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Abstract. The maximum likelihood estimators of the parameters for the 3-parameter
Weibull distribution do not always exist. Furthermore, computationally it is difficult to find
all the solutions. Thus, the case of missing some solutions and among them the maximum
likelihood estimators cannot be excluded. In this paper we provide a simple rule with help
of which we are able to know if the system of the log-likelihood equations has even or odd
number of solutions. It is a useful tool for the detection of all the solutions of the system.
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1. Introduction

The Weibull distribution is one of the most popular and widely used models for

failure time in life testing and reliability theory. The probability density function of

the three parameter Weibull distribution is expressed by

(1.1) f(x; ξ, α, c) =
c

α

(x − ξ

α

)c−1

exp
{

−
(x − ξ

α

)c}

with x > ξ, c > 0, α > 0, −∞ < ξ < ∞. Here c is the shape parameter, α the

scale parameter, and ξ the location parameter. Several methods have been proposed

for the estimation of the parameters ξ, α, c. The books [1] and [4] summarize

most of them. The method of maximum likelihood is the most popular because

of its properties of asymptotic normality and efficiency [15]. However, finding the

maximum likelihood estimator (MLE) demands the solution of a non linear system of
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equations which is not an easy task. More specifically, for an independent sample x =

(x1, x2, . . . , xn) with m = min{x1, x2, . . . , xn}, the system of the partial derivatives

of the log-likelihood function

(1.2) L(ξ, α, c; x) = n ln c − nc lnα + (c − 1)

n
∑

i=1

ln(xi − ξ) −
1

αc

n
∑

i=1

(xi − ξ)c

with domain (−∞, m)×(0,∞)×(0,∞), results in the following system of estimating

functions:

g0(ξ, α, c) = αc −
1

n

n
∑

i=1

(xi − ξ)c = 0,(1.3)

g1(ξ, c) =
1

c
+

1

n

n
∑

i=1

ln(xi − ξ) −

n
∑

i=1

(xi − ξ)c ln(xi − ξ)

/ n
∑

i=1

(xi − ξ)c = 0,(1.4)

g2(ξ, c) = c

n
∑

i=1

(xi − ξ)c−1 − (c − 1)
1

n

n
∑

i=1

(xi − ξ)c
n

∑

i=1

1

xi − ξ
= 0,(1.5)

where the functions g1(ξ, c) and g2(ξ, c) are ∂L/∂c and ∂L/∂ξ, respectively, after re-

moving α from (1.3). Qiao and Tsokos [11], Smith and Naylor [14], [15], and Gourdin

et al. [3] proposed effective algorithms for finding the maximum likelihood estimators

for the three-parameter Weibull distribution. The aim of this paper is not to propose

a new algorithm but to study the number of solutions of the system (1.3), (1.4), (1.5).

If ξ is known, then there is a unique solution of the system of equations (1.3) and

(1.4) ([8], [9]). Similar conclusions are drawn when α is known [10]. When all three

parameters are unknown, the number of solutions of the system (1.3)–(1.5) is not

known. Rockette et al. [12] argue that if a local maximum exists then a saddle point

must also exists. Lockhart and Stephens [5], [6] suggest that the functions c1(ξ) and

c2(ξ) defined implicitly from the equation (1.4) and (1.5) respectively are of the form

(1.6) c(ξ) = Lξ + b0 +
b1

ξ
.

Their argument is supported by simulation results. With help of the above ex-

pressions they draw conclusions for the solutions of the system (1.3)–(1.5). The

quantity L is the solution of the equation

(1.7) L =
L0

L1
,

where

(1.8) Lk =
n

∑

i=1

eL(xi−x)(xi − x)k

and x is the arithmetic mean x =
∑

xi/n.
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In this paper we study the number of solutions of the system of equations (1.4)

and (1.5). The procedure is the following: we find the implicit function c = c(ξ)

determined from (1.5). More specifically we prove that c(ξ) is expressed in the form

(1.9) c(ξ) = L(x − ξ) + a0 + o(1) for ξ → −∞.

Next we insert (1.9) in the equation (1.4). In this way we study g1(ξ, c(ξ)) = 0 which

is an equation of one unknown parameter. With help of the sign of g1(ξ, c(ξ)) for

ξ → −∞ and ξ → m− we can draw conclusions concerning the number of solutions

of g1(ξ, c(ξ)). Furthermore, we prove that a local maximum cannot be located close

to the asymptote ξ = m. We use the notation x(n) = max{x1, x2, . . . , xn} and

s2 = (x − x)2.

The paper is organized in the following way. In Section 2 we present some pre-

liminary results and formulae which are necessary for the development of the main

results. In Section 3 we prove the main results. In Section 4 we discuss the results

and present several examples which support our findings.

2. Some preliminary results

Let us write c instead of c(ξ). Equation (1.5) can be written as

(2.1) c =

1
n

n
∑

i=1

(xi − ξ)c
n
∑

i=1

1
xi−ξ

1
n

n
∑

i=1

(xi − ξ)c
n
∑

i=1

1
xi−ξ −

n
∑

i=1

(xi − ξ)c−1

.

It is obvious that always c(ξ) > 1. Therefore, the domain of L(ξ, α, c, x) is restricted

to (−∞, m)×(0,∞)×(1,∞) and in this specific domain we are looking for a solution

of the system (1.3)–(1.5). Another equivalent expression of (2.1) is

(2.2) c =

1
n

n
∑

i=1

(

1 + xi−x
x−ξ

)c n
∑

i=1

(

1 + xi−x
x−ξ

)

−1

1
n

n
∑

i=1

(

1 + xi−x
x−ξ

)c n
∑

i=1

(

1 + xi−x
x−ξ

)

−1
−

n
∑

i=1

(

1 + xi−x
x−ξ

)c(
1 + xi−x

x−ξ

)

−1
.

From the expression (2.2) we conclude that

lim
ξ→−∞

c(ξ) = ∞.

Utilizing the expression

(

1 +
xi − x

x − ξ

)

−1

= 1 −
xi − x

x − ξ
+

(xi − x

x − ξ

)2

+ o
( 1

x − ξ

)2

,
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from (2.2) we obtain the expression

(2.3) c =

n
∑

i=1

(

1 + xi−x
x−ξ

)c(
1 + s2

(x−ξ)2 + o
(

1
x−ξ

)2)

n
∑

i=1

(

1 + xi−x
x−ξ

)c(xi−x
x−ξ + s2

−(xi−x)2

(x−ξ)2 + o
(

1
x−ξ

)2)

or equivalently

(2.4) c =

(x − ξ)
n
∑

i=1

(

1 + xi−x
x−ξ

)c(
1 + s2

(x−ξ)2 + o
(

1
x−ξ

)2)

n
∑

i=1

(

1 + xi−x
x−ξ

)c(
xi − x + s2

−(xi−x)2

(x−ξ) + o
(

1
x−ξ

))

.

From the expression (2.4) we get that

(2.5)
c

x − ξ
=

n
∑

i=1

(

1 + xi−x
x−ξ

)c(
1 + s2

(x−ξ)2 + o
(

1
x−ξ

)2)

n
∑

i=1

(

1 + xi−x
x−ξ

)c(
xi − x + s2

−(xi−x)2

x−ξ + o
(

1
x−ξ

))

.

Proposition 2.1. The equation

x =

n
∑

i=1

ex(xi−x)

/ n
∑

i=1

ex(xi−x)(xi − x)

has a unique solution on the interval (0,∞).

P r o o f. Taking the derivative we can prove that the function

t(x) =

n
∑

i=1

ex(xi−x)

/ n
∑

i=1

ex(xi−x)(xi − x)

is strictly decreasing. Furthermore, we can see that

lim t(x) = ∞ for x → 0

as well as

lim t(x) =
1

x(n) − x
for x → ∞.

Thus the functions t(x) and y = x have only one common point. �
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Proposition 2.2. If

f(x) = c1x +
c2

xn
+ o

( 1

xn

)

for n > 0 and c1 > 0 as x → ∞,

then
1

f(x)
=

1

c1x
−

c2

c2
1x

n+2
+ o

( 1

xn+2

)

.

P r o o f. The result follows by writing

1

f(x)
=

1

c1x

1

1 + c2c
−1
1 x−(n+1) + o(x−(n+1))

and then using the geometric expansion. �

3. Main results

3.1. The formula for the implicit function c = c(ξ)

We prove the relation (1.9) and determine the quantities L and a0.

Theorem 3.1. We have

(3.1) lim
ξ→−∞

c

x − ξ
= L,

where L satisfies the relation (1.7).

P r o o f. Let us assume that there is a sequence ξk with ξk → −∞ and

(3.2) lim
ξk→−∞

ck

x − ξk
= ∞.

Dividing the enumerator and denominator of (2.5) by

(

1 +
x(n) − x

x − ξk

)ck/(x−ξk)

we have the relation
ck

x − ξk
=

h1(ξk)

h2(ξk)
,

where

h1(ξk) = 1 + o(1) +

n−1
∑

i=1

[(

1 + (x(i) − x)/(x − ξk)

1 + (x(n) − x)/(x − ξk)

)x−ξk
]ck/(x−ξk)
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and

h2(ξk) = x(n) − x + o(1) +

n−1
∑

i=1

[(

1 + (x(i) − x)/(x − ξk)

1 + (x(n) − x)/(x − ξk)

)x−ξk
]ck/(x−ξk)

× (x(i) − x + o(1)).

From the last two relations we can prove that

lim
ξk→−∞

h1(ξk)

h2(ξk)
=

1

x(n) − x
< ∞.

Since the left-hand side of (2.5) converges to infinity while the right-hand side to a

finite number, we conclude that assumption (3.2) leads to a contradiction. Thus

lim
ξk→−∞

ck

x − ξk
< ∞.

On the other hand,

lim
ξ→m−

c

x − ξ
=

1

x − m
.

So the function c/(x − ξ) is bounded in the domain (−∞, m). Let now ξk with

ξk → −∞ be any sequence such that

lim
ξk→−∞

ck

x − ξk
= L.

Then due to (2.5) the number L must satisfy the relation (1.7) which from Propo-

sition 2.1 has a unique solution. We have proved that for all sequences ξk with

ξk → −∞ the limit of ck/(x − ξk) is the same. So

(3.3) lim
ξ→−∞

c

x − ξ
= L.

�

Relation (3.3) implies the important relation

(3.4) c(ξ) = L(x − ξ) + R(ξ), where R(ξ) = o(x − ξ).

Proposition 3.1. The following relation holds for ξ → −∞:

(3.5)
(

1 +
xi − x

x − ξ

)c

= eL(xi−x)

[

1 +
(

R(xi − x) −
L

2
(xi − x)2

) 1

x − ξ
+ o

( 1

x − ξ

)

]

.
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P r o o f.

(

1 +
xi − x

x − ξ

)c

= exp

[

(L(x − ξ) + R)
(xi − x

x − ξ
−

1

2

(xi − x)2

(x − ξ)2
+ o

( 1

(x − ξ)2

))

]

= exp[L(xi − x)] exp

[

−
L

2

(xi − x)2

x − ξ
+ R

(xi − x)

x − ξ
+ o

( 1

x − ξ

)

]

= eL(xi−x)

[

1 +
(

R(xi − x) −
L

2
(xi − x)2

) 1

x − ξ
+ o

( 1

x − ξ

)

]

.

�

Theorem 3.2. The relation

(3.6) R(ξ) = a0 + o(1) as ξ → −∞

holds with

(3.7) a0 =
1

2
+

1

2
L

L3

L2
−

L0

L2
s2.

P r o o f. From (2.5) and (3.4) after some calculations we obtain

(3.8) R =

n
∑

i=1

(

1 + xi−x
x−ξ

)c
(x − ξ)(1 − L(xi − x)) − LL0s

2 + LL2 + o(1)

L1 + 1
x−ξ

n
∑

i=1

(

1 + xi−x
x−ξ

)c
(s2 − (xi − x)2) + o

(

1
xi−x

)

.

On the other hand, from Proposition 3.1 we obtain that

n
∑

i=1

(

1 +
xi − x

x − ξ

)c

(x − ξ)(1 − L(xi − x))(3.9)

= R(L1 − LL2) −
L

2
(L2 − LL3) + o(1).

With the use of (3.9), relation (3.8) gives

RL1 + o(1) = RL1 − RLL2 −
L

2
L2 +

L2

2
L3 − LL0s

2 + LL2 + o(1),

or

(3.10) R =
1

2
+

1

2
L

L3

L2
−

L0

L2
s2 + o(1).

In other words, we have

R(ξ) = a0 + o(1)

with a0 as in (3.7). �
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From Proposition 3.1 and relation (1.9) we obtain the expression

(3.11)

n
∑

i=1

(

1 +
xi − x

x − ξ

)c

= L0 +
(

a0L1 −
LL2

2

) 1

x − ξ
+ o

( 1

x − ξ

)

.

3.2. The determination of the number of solutions

Let us now substitute c from (1.9) into the equation (1.4). We have

(3.12) g(ξ) = g1(ξ, c(ξ)).

The number of roots of the above function determines the number of solutions of the

log-likelihood system of equations.

Theorem 3.3. We have

(1) lim g(ξ) = −∞ for ξ → m−,

(2) g(ξ) =
1

2

(

s2 −
L2

L0

) 1

(x − ξ)2
+ o

( 1

(x − ξ)2

)

for ξ → −∞.

P r o o f. (1) Since c(ξ) > 1, we have for ξ close to m

(m − ξ) ln(m − ξ) < (m − ξ)c ln(m − ξ) < 0

from which we conclude that

lim
ξ→m−

(m − ξ)c ln(m − ξ) = 0.

Now it is apparent from (1.4) that

lim
ξ→m−

g(ξ) = −∞.

(2) The g(ξ) function can be written as

g(ξ) =
1

c
+

1

n

n
∑

i=1

ln
(

1 +
xi − x

x − ξ

)

−

n
∑

i=1

(xi − ξ)c ln
(

1 +
xi − x

x − ξ

)

/ n
∑

i=1

(xi − ξ)c.

Expanding the function
n
∑

i=1

ln(1 + (xi − x)/(x − ξ)) and utilizing Proposition 2.2 for

the function c(ξ), g(ξ) can be written as

g(ξ) =
1

L

1

x − ξ
−

( a0

L2
+

s2

2

) 1

(x − ξ)2

−

n
∑

i=1

(

1 +
xi − x

x − ξ

)c

ln
(

1 +
xi − x

x − ξ

)

/ n
∑

i=1

(

1 +
xi − x

x − ξ

)c

+ o
( 1

(x − ξ)2

)

.
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With the use of Proposition (3.1) and expanding the function ln we obtain

n
∑

i=1

(

1 +
xi − x

x − ξ

)c

ln
(

1 +
xi − x

x − ξ

)

(3.13)

= L1
1

x − ξ
+

(

a0L2 −
L

2
L3 −

L2

2

) 1

(x − ξ)2
+ o

( 1

(x − ξ)2

)

.

Making use of Proposition 2.2 and (3.11), we find that

( n
∑

i=1

(xi − x

x − ξ

)c
)

−1

=
1

L0

(

1 +
(

a0
L1

L0
−

L

2

L2

L0

) 1

x − ξ
+ o

( 1

x − ξ

))

−1

(3.14)

=
1

L0

[

1 −
(

a0
L1

L0
−

L

2

L2

L0

) 1

x − ξ
+ o

( 1

x − ξ

)]

.

By virtue of (3.13) and (3.14) the function g(ξ) takes the form

g(ξ) =
(

−a0
L2

L0
−

s2

2
+

LL3

2L0

) 1

(x − ξ)2
+ o

( 1

(x − ξ)2

)

.

Replacing the expression for a0 by (3.7) we have

g(ξ) =
1

2

(

s2 −
L2

L0

) 1

(x − ξ)2
+ o

( 1

(x − ξ)2

)

.

�

From the structure of g(ξ) we observe that for ξ → −∞, it is dominated by the

term
δ

2

1

(x − ξ)2
,

where

δ = s2 −
L2

L0
.

Thus the g function becomes negative or positive as ξ → ∞, if δ < 0 or δ > 0,

respectively.
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4. Discussion

The number of roots of g(ξ) are not known. If δ < 0, Theorem 3 claims that the

function g(ξ) becomes negative when ξ → m− and ξ → −∞. Thus, the roots of

g(ξ)—if any—must come in pairs, providing that all the roots are simple. Similarly

if δ > 0, the function g(ξ) becomes negative when ξ → m− and positive for ξ → −∞.

Thus it has always a root and more specifically, it has an odd number of roots. It is

widely accepted that the log-likelihood system of equations (3)–(5) possesses at most

two solutions. There is no theoretical justification for this. This rule is supported by

simulation results. In fact there is no counter-example in bibliography violating this

rule and therefore it is adopted by many authors. Lockhart and Stephens [5], [6] use

three data sets. Data set 1 from [2] is the case where the system of log-likelihood

equations has two solutions.

95 100 105 110 115

0.05

0.10

0.15

0.20

−0.05

ξ

g(ξ)

Figure 1. Graph of g(ξ) with two solutions.

In this case we have δ = −598.195. Data set 2 of [10] corresponds to the case

where the log-likelihood system of equation has no solution.

−20 −10 10

−0.8

−0.7

−0.6

−0.5

ξ

g(ξ)

Figure 2. Graph of g(ξ) with no solution.

540



In this case δ = −47168.7. Data set 3 of artificial data corresponds to the case

where the system has one solution. In this case δ = 0.00804.

0.14 0.16 0.18 0.20 0.22 0.24 0.26
0.0

0.1

0.2

0.3

−0.1

ξ

g(ξ)

Figure 3. Graph of g(ξ) with one solution.

The sign of the quantity δ determines the number of solutions of the equation

g(ξ) = 0. In the case δ < 0 we expect one solution and it cannot be a local maxi-

mum [12]. Thus, in this case there is no maximum likelihood estimator. In the case

δ > 0 we have two possibilities: either no solution, or two solutions. The case of no

solution appears in the case of small samples. The usual case is that of two solutions.

However, even in this case there is a difficulty in distinguishing between one or two

solutions case because many times the second solution is hidden very close to the

asymptote ξ = m and is hard to be found. See for example Fig. 1. In such cases

the sign of δ indicates that another solution must exist. Fortunately, close to the

asymptote the log-likelihood function cannot have a local maximum. To see this we

examine the behavior of the Hessian matrix of the log-likelihood function (1.2). If

θ = (α, c, ξ), the Hessian matrix H(α, c, ξ) is defined as

H(α, c, ξ) =
∂2L(θ; x)

∂θ∂tθ
.

The matrix H(α̂, ĉ, ξ̂) is negative definite if the signs of the minor determinants

∆1, ∆2, and ∆3 along the diagonal are ∆1 < 0, ∆2 > 0, ∆3 < 0. By elementary

calculations we find that the first minor determinant ∆1(α, c, ξ) = −nc2α2 is always

negative. The second minor determinant along the main diagonal is

∆2(α, c, ξ) =
n2

a2

(

1 +
1

n

n
∑

i=1

(xi − ξ

a

)c

ln2
(xi − ξ

a

)c

−
(

1 +
1

n

n
∑

i=1

ln
(xi − ξ

a

)c)2
)

.

Easily we can see that

lim∆2(α, c, ξ) = −∞ as ξ → m−.
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Thus for stationary values (α̂, ĉ, ξ̂), where ξ̂ is close to the asymptote ξ = m, the

Hessian matrix is neither positive nor negative definite. Such a value corresponds to

a saddle point.
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