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Abstract. The inverse Fast Fourier Transform is a common procedure to solve a convo-
lution equation provided the transfer function has no zeros on the unit circle. In our paper
we generalize this method to the case of a singular convolution equation and prove that
if the transfer function is a trigonometric polynomial with simple zeros on the unit circle,
then this method can be extended.
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Introduction

Consider a convolution equation

a ∗ g = f

with a and f finite sequences (g can be an infinite two-sided sequence). Our task is

to solve for the sequence g given a and f . Consider the Fourier Transform F yielding

the following analogue in the Fourier domain

F(a)F(g) = F(f).

It is well known (Wiener’s Lemma) that if F(a) has no zeros on the unit circle then
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the solution g is unique (see, e.g., [5]). The inverse Fast Fourier Transform (FFT−1)

is a common procedure to solve for g given a and f . It is based on the following. We

mesh up the unit circle, sample F(f)/F(a) on this mesh, and then take the inverse

Fast Fourier Transform. The finer the mesh is, the closer we are to the solution g.

This method mimics the Riemann Sum Approximation for the continuous inverse

Fourier Transform for each coefficient g(n). A classical result on Riemann Sum

Approximation for the Riemann integral of a continuous function stipulates that

this pointwise convergence to the solution g is at least o(1/n) (see, e.g., [8]).

In engineering applications this procedure is many times successfully applied also

in the case where F(a) has zeros on the unit circle. However, this method would

converge to a solution g which no longer is unique. In this paper we define an exten-

sion of this method to the case of a singular convolution equation and prove some

convergence results under certain but not too restrictive conditions. We will refer

to this procedure as the FFT Inversion Method for (possibly) singular convolutions

equations.

Let us sketch the needed background (see, e.g., [1], [2], and [6]). Let S denote the

vector space of all rapidly decreasing (complex-valued) C∞-functions defined on R,

i.e., the set of functions ϕ : R → C such that P ·Dnϕ is a bounded function for every

polynomial P and every n ∈ N∪ {0} (here Dn denotes the nth derivative operator).

This space is endowed with a locally convex topology defined by the sequence of

seminorms {qn}n∈N given by

qn(ϕ) := max
|k|6n

max
x∈R

(1 + |x|2)n|Dkϕ(x)|, ϕ ∈ S.

Then (S, {qn}n∈N∪{0}) becomes a Fréchet locally convex space. Its dual, S
′, is the

space of tempered distributions, and we endow it with its w∗-topology, i.e., the topol-

ogy on S′ of the pointwise convergence on the elements in S.

The space S can be identified with a subspace of C
(∞)
per (R), the space of all infinitely

differentiable (complex-valued) 2π-periodic functions on R endowed with the locally

convex topology inherited from the canonical topology on C(∞)(R) induced by a

fundamental system of compacta. Precisely, to ϕ ∈ S we associate the mapping

ϕ̃ : [0, 2π] → C given by

(1) ϕ̃(t) :=

{

ϕ(σ(t)) if t ∈ (0, 2π),

0 otherwise,

where σ : (0, 2π) → R is defined as

σ(t) =
1

2π − t
−

1

t
for all t ∈ (0, 2π).
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The mapping ϕ 7→ ϕ̃ is a linear homeomorphism from the space S into C
(∞)
per (R). As

it is well known, the space C
(∞)
per (R) and the space s of rapidly decreasing sequences

are linearly homeomorphic, when s carries the topology defined by the system of

seminorms {pn}n∈N, where pn(a) :=
∞
∑

k=1

nk|ak|, a = (ak) ∈ s (see, e.g., [4, Theo-

rem 2.10.H.8]). Recall that a sequence {an}n∈Z is said to be rapidly decreasing if

for all r > 0 there exists C = C(r) > 0 such that |an| 6 C|n|−r, n ∈ Z \ {0}. The

sequence {bn}n∈Z is said to be slowly growing if there exists r > 0 and C > 0 such

that |bn| 6 C|n|r for all n ∈ Z. The space of all the slowly growing sequences will

be denoted byM.

As it is well known, polynomially bounded functions define tempered distributions

via integration, see e.g., [5]. Precisely, the following result holds.

Proposition 1. Let g be a measurable function on R such that for some m ∈ N,

the function (1 + x2)mg(x) is bounded on R. Then the map Fg : S → C defined as

(2) Fg(f) =

∫

R

g(x)f(x) dx, f ∈ S,

is a tempered distribution.

If there is no risk of misunderstanding, distributions Fg defined via (2) will be

denoted simply by g. Observe that every ϕ ∈ S can be considered, according to

Proposition 1, as an element in S′.

A tempered distribution F is said to be (2π)-periodic if 〈F, ϕ〉 = 〈F, ψ〉 whenever

ϕ ∈ S and ψ(x) = ϕ(x + 2π) for every x ∈ R. In view of Proposition 1, the func-

tion en defined as en(x) = einx for x ∈ R defines a tempered distribution (denoted

again by en) via (2), and, obviously, en is a periodic distribution. More generally,

given a slowly growing sequence a = {an}n∈Z, the sequence
{ N

∑

n=−N

anen

}

N∈N

is w∗-

convergent. Its w∗-limit will be denoted, accordingly, by
∞
∑

n=−∞
anen, and it is again

a periodic distribution, that will be denoted by F(a). If P denotes the subspace

of S′ of all periodic distributions, then F maps M into P . It is known, see [6] for

example, that

P =

{ ∞
∑

n=−∞

anen : {an}n∈Z a slowly growing sequence

}

,

so in fact F mapsM onto P (see, e.g., [7]).
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We define the convolution {cn}n∈Z = c = a ∗ b of an element a = {an}n∈Z ∈ s and

an element b = {bn}n∈Z ∈ M by the formula

(3) cn =

∞
∑

j=−∞

an−jbj, n ∈ Z.

The following result has a simple proof, that will be omitted.

Proposition 2. Let a ∈ s and b ∈ M. Then a ∗ b is well defined and belongs

to s. Moreover, F(a ∗ b) = F(a)F(b).

R em a r k. The conclusion of Proposition 2 needs some comments. It relates the

distribution associated to a certain sequence to the product of two distributions.

It is a problem to define properly in general the product of two distributions (see,

e.g., [3]). However, if F ∈ S′ and G ∈ S, the multiplication F · G is well defined

(cf. op. cit.). If a ∈ s, then F(a) is a true function, and it belongs to S. In our case

(see below) we are interested in elements a ∈ c00, i.e., sequences with finite support.

In this case, convolution of a with a (slowly growing) sequence g, and multiplication

of F(a) with elements in S′ are, then, well defined.

The main result

Consider, as above, the convolution equation

a ∗ g = f,

with the assumption that a and f are finite sequences (g need not be finite). Assume

now that F(a) (a 2π-periodic function on R that can be considered as a function on

the unit circle T ) has zeros on T (we refer to this case by saying that the convolution

equation a ∗ g = f is singular). Proposition 2 shows that the Fourier Transform F

translates the convolution equation into

(4) F(a)F(g) = F(f).

Formally, F(g) = F(f)/F(a) (if it exists, it would be certainly a periodic tempered

distribution, i.e., an element in P), and the solution g will be obtained just by

applying F−1 to the former equality (the (generalized) FFT method). Obviously,

this approach needs to be justified, since F(a), as a function, is not invertible. The

inverse function F−1 : P → M has a simple description, due to the orthogonality of
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the base {en}n∈Z in [0, 2π], where en(x) := einx for x ∈ R and n ∈ Z. Precisely, if

F (x) :=
∞
∑

n=−∞
aneinx for x ∈ R, then

(5) an =
1

2π

∫ 2π

0

F (x)e−n(x) dx for n ∈ Z.

Note that this is not, strictly speaking, the action of the distribution F on the

function en, since, certainly, no en belongs to S.

The key observation to solve our problem is that whenever F(a) has only simple

roots on the unit circle T , equation (5) still has a meaning when F is replaced by

F(f)/F(a), at least in the Cauchy Principal Value sense, and that the sequence (gn)

so obtained is a solution (among possibly an infinite number of solutions) of our

convolution equation. This is the content (and the proof) of the following result.

Theorem 3. Consider a singular convolution equation a ∗ g = f , with finite

sequences a and f , and assume that the transfer function F(a) has simple zeros

on the unit circle. Then this convolution equation is solvable by the (generalized)

FFT method and moreover the (non-unique) solution g is a bounded (two-sided)

sequence.

P r o o f. It is not difficult to see that, without loss of generality, we can reduce the

problem to the case that F(a) = 1−eix (i.e., when a = (. . . , 0, 0, 1,−1, 0, 0, . . .), where

1 is in position 0 and −1 in position 1). This is done by decomposing F(f)/F(a) by

using partial fractions and then scaling. We shall prove that, for every n ∈ Z, the

following integral exists in the sense of its Cauchy Principal Value:

(6) gn := (VP)
1

2π

∫ 2π

0

F(f)(x)

1 − eix
e−inx dx.

This is simple: Just observe that, for m ∈ Z,

(7)
eimx

1 − eix
=

1

2

[(

cosmx+
sinmx sinx

1 − cosx

)

+ i
(

sinmx−
cosmx sinx

1 − cosx

)]

.

The real part of (7) is integrable in [0, 2π] for all m ∈ Z, and the imaginary part

is antisymmetric with respect to π (this follows easier by checking that the com-

plex conjugate of eim(π+x)(1 − ei(π+x))−1 is eim(π−x)(1 − ei(π−x))−1). This gives the

convergence of the integral in (6).

Let us check that the sequence (gj)j∈Z obtained in (6) satisfies the requirements: It

is enough, as has been mentioned above, to take f = (fn)n∈Z ∈ c00 and a = (an)n∈Z,
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where a0 = 1, a1 = −1, and an = 0 otherwise. Then, for n ∈ Z,

∞
∑

j=−∞

an−jg(j) = a0gn + a1gn−1 = gn − gn−1

= (VP)
1

2π

∫ 2π

0

F(f)(x)

1 − eix
e−inx dx− (VP)

1

2π

∫ 2π

0

F(f)(x)

1 − eix
e−i(n−1)x dx

= (VP)
1

2π

∫ 2π

0

F(f)(x)

1 − eix
e−inx(1 − eix) dx

=
1

2π

∫ 2π

0

F(f)(x)e−inx dx = fn.

The sequence (gn)n∈Z is bounded. Indeed, recall that the Dirichlet kernel Dn, for

n ∈ N, is the function

Dn(x) =
sin

(

n+ 1
2

)

x

sin
(

1
2x

) for x ∈ (0, 2π).

Note that
sinmx sinx

1 − cosx
=

sinmx

sinx
(1 + cosx) for x ∈ (0, 2π).

This shows, together with the fact Dn satisfies
∫ 2π

0 Dn(x) dx = 2π for all n ∈ N, that

the real part in (7) remains bounded when m→ ∞. �

Once the convergence of the integral (6) has been proved for all n ∈ N, the

computation is done by using the meshing procedure sketched in the Introduction.

For this we rely on the FFT techniques, as usual.

Consider a mesh {xk} = {2πk/N}N−1
k=0 of the interval [0, 2π]. Define

uM,N (k) =







F(f)(eixk)

(1 − eixk)
if

∣

∣

∣

F(f)(eixk)

(1 − eixk)

∣

∣

∣
< M,

0 otherwise,

and note each uM,N induces a tempered distribution given by the following action

〈uM,N , ϕ〉 =
1

N

∑

j

∑

k

uM,N (k)ϕ(xk + 2πj)

for all ϕ ∈ S. Observe that

lim
M,N→∞

〈uM,N , ϕ〉 = 〈u, ϕ〉 for all ϕ ∈ S,
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where u is the tempered distribution defined by the action

〈u, ϕ〉 =

∫

R

F(f)(eix)

1 − eix
ϕ(x) dx.

It follows that uM,N converges to u as M,N → ∞ in the w∗ topology. Let gM,N =

ifft(uM,N ) where ifft stands for the inverse Fast Fourier Transform. Therefore, there

exists a bounded sequence g ∈M so that gM,N → g coordinatewise.

E x am p l e I. We are solving

a ∗ g = f

with the unit impulse f = (fn)n∈Z, i.e., fn = 0 for all n ∈ Z \ {0} and f0 = 1, and

the mask a = (an)n∈Z such that a0 = a1 = a2 = 1 and an = 0 otherwise. We thus

have

gn + gn+1 + gn+2 = fn for all n ∈ N.

The corresponding transfer function

F(a)(z) = 1 + z + z2

has zeros z = e±2πi/3 on the unit circle. Indeed, we have non-trivial solutions to the

homogeneous equation

gn + gn+1 + gn+2 = 0,

for example

. . . ,−1,−1, 2,−1,−1, 2,−1,−1, 2, . . .

and so the solution is not unique.

We apply the FFT inversion method and obtain the sequence g (using MATLAB):

>> clear; N=2^4; for k=0:N-1 z=exp(i*2*pi*k/N);

u(k+1)=1/(z^2+z+1); end; g=ifft(u)

Columns 1 through 7

0.3333 + 0.0000i 0.3333 + 0.0000i 0.3333 - 0.0000i

-0.6667 + 0.0000i 0.3333 + 0.0000i 0.3333 - 0.0000i

-0.6667 + 0.0000i

Columns 8 through 14

0.3333 + 0.0000i 0.3333 - 0.0000i -0.6667 - 0.0000i

0.3333 + 0.0000i 0.3333 - 0.0000i -0.6667 - 0.0000i

0.3333 + 0.0000i

Columns 15 through 16

0.3333 - 0.0000i -0.6667 - 0.0000i
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Re-grouping accordingly we get

g = . . . ,
1

3
,
1

3
,−

2

3
,
1

3
,
1

3
,−

2

3
,
1

3
,
1

3
,
1

3
,−

2

3
,
1

3
,
1

3
,−

2

3
, . . .

E x am p l e II. We are solving

a ∗ g = f

with the unit impulse f , fn = 0 except f0 = 1. We have the filter a with a0 = 1,

a1 = −2, a2 = 1 and an = 0 otherwise. Our convolution equation becomes

gn − 2gn+1 + gn+2 = fn.

The corresponding polynomial transfer function

a(z) = 1 − 2z + z2 = (z − 1)2

has a multiple zero at z = 1 on the unit circle. The FFT Inversion Method does not

work in this case and
∫ 2π

0

1

(1 − eix)2
dx

fails to exist.
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