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Quasigroups arisen by right nulear extensionP�eter T. Nagy, Izabella StuhlAbstrat. The aim of this paper is to prove that a quasigroup Q with right unitis isomorphi to an f-extension of a right nulear normal subgroup G by thefator quasigroup Q=G if and only if there exists a normalized left transversal� � Q to G in Q suh that the right translations by elements of � ommutewith all right translations by elements of the subgroup G. Moreover, a loop Qis isomorphi to an f-extension of a right nulear normal subgroup G by a loopif and only if G is middle-nulear, and there exists a normalized left transversalto G in Q ontained in the ommutant of G.Keywords: extension of quasigroups, right nuleus, quasigroup with right unit,transversalClassi�ation: 20N051. IntrodutionA loop extension is alled (right) nulear, if the kernel of the orrespondinghomomorphism is ontained in the (right) nuleus of the extension. In our previ-ous paper [2℄ we made a systemati study of right nulei of quasigroups obtainedby an extension proess in the ategory of quasigroups with right unit. Theinvestigated extensions of quasigroups are de�ned by a slight modi�ation of non-assoiative Shreier-type extensions of groups or loops (f. [1℄). These extensionswill be determined by a triple (K;G; f), where K is a quasigroup, G is a loop andf : K�K ! G is a funtion, alled the fator system of the extension. The mainresult of this paper gives a haraterization of quasigroups whih are isomorphito an f -extension of a right nulear normal subgroup by the fator quasigroup.They are preisely the quasigroups Q with a right nulear normal subgroup Gsuh that there exists a normalized left transversal � � Q to G in Q suh thatthe right translations by elements of � ommute with all right translations by ele-ments of the subgroup G. As an appliation we prove that a loop Q is isomorphito an f -extension of a right nulear normal subgroup G by the loop K = Q=Gif and only if G is also a middle-nulear subgroup, and there exists a normalizedleft transversal � to G in Q ontained in the ommutant CQ(G) of G.2. PreliminariesA quasigroup Q is a set with a binary operation (x; y) 7! x � y suh that theequations a � y = b and x � a = b are uniquely solvable in Q. The solutions are



392 P.T. Nagy, I. Stuhldenoted by y = anb and x = b=a. The element er is alled the right unit of thequasigroup Q if x � er = x for all x 2 Q. A loop is a quasigroup with unit element.The left, right respetively middle nuleus of a quasigroup Q are the subgroupsof Q de�ned by Nl(Q) = fu; (u � x) � y = u � (x � y); x; y 2 Qg;Nr(Q) = fu; (x � y) � u = x � (y � u); x; y 2 Qg;Nm(Q) = fu; (x � u) � y = x � (u � y); x; y 2 Qg:The intersetionN(Q) = Nl(Q)\Nr(Q)\Nm(Q) is the nuleus of Q. A subgroupG � Q of the quasigroup Q is alled (left, right, respetively middle) nulear ifit is ontained in the (left, right, respetively middle) nuleus of Q. If the rightnuleus Nr(Q) of a quasigroup Q is non-empty and e is the unit of the groupNr(Q), then xe � n = x � en = xn for any x 2 Q, n 2 Nr(Q), hene e is the rightunit of Q.The ommutant CQ(G) of a subgroup G in Q is the subset onsisting of allelements  2 Q suh that  � x = x �  for all x 2 G. The entralizer ZQ(G) of thesubgroup in Q onsists of elements z 2 N(Q) suh that zx = xz, for all x 2 G.The enter Z(Q) of Q is the entralizer ZQ(Q) of Q in Q.For any x 2 Q the maps �x : y 7! x � y and �x : y 7! y � x are the left and theright translations, respetively.A subloop N of a quasigroup Q with right unit er is a normal subloop if thereexists a homomorphism � : Q! Q0 of Q onto the quasigroup Q0 with right unit e0rsuh that ��1(e0r) = N . In this ase er is the unit element of N and for any q 2 Qone has qN = ��1(q0), where �(q) = q0. Hene the map qN 7! �(q) : Q=N ! Q0is bijetive.The set of left osets fqN 2 Q=N ; q 2 Qg equipped with the quasigroupstruture isomorphi to Q0 is alled the fator quasigroup of Q by the normalsubloop N .A subset � � Q of a quasigroup Q with right unit er is said to be a lefttransversal to a normal subloop N in Q if it ontains exatly one element fromeah oset of qN , q 2 Q. If � ontains the right unit er then we say that � is anormalized left transversal (f. [3, Chapter 2℄).Let L be a loop, K a quasigroup and let f be a funtion f : K �K ! L. Theset K � L = f(a; �); a 2 K;� 2 Lg with the operation(1) (a; �) � (b; �) := (ab; f(a; b) � ��);is a quasigroup Qf alled the f-extension of the loop L by the quasigroup K.The funtion f : K �K ! L is the fator system of the extension Qf and themap � : Qf �! K : (a; �) 7! a is the related homomorphism of the extension Qf .Assume that the right nuleus Nr(Qf ) of an f -extension Qf is a non-emptysubgroup of Qf . Then its unit Er 2 Nr(Qf ) is the right unit of Qf and itshomomorphi image er = �(Er) 2 K is the right unit of K. The quasigroup



Quasigroups arisen by right nulear extension 393Qf is alled a right nulear f-extension if ferg � G = f(er; g); g 2 Gg is aright nulear subgroup of Qf . In this ase Qf is an f -extension of a group by aquasigroup with right unit.In the following we fous our attention on right nulear f -extensions of groupsby quasigroups with right unit element (f. [2, Theorem 11℄).3. CharaterizationLet Q be a quasigroup with right unit and let G be a right nulear normalsubgroup of Q.Lemma 1. A quasigroup Q is isomorphi to an f -extension of a right nulearnormal subgroup G by the fator quasigroup Q=G with right unit if and only ifQ is isomorphi to an f -extension Qf of G by a quasigroup K with right uniter suh that the fator system f : K �K ! G satis�es f(x; er) = f(er; er) = �,where � is the unit of G.Proof: Aording to Theorem 11 in [2℄ an f -extension Qf of a group G bya quasigroup K is right nulear if and only if the fator system satis�es f(x; er) =f(er; er) 2 Z(G) for all x 2 K. In this ase for the f�-extension Qf� of Gby K de�ned by the fator system f�(x; y) = f(x; y)f(er; er)�1 the map(x; �) 7! (x; f(er; er)�) : Qf ! Qf� is an isomorphism. �Lemma 2. Let G be a group with unit �, K a quasigroup with right unit er andlet Qf be an f -extension of G by K with fator system f : K�K ! G satisfyingf(x; er) = f(er; er) = �. The subset � = f(x; �); x 2 Kg � K�G is a normalizedleft transversal to the normal subgroup �G = f(er; �); � 2 Gg � K � G of Qf .The fator system satis�es(2) (er; f(x; y)) = �(xy)n (�(x)�(y)) ;where � is the map x 7! (x; �) : K ! K�G. The right translation by any elementof � ommutes with all right translations by elements of �G, i.e.(3) �t� = �t�� = ���t for all t 2 �; � 2 G:Proof: Clearly, (x; �) = (x; �)(er; �) for any element (x; �) 2 K �G. Hene thesubset � = f(x; �); x 2 Kg � K � G is a normalized left transversal to thesubgroup �G. We have(er; f(x; y)) = (xy; �)n ((x; �)(y; �)) = �(xy)n (�(x)�(y)) ;whih is the equation (2). For any (x; �) 2 K � G the right translation �(y;�)yields �(y;�)(x; �) = (xy; f(x; y)��) = �(y;�)�(er;�)(x; �) = �(er ;�)�(y;�)(x; �)giving the ommutation relations (3). �



394 P.T. Nagy, I. StuhlTheorem 3. If a quasigroup Q with right unit is isomorphi to an f -extensionQf of a right nulear normal subgroup G by the fator quasigroup Q=G thenthere exists a normalized left transversal � to G in Q satisfying the ommutationrelations (3).Conversely, if � is a normalized left transversal to the right nulear normalsubgroup G of Q satisfying the ommutation relations (3) then Q is isomorphito the f -extension Qf on Q=G�G determined by the fator system(4) f(pG; qG) = �(pqG)n (�(pG)�(qG)) ; pG; qG 2 Q=G;where � : Q=G! Q is the map determined by �(qG) 2 qG \ � for any q 2 G.Proof: The �rst assertion follows from the previous lemma.Now, we assume that � is a normalized left transversal to the right nulearnormal subgroup G of the quasigroup Q satisfying the ommutation relations (3)and onsider the f -extension Qf on Q=G�G given by the fator systemf(pG; qG) = �(pqG)n (�(pG)�(qG)) ; pG; qG 2 Q=G:Sine � is normalized we have f(pG;G) = � for any p 2 G. We show that thebijetion � : Q ! Qf given by q 7! (qG; �(qG)nq) is an isomorphism. Theelements �(pG)np and �(qG)nq belong to the right nulear subgroup G of Q,hene pq = (�(pG) � �(pG)np) � (�(qG) � �(qG)nq)= [(�(pG) � �(pG)np) � �(qG)℄ � �(qG)nq:It follows from the relations (3) and from the right nulear property of G that(�(pG) � �(pG)np) � �(qG) = �(pG) � (�(qG) � �(pG)np) :One more using the right nulear property we getpq = �(pG)�(qG) � (�(pG)np � �(qG)nq) :Hene �(pq) = (pqG; �(pqG)n [�(pG)�(qG) � (�(pG)np � �(qG)nq)℄) :We have �(p)�(q) = (pqG; f(pG; qG) � [�(pG)np � �(qG)nq℄) ;where f(pG; qG) is de�ned by (4). Hene, using the right nulear property of Gwe get �(pq) = �(p)�(q) for any p; q 2 Q, whih proves the assertion. �For loops the previous theorem yields the following:Theorem 4. A loop Q is isomorphi to an f -extension Qf of a right nulearnormal subgroup G by the fator loop Q=G if and only if



Quasigroups arisen by right nulear extension 395(a) G is a middle-nulear subgroup,(b) there exists a normalized left transversal � to G in Q ontained in theommutant CQ(G) of G.In this ase Q is isomorphi to the f -extension Qf on Q=G � G determined bythe fator system (4).Proof: Let � be a normalized left transversal to G in the loop Q. Aording toTheorem 3 the assertion is true if and only if the ommutation relations (3) aresatis�ed: x � t� = x� � t = xt � � for all x 2 Q; t 2 �; � 2 G:Putting x = e, where e is the unit of Q, we obtain that � is ontained in theommutant CQ(G) of the subgroup G in Q. Sine G is a right nulear subgroupwe have x � t� = xt � � for any x 2 Q, t 2 �, � 2 G. Now, multiplying the identityx � t� = x� � t by � 2 G we getx(� � t�) = x(�t � �) = x(t� � �) = (x � t�)� = (x� � t)� = x� � t�:Denoting y = t� we obtain the identityx(� � y) = x� � y:Hene G is a middle-nulear subgroup and the properties (a) and (b) are proved.Conversely, the previous arguments yield that the onditions (a) and (b) areequivalent to the ommutation relations (3). �It is well known that a group Q is isomorphi to a entral extension of anabelian normal subgroup G, (i.e. G is ontained in the enter Z(Q),) if and onlyif Q is isomorphi to an f -extension of G. The following assertion gives a diretgeneralization of this assertion to groups Q with non-neessarily abelian normalsubgroup G:Corollary 5. A groupQ is isomorphi to an f -extensionQf of a normal subgroupG by the group K = Q=G if and only if there exists a normalized left transversal� to G in Q ontained in the entralizer ZQ(G) of the group G in Q.Referenes[1℄ Nagy P.T., Strambah K., Shreier loops, Czehoslovak Math. J. 58 (133) (2008), 759{786.[2℄ Nagy P.T., Stuhl I., Right nulei of quasigroup extensions, Comm. Alg. 40 (2012), 1893-1900.[3℄ Smith J.D.H., Romanowska A.B., Post-modern algebra, Wiley, New York, 1999.Institute of Mathematis, University of Debreen, 4010 Debreen, HungaryE-mail: petert.nagy�siene.unideb.hustuhl.izabella�inf.unideb.hu(Reeived November 18, 2011, revised Marh 30, 2012)
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