,y)∈B((x̄,y),ε)

‖HN(x, y) − (ū, v)‖ < δ′
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and for any (x, y) ∈ B((x̄, y), ε),

‖z(HN(x, y)) − z(ū, v)‖ 6 c‖HN(x, y) − (ū, v)‖ < ε/2 w.p. 1.

Define a function

ϕ : B(0, δ) → B(0, δ),

(x, y) 7→ z(HN(x, y)).

This is almost surely a continuous mapping from the compact convex set B(0, δ) to

itself. By Brouwer’s fixed point theorem, ϕ has a fixed point w.p. 1. Hence, there

exists a vector (xN , yN ) ∈ B((x̄, y), ε) w.p. 1 such that (xN , yN ) = ϕ(xN , yN ) =

z(HN (xN , yN )) w.p. 1. Therefore, we have from (4.2) that w.p. 1,

0 = Φ(xN , yN , HN (xN , yN)) =

[

Ψ(xN , yN)

yN

]

− HN (xN , yN ).

That is, F̂N (xN , yN ) = uN w.p. 1 and yN = vN w.p. 1, which means (xN , yN) ∈ ZN

w.p. 1 due to (uN , vN ) ∈ ON . As a result, (x̄, y) belongs to lim inf
N→∞

ZN w.p. 1 follows

from the fact that (xN , yN) converges to (x̄, y) w.p. 1 as N → ∞. �

Lemma 4.3. If the conditions in Proposition 4.1 hold, then we have

e − lim
N→∞

fN = f w.p. 1.

P r o o f. Noting that

epi[δZN
(·, ·)] = {(x, y, α) : (x, y) ∈ ZN , α > 0} = ZN × R+

and that by Proposition 4.1,

lim
N→∞

ZN × R+ = Z0 × R+ w.p. 1,

we obtain from Definition 2.3 that

e − lim
N→∞

δZN
(·, ·) = δZ0

(·, ·) w.p. 1,

which, by Proposition 2.1, means that for any sequence (xN , yN ) → (x, y) w.p. 1,

lim inf
N→∞

δZN
(xN , yN) > δZ0

(x, y) w.p. 1
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and there exists (x̄N , yN ) → (x, y) w.p. 1 such that

lim sup
N→∞

δZN
(xN , yN ) 6 δZ0

(x, y) w.p. 1.

We know from Lemma 4.1 that

lim
N→∞

f̂N (xN , yN) = E[f(x, y, ξ)] w.p. 1 as N → ∞,

which leads to

lim inf
N→∞

[f̂N (xN , yN) + δZN
(xN , yN)] > E[f(x, y, ξ)] + δZ0

(x, y) w.p. 1

and there exists (x̄N , yN ) → (x̄, y) w.p. 1 such that

lim sup
N→∞

[f̂N(xN , yN ) + δZN
(xN , yN )] 6 E[f(x, y, ξ)] + δZ0

(x, y) w.p. 1.

Then also by Proposition 2.1, we obtain the conclusion. �

Theorem 4.1. Suppose (xN , yN ) solves (3.4) for each N and a random vector

(x̄, y) is almost surely a cluster point of the sequence {(xN , yN )}. If the conditions in
Proposition 4.1 hold and κ0 is finite, then (x̄, y) is almost surely an optimal solution

of the true problem (1.1).

P r o o f. Since κ0 is finite, we have −∞ < inf f < ∞, which, together with fN

epi-converging to f by [20, Theorem 7.31], means that

(4.3) lim sup
N→∞

argmin fN ⊂ argmin f w.p. 1.

Furthermore, −∞ < κ0 < ∞ implies that Z0 6= ∅ and there exists (x̃, ỹ) ∈ Z0 such

that E[f((x̃, ỹ), ξ)] is finite. Then we have

(4.4) argmin f = S0

and by Proposition 4.1, when N is large enough, ZN 6= ∅ w.p. 1 and there exists
(x̃N , ỹN) ∈ ZN w.p. 1 such that f̂N (x̃N , ỹN)) is finite almost surely, which leads to

the equivalence of argmin fN and SN w.p. 1. The conclusion follows from (4.3) and

(4.4). �

R em a r k 4.1. From the above proof, we know that if the condition κ0 being

finite is replaced by f being proper and −∞ < inf f < ∞, the conclusion in Theo-
rem 4.1 can also be obtained.
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4.2. Almost sure convergence of stationary points

In practice, finding a global minimizer might be difficult and in some cases we

might just find a stationary point. As a result, we want to know whether or not a

cluster point of the sequence of stationary points is almost surely a kind of stationary

point of SMPCC (1.1). For this purpose, we need to investigate the almost sure

convergence of stationary points of smoothed SAA problem (3.4) with the sample

size tends to infinity.

Notice that (3.4) is a standard nonlinear programming with smooth constraints.

If (xN , yN ) is a local optimal solution of the smoothed SAA problem (3.4), then

under some constraint qualifications, (xN , yN , λN ) is a stationary point of (3.4) al-

most surely, namely, there exists a Lagrange multiplier λN ∈ R
m such that the

vector (xN , yN , λN ) satisfies the following Karash-Kuhn-Tucker (KKT) condition for

problem (3.4):

(4.5) 0 = ∇f̂N (xN , yN) −
m

∑

i=1

(λN )i∇(x,y)gtN
((yN )i, F̂N (xN , yN )i) w.p. 1.

Moreover, (xN , yN , λN ) satisfies the inequality

(4.6) (dN )T∇2
(x,y)L̂N (xN , yN , λN )dN > 0 for all dN ∈ TN (xN , yN) w.p. 1,

where

L̂N(x, y, λ) = f̂N (x, y) −
m

∑

i=1

λigtN
(yi, F̂N (x, y)i)

and

TN(x, y) = {d ∈ R
n+m : ∇(x,y)gtN

(yi, F̂N (x, y)i)
Td = 0, i = 1, . . . , m}.

Inequality (4.6) is called the second order necessary condition of problem (3.4).

From [16, Proposition 3.2] and by simple calculation we get the following properties

of gt(·, ·).

Lemma 4.4. Let (xN , yN ) satisfy ĜN (x, y) = 0. Then under Assumption 1,

one has that gtN
(yi, F̂N (x, y)i), i = 1, . . . , m, is twice continuously differentiable at

(xN , yN) almost surely, and for all i = 1, 2, . . . , m,

(4.7) ∇(x,y)gtN
((yN )i, F̂N (xN , yN )i) = ηN

1i

(

0

ei

)

+ ηN
2i∇F̂N (xN , yN )i w.p. 1
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and

∇2
(x,y)gtN

((yN )i, F̂N (xN , yN )i)(4.8)

= ηN
2i∇2F̂N (xN , yN)i

− 1

tN
ηN
1iη

N
2i

[

(

0

ei

) (

0

ei

)T

+ ∇F̂N (xN , yN )i∇F̂N (xN , yN)Ti

]

+
1

tN
ηN
1iη

N
2i

[

(

0

ei

)

∇F̂N (xN , yN )Ti + ∇F̂N (xN , yN)i

(

0

ei

)T
]

w.p. 1,

where

ηN
1i =

exp(−(yN )i/tN)

exp(−(yN )i/tN ) + exp(−F̂N (xN , yN )i/tN)
∈ (0, 1),

ηN
2i =

exp(−F̂N (xN , yN )i/tN)

exp(−(yN )i/tN ) + exp(−F̂N (xN , yN )i/tN)
∈ (0, 1)

with ηN
1i + ηN

2i = 1.

The following lemma is important for deriving the convergence of our smoothing

SAA method for SMPCC.

Lemma 4.5. Suppose Assumptions 1–2 hold, tN ց 0 and the index sets α, β,

γ are defined as in (2.1). Let (xN , yN) be a feasible point of (3.4) for each N and

let the sequence {(xN , yN)} converge to a random vector (x̄, y) w.p. 1 as N tends to

infinity. Then

(i) For i ∈ α, lim
N→∞

∇(x,y)gtN
((yN )i, F̂N (xN , yN )i) =

(

0

ei

)

w.p. 1 as N → ∞.

(ii) For i ∈ γ, lim
N→∞

∇(x,y)gtN
((yN )i, F̂N (xN , yN)i) = ∇Ψi(x̄, y) w.p. 1 as N → ∞.

(iii) For i ∈ β, if lim
N→∞

ηN
1i = η1i and lim

N→∞
ηN
2i = η2i, we have

lim
N→∞

∇(x,y)gtN
((yN )i, F̂N (xN , yN)i) = η1i

(

0

ei

)

+ η2i∇Ψi(x̄, y) w.p. 1.

P r o o f. For i ∈ α, we have

(4.9) Ψi(x, y) − yi > 0.

Furthermore, since (xN , yN) → (x̄, y) w.p. 1 as N → ∞, there is a positive number ̺

such that {(xN , yN )} ⊂ ̺B almost surely. It follows that

‖F̂N (xN , yN )i − (yN )i − Ψi(x̄, y) + yi‖
6 max

(x,y)∈̺B
‖F̂N(x, y)i − Ψi(x, y)‖

+ ‖Ψi(xN , yN) − Ψi(x̄, y)‖ + ‖(yN)i − yi‖ w.p. 1,
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which, under Assumptions 1–2, by the Uniform Laws of Large Numbers [24, Theo-

rem 6.36], implies that

(F̂N (xN , yN )i − (yN )i) → (Ψi(x̄, y) − yi) w.p. 1 as N → ∞.

This, together with (4.9), leads to

F̂N (xN , yN)i − (yN )i > 0, w.p. 1

when N is large enough. Consequently, by the definition of ηN
1i and ηN

2i in Lemma 4.4,

we obtain

ηN
1i → 1, ηN

2i → 0 w.p. 1 as N → ∞,

which, by (4.7) in Lemma 4.4, means that (i) holds.

Notice that by Lemma 4.1,

∇F̂N (xN , yN)i → ∇Ψi(x̄, y) w.p. 1 as N → ∞.

Then we can obtain the conclusions (ii) and (iii) in the same way as in the proof

of (i). We have completed the proof. �

By Lemma 4.1, we easily get the relationship of MPCC-LICQ between the

SAA problem (1.2) and the true problem (1.1) when N is sufficiently large.

Lemma 4.6. Suppose Assumptions 1–2 hold. Let (xN , yN) be a feasible point

of (3.4) for each N and let the sequence {(xN , yN )} converge to a random vector
(x̄, y) w.p. 1 as N tends to infinity. If the MPCC-LICQ (Definition 2.4) holds at

(x̄, y) w.p. 1, then for N large enough
{(

0

ei

)

: i ∈ α ∪ β

}

∪ {∇F̂N (xN , yN )i : i ∈ β ∪ γ}

are linearly independent almost surely.

We now prove the almost sure convergence of the smoothing SAA method

for SMPCC (1.1).

Theorem 4.2. Suppose Assumptions 1–2 hold. Let tN ց 0, (xN , yN , λN ) be a

stationary point of problem (3.4), and let the sequence {(xN , yN , λN )} converge to
a random vector (x̄, y, λ̄) w.p. 1 as N → ∞. Then the following statements hold:
(i) (x̄, y) is a C-stationary point of SMPCC (1.1) almost surely.

(ii) Suppose in addition that (xN , yN , λN ) satisfies the second-order necessary con-

dition (4.6) for each N almost surely, and MPCC-LICQ and ULSC (Defini-

tion 2.6) hold at (x̄, y) almost surely. Then (x̄, y) is an S-stationary point

of SMPCC (1.1) almost surely.
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P r o o f. Notice that (xN , yN , λN ) satisfies

(4.10) 0 = ∇f̂N (xN , yN) −
m

∑

i=1

(λN )i∇(x,y)gtN
((yN )i, F̂N (xN , yN )i) w.p. 1.

For i ∈ β, due to the boundedness of ηN
1i and ηN

2i , for simplicity, we assume lim
N→∞

ηN
1i =

η1i w.p. 1 and lim
N→∞

ηN
2i = η2i w.p. 1. Then taking the limit in the equation (4.10)

and by Lemma 4.1, we have

0 = ∇E[f(x̄, y, ξ(ω))] −
∑

i∈α

λ̄i

(

0

ei

)

−
∑

i∈γ

λ̄i∇Ψi(x̄, y) −
∑

i∈β

ūi

(

0

ei

)

−
∑

i∈β

vi∇Ψi(x̄, y) w.p. 1

with ūi = η1iλ̄i, vi = η2iλ̄i, i ∈ β. Since ūivi > 0 for i ∈ β, we obtain the conclusion

of (i) from Definition 2.5.

Next we prove that under conditions (ii), ūi > 0, vi > 0 w.p. 1 for i ∈ β. We

assume by contradiction that ūj < 0 w.p. 1 for some j ∈ β. Since MPCC-LICQ holds

at (x̄, y) w.p. 1 by Lemma 4.6, we can choose a vector dN ∈ R
n+m such that w.p. 1

for N large enough,

(

0

ej

)T

dN = ηN
2j ,(4.11)

(

0

ej

)T

dN = 0, i ∈ α ∪ β \ {j},

∇F̂N (xN , yN )Tj dN = −ηN
1j ,

∇F̂N (xN , yN )Ti dN = 0, i ∈ γ ∪ β \ {j}.

Then we obtain w.p. 1,

∇(x,y)gtN
((yN )j , F̂N (xN , yN)j)

TdN

= ηN
1j

(

0

ej

)T

dN + ηN
2j∇F̂N (xN , yN)Tj dN = 0,

which implies that dN ∈ TN(xN , yN ) w.p. 1. Notice that w.p. 1,

(dN )T∇2
(x,y)L̂N(xN , yN , λN )dN(4.12)

= (dN )T
[

∇2f̂N (xN , yN)

−
m

∑

i=1

(λN )i∇2
(x,y)gtN

((yN )i, F̂N (xN , yN )i)

]

dN .
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We know from (4.8) in Lemma 4.4 that w.p. 1,

(dN )T∇2
(x,y)gtN

((yN )i, F̂N (xN , yN )i)d
N(4.13)

= ηN
2i (d

N )T∇2F̂N (xN , yN )id
N

− 1

tN
ηN
1iη

N
2i

[

(dN )T
(

0

ei

) (

0

ei

)T

dN

+ (dN )T∇F̂N (xN , yN )i∇F̂N (xN , yN )Ti dN

]

+
1

tN
ηN
1iη

N
2i

[

(dN )T
(

0

ei

)

∇F̂N (xN , yN )Ti dN

+ (dN )T∇F̂N (xN , yN )i

(

0

ei

)T

dN

]

,

which, together with (4.11) and by Lemma 4.4, means that for i = j,

(dN )T∇2
(x,y)gtN

((yN )j , F̂N (xN , yN)j)d
N(4.14)

= ηN
2j(d

N )T∇2F̂N (xN , yN)jd
N

− 1

tN
ηN
1jη

N
2j [(η

N
1j)

2 + (ηN
2j)

2] +
1

tN
ηN
1jη

N
2j [2ηN

1j(−ηN
2j)]

= ηN
2j(d

N )T∇2F̂N (xN , yN)jd
N − 1

tN
ηN
1jη

N
2j w.p. 1.

Similarly, for i 6= j, we have

(dN )T∇2
(x,y)gtN

((yN )i, F̂N (xN , yN )i)d
N(4.15)

= ηN
2i(d

N )T∇2F̂N (xN , yN)id
N w.p. 1.

As a result, combining (4.12), (4.14), and (4.15), we obtain w.p. 1,

(dN )T∇2
(x,y)L̂N (xN , yN , λN )dN(4.16)

= (dN )T
[

∇2f̂N(xN , yN ) −
m

∑

i=1

(λN )i(d
N )TηN

2i∇2F̂N (xN , yN)i

]

dN

+
1

tN
ηN
1jη

N
2j(λN )j .

Since the ULSC condition holds at (x̄, y) w.p. 1, we have lim
N→∞

ηN
1jη

N
2j > 0 w.p. 1.

Moreover, ūj < 0 implies that lim
N→∞

(λN )j = λ̄j < 0 w.p. 1. Hence, we obtain

(4.17)
1

tN
ηN
1jη

N
2j(λN )j → −∞ w.p. 1 as N → ∞.
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Next we show that {dN} can be chosen bounded w.p. 1 for dN satisfying equa-

tions (4.11) w.p. 1 for each N . Let H(z) = T (z)− p and T (z) = Az − b, where

A :=









(0, eT
j )

(0, eT
i )α∪β\{j}

∇Ψj(x̄, y)

∇Ψγ∪β\{j}(x̄, y)









and b :=









η2j

0α∪β\{j}

−η1j

0γ∪β\{j}









.

Then we know from Lemma 4.6 that A has full row rank and hence there exists d̄ such

that H(d̄, 0) = 0. By the implicit function theorem, there exist positive numbers ε, δ

and a continuous function z(·) : εB → B(d̄, δ) such that z(0) = d̄ and H(z(p), p) = 0

for p ∈ εB, which means that T (·) is so called subinvertible [5] at (d̄, 0). Moreover,

let QN (z) = (AN − A)z + (b − bN) and J(QN ) = {z : 0 ∈ T (z) + QN(z)}, where

AN :=









(0, eT
j )

(0, eT
i )α∪β\{j}

∇F̂N (xN , yN)j

∇F̂N (xN , yN)γ∪β\{j}









and bN :=









ηN
2j

0α∪β\{j}

−ηN
1j

0γ∪β\{j}









.

We have from Lemma 4.1 that QN(z) → 0 w.p. 1 as N → ∞, which implies that for
a bounded neighborhood U of d̄ and any positive number σ, when N is large enough,

(4.18) ‖QN‖U := sup
z∈U

‖QN(z)‖ 6 σ w.p. 1,

which, together with the subinvertibility of T (·), by [5, Proposition 3.1] means that
when N is sufficiently large,

(4.19) U ∩ J(QN) 6= ∅ w.p. 1.

Notice that z ∈ J(QN ) w.p. 1 means ANz = bN w.p. 1. This, together with (4.19),

implies that {dN} can be chosen almost surely bounded. By Lemma 4.1, we obtain

∇2f̂N(xN , yN ) → E[∇2f(x̄, y, ξ)] w.p. 1 as N → ∞

and for i = 1, . . . , m,

∇2F̂N (xN , yN)i → E[∇2F (x̄, y, ξ)i] w.p. 1 as N → ∞.

This, together with the almost sure boundedness of {dN}, {ηN
1i}, and {ηN

2i}, i =

1, . . . , m, leads to the almost sure boundedness of

{(dN)T∇2f̂N(xN , yN )dN}

and

{(λN )i(d
N )TηN

2i∇2F̂N (xN , yN )id
N}, i = 1, . . . , m.
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As a result, combining (4.16) and (4.17), we can choose a sequence Nk ⊂ N such

that

(dNk)T∇2
(x,y)L̂Nk

(xNk
, yNk

, λNk
)dNk → −∞ w.p. 1 as N → ∞.

This contradicts the condition that (xN , yN , λN ) satisfies the second order necessary

conditions almost surely. Hence, we have that ūi > 0 w.p. 1 holds for all i ∈ β.

Similarly, vi > 0 w.p. 1 for all i ∈ β. Therefore, we know from Definition 2.5 that

(x̄, y) is w.p. 1 an S-stationary point of SMPCC (1.1). �

Utilizing the MPCC-SSOSC (Definition 2.7), we obtain the following theorem

through an application of standard NLP stability theory.

Theorem 4.3. Suppose

(i) (x̄, y) is a C-stationary point of SMPCC (1.1) and MPCC-LICQ as well as

MPCC-SSOSC hold at (x̄, y).

(ii) tN ց 0 and ULSC holds at (x̄, y).

(iii) Assumptions 1–2 hold at (x̄, y).

Then there exists (xN , yN ) satisfying the stationary condition (4.5) of (3.4) w.p. 1

for each N when N is sufficiently large and (xN , yN) → (x̄, y) w.p. 1 as N → ∞.

P r o o f. Since (x̄, y) is a C-stationary point of SMPCC, there exist vectors

ū ∈ R
|α|+|β|, v ∈ R

|β|+|γ| such that

(4.20) Φ(x̄, y, ū, v) = 0

and

(4.21) ūivi > 0, i ∈ β,

where

Φ(x, y, u, v) =





∇(x,y)L(x, y, u, v)

yα∪β

Ψβ∪γ(x, y)





with

L(x, y, u, v) = E[f(x, y, ξ(ω))] −
∑

i∈α∪β

uiyi −
∑

i∈β∪γ

viΨi(x, y).

Notice that the equation (4.20) can be seen as the KKT condition of the NLP problem

min E[f(x, y, ξ(ω))](4.22)

s.t. yi = 0, i ∈ α ∪ β,

Ψi(x, y) = 0, i ∈ β ∪ γ.
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The MPCC-SSOSC ensures the strong second order sufficient condition for the

NLP problem (4.22), which, under MPCC-LICQ, implies the stability of (4.22) in

the sense of Robinson [17]. Hence, there exist positive numbers ε, δ, c such that for

every p ∈ B(0, ε), the mapping Σ(p) = {z ∈ R
n+m+|α|+2|β|+|γ| : 0 ∈ Φ(z) + p, z =

(x, y, u, v)} has only one solution z(p) ∈ B(z, δ), z = (x̄, y, ū, v) = z(0) and the

mapping z(·) : B(0, ε) → B(z, δ) satisfies

(4.23) ‖z(p) − z(p′)‖ 6 c‖p − p′‖ for any p, p′ ∈ B(0, ε).

Let

(4.24) QN(z) =















QN
1 (z)

gtN
(yi, F̂N (x, y)i) − yi, i ∈ α

−tN ln 2, i ∈ β

−tN ln 2, i ∈ β

gtN
(yi, F̂N (x, y)i) − Ψi(x, y), i ∈ γ















,

where

QN
1 (z) = ∇f̂N (x, y) −∇E[f(x, y, ξ(ω))](4.25)

−
∑

i∈α

ui

ηN
1i(x, y)

ηN
2i(x, y)∇F̂N (x, y)i

−
∑

i∈γ

vi

ηN
2i(x, y)

ηN
1i(x, y)

(

0

ei

)

−
∑

i∈β∪γ

vi[∇F̂N (x, y)i −∇Ψi(x, y)]

with

ηN
1i(x, y) =

exp(−yi/tN )

exp(−yi/tN ) + exp(−F̂N (x, y)i/tN)
∈ (0, 1),

ηN
2i(x, y) =

exp(−F̂N (x, y)i/tN)

exp(−yi/tN ) + exp(−F̂N (x, y)i/tN)
∈ (0, 1).

We know from the proof of Lemma 4.5 that when δ is sufficiently small then for

i ∈ α,

(4.26) sup
z∈B(z,δ)

ηN
2i(x, y)

ηN
1i(x, y)

→ 0 w.p. 1 as N → ∞

and for i ∈ γ,

(4.27) sup
z∈B(z,δ)

ηN
1i(x, y)

ηN
2i(x, y)

→ 0 w.p. 1 as N → ∞.
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By the Uniform Laws of Large Numbers, we have

(4.28) sup
z∈B(z,δ)

‖∇f̂N (x, y) −∇E[f(x, y, ξ(ω))]‖ → 0 w.p. 1 as N → ∞

and for i ∈ m,

(4.29) sup
z∈B(z,δ)

‖∇F̂N (x, y)i −∇Ψi(x, y)‖ → 0 w.p. 1 as N → ∞.

As a result, combining (4.25)–(4.29), we obtain that when δ is sufficiently small,

(4.30) ‖QN
1 ‖δ = sup

z∈B(z,δ)

‖QN
1 (z)‖ → 0 w.p. 1 as N → ∞,

which implies that for ε > 0, when N is sufficiently large, ‖QN
1 ‖δ < ε w.p. 1. In

addition, we know from the definition and the Uniform Laws of Large Numbers that

when δ is sufficiently small, then

sup
z∈B(z,δ)

‖gtN
(yi, F̂N (x, y)i) − min{yi, Ψi(x, y)}‖ → 0 w.p. 1 as N → ∞,

which implies that for the above ε > 0, when N is sufficiently large,

(4.31) sup
z∈B(z,δ)

‖gtN
(yi, F̂N (x, y)i) − yi‖ < ε w.p. 1 for i ∈ α

and

(4.32) sup
z∈B(z,δ)

‖gtN
(yi, F̂N (x, y)i) − Ψi(x, y)‖ < ε w.p. 1 for i ∈ γ.

Note that tN ln 2 → 0 w.p. 1 as N → ∞. Hence, we know from (4.24), (4.30), (4.31),
and (4.32) that for the above ε > 0, when δ is sufficiently small and N sufficiently

large, then

(4.33) ‖QN‖δ = sup
z∈B(z,δ)

‖QN (z)‖ < ε w.p. 1.

Applying Brouwer’s fixed point theorem to the mapping z(QN(·)) : B(z, δ) → B(z, δ),

where z(·) is defined as in (4.23), we conclude that there is at least one fixed point
zN = (xN , yN , uN , vN ) ∈ R

m+n+|α|+2|β|+|γ| such that zN = z(QN(zN )) w.p. 1.
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Therefore, when N is sufficiently large, there exists zN ∈ B(z, δ) w.p. 1 such that

0 ∈ Φ(zN ) + QN(zN ) w.p. 1, namely,

0 ∈ ∇f̂N(xN , yN )(4.34)

−
∑

i∈α

[

(uN )i

(

0

ei

)

+
(uN )i

ηN
1i (xN , yN )

ηN
2i(xN , yN)∇F̂N (xN , yN)i

]

−
∑

i∈γ

[ (vN )i

ηN
2i(xN , yN )

ηN
1i(xN , yN)

(

0

ei

)

+ (vN )i∇F̂N (xN , yN)i

]

−
∑

i∈β

[

(uN)i

(

0

ei

)

+ (vN )i∇F̂N (xN , yN )i

]

w.p. 1

and gtN
((yN )i, F̂N (xN , yN )i) = 0. Moreover, combining (4.23) and (4.33), we obtain

(4.35) zN → z w.p. 1 as N → ∞.

Under ULSC and condition (4.21), (4.35) leads to (uN )i(vN )i > 0 w.p. 1 for i ∈ β

when N is sufficiently large. As a result, if

λN =

(

(uN )i

ηN
1i(xN , yN )

, i ∈ α;

√

(uN )i(vN )i

ηN
1i(xN , yN )ηN

2i(xN , yN)
, i ∈ β;

(vN )i

ηN
2i(xN , yN)

, i ∈ γ

)

,

then we have from (4.34) that (xN , yN) is almost surely a stationary point of (3.4)

and λN is the corresponding multiplier. Furthermore, by (4.35), we have (xN , yN ) →
(x̄, y) w.p. 1 as N → ∞. The proof is completed. �

5. Numerical results

In this section we present some preliminary numerical results obtained by the

smoothing SAA method based on the log-exponential function (3.1). Our numer-

ical experiments have been carried out in Matlab 7.1 running on a PC with Intel

Pentium M of 1.60GHz CPU and our tests are focused on different values of the

smoothing parameter t and sample size N .

In our experiments, we set the initial values of Nk and tk as N1 = 100 and

t1 = 5, respectively. Then we employed the random number generator unifrnd

in Matlab 7.1 to generate independently and identically distributed random sam-

ples {ξ1, ξ2, . . . , ξNk
}. We solved problem (3.4) with N = Nk and t = tk by the

solver fmincon in Matlab 7.1 to obtain the approximate optimal solution (xNk
, yNk

).

The initial point was (1, . . . , 1)T. In addition, the parameters were updated by
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Nk+1 := min{10Nk, 105} and tk+1 := max{0.1tk, 0.005}. Throughout the tests, we
recorded number of iterations of fmincon (Iter), the values of the objective function

of problem (3.4) at (xNk
, yNk

) (Obj) and these quantities are displayed in the tables

of test results.

The example below is varied from an example in Shapiro and Xu [22].

E x am p l e 1. Consider

min f(x, y) = E[(x1 − 1)2 + (x2 − 1)2 + 2y2
1ξ + y2

2 + 2ξ − 1]

s.t. 0 6 y ⊥ E[F (x, y, ξ)] > 0,

where F (x, y, ξ) = (y1 −x1 + ξ, y2 −x2 + ξ)T and ξ is uniformly distributed on [0, 1].

The constraint here, which is a complementarity problem, has a unique solution

y = (y1, y2), where

yi =

{

xi − 1
2 , xi > 1

2 ,

0, otherwise,

for i = 1, 2. Therefore, substituting the above yi into the objective function, we

obtain that (0.75, 0.75, 0.25, 0.25) is the exact optimal solution and 0.25 is the optimal

value. The test results are presented in Tab. 1.

Nk tNk
(xNk

, yNk
) Obj Iter

102 5 (−0.3869 − 0.3869 3.0425 3.0425) 22.3578 6

103 5 × 10−1 (0.7231 0.7231 0.4603 0.4603) 0.6107 5

104 5 × 10−2 (0.7495 0.7495 0.2521 0.2521) 0.2480 6

105 5 × 10−3 (0.7497 0.7492 0.2512 0.2507) 0.2482 5

Table 1. The computational results for Example 1.

E x am p l e 2. Consider

min f(x, y) = E[2(x1 − 2)2 + 2(x2 − 1)2ξ2 + y1ξ2 + y2ξ1]

s.t. 0 6 y ⊥ E[F (x, y, ξ)] > 0,

where F (x, y, ξ) = (3x1 + x2ξ1 + 3y1ξ1 + 3y2 − 2ξ1,−5x1ξ1 + x2ξ2 + 4y2ξ2 − ξ1)
T,

ξ = (ξ1, ξ2) and ξ1, ξ2 are independent random variables having uniform distribution

on [0, 1]. The test results are displayed in Tab. 2.
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Nk tNk
(xNk

, yNk
) Obj Iter

102 5 (1.9038 1.0442 0.1472 3.8332) 2.1429 8

103 5 × 10−1 (1.8471 1.0622 0.0000 2.2959) 1.1797 6

104 5 × 10−2 (1.8439 1.0625 0.0000 2.2892) 1.1965 6

105 5 × 10−3 (1.8434 1.0625 0.0000 2.2886) 1.1998 6

Table 2. The computational results for Example 2.

Notice that in Example 2 we can integrate the underlying functions out and obtain

a deterministic MPCC problem

min 2(x1 − 2)2 + (x2 − 1)2 + 1
2y1 + 1

2y2

s.t. 0 6 y ⊥ F (x, y) > 0,

where F (x, y) = (3x1 + 1
2x2 + 3

2y1 + 3y2 − 1,− 5
2x1 + 1

2x2 + 2y2 − 1
2 )T. In order to

compare the performance of numerical results of the SAA method, we also report the

numerical results of the deterministic problem. The test results are stated in Tab. 3.

t (x∗, y∗) Obj Iter

5 × 10−2 (1.8437 1.0627 0.0000 2.2881) 1.1968 6

5 × 10−3 (1.8437 1.0626 0.0000 2.2888) 1.1971 6

Table 3. The computational results for deterministic problem of Example 2.

Our preliminary numerical results shown in Tabs. 1 and 2 reveal that our proposed

method yields a reasonable solution of the problems considered.

6. Conclusion and further remarks

In this paper, we propose a smoothing SAA method for a SMPCC by using the

log-exponential function. Utilizing the notion of epi-convergence in variational analy-

sis, we establish the almost sure convergence of optimal solutions generated by the

smoothed SAA problem. Moreover, under suitable conditions, we show that any

cluster point of the KKT point sequence generated from the smoothed SAA problem

is almost surely an S-stationary point of SMPCC as the sample size tends to infin-

ity. The preliminary numerical results indicate that the proposed method is able to

solve SMPCC successfully.

Let ξ1, . . . , ξN be an iid sample of ξ. By the flexible structure of the log-exponential

function and defining

ĜN (z)k = −tN

( l
∑

i=1

exp(−F̂N
ki (z)/tN)

)

, k = 1, . . . , m,
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where F̂N
ki (z) := N−1

N
∑

j=1

Fki(z, ξj) is the sample average function of Fki(z, ξj), the

method in our paper can be easily extended to solve the stochastic mathematical

program with general vertical complementarity constraints in Birbil et al. [2]:

min E[f(z, ξ(ω))]

s.t. min{E[Fk1(z, ξ)], . . . ,E[Fkl(z, ξ)]} = 0, k = 1, . . . , m.

However, the smoothing SAA method based on the Fischer-Burmeister function [4]

in [22] is difficult to be extended for solving this kind of problems.

Since there is no assumption on measurability of the selections considered, the

almost sure convergence appears relatively weak. The uniform almost sure conver-

gence [25] is a more convenient convergence in non-measurable case. Whether the

almost sure convergence results in this paper can be extended to uniform almost sure

convergence results is one of the important topics in our further study.
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