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Solution of distributive-likequasigroup funtional equationsFedir M. Sokhatsky, Halyna V. KrainihukAbstrat. We are investigating quasigroup funtional equation lassi�ation upto parastrophi equivalene [Sokhatsky F.M., On lassi�ation of funtionalequations on quasigroups, Ukrainian Math. J. 56 (2004), no. 4, 1259{1266 (inUkrainian)℄. If funtional equations are parastrophially equivalent, then theirfuntional variables an be renamed in suh a way that the obtained equations areequivalent, i.e., their solution sets are equal. There exist �ve lasses of generalizeddistributive-like quasigroup funtional equations up to parastrophi equivalene[Sokhatsky F.M.,On lassi�ation of distributive-like funtional equations, Bookof Abstrats of the 8th International Algebrai Conferene in Ukraine, July 5{12(2011), Lugansk, Ukraine, p. 79℄.In the artile, we �nd the solution sets of four generalized distributive-likequasigroup funtional equations of di�erent lasses. In onsequene, we solveone of the equations on topologial quasigroup operations, de�ned on arbitrarytopologial spae as well as on the spae of real numbers with the natural topo-logy.The �fth lass ontains the generalized left distributivity funtional equation.V.D. Belousov [Some remarks on the funtional equation of generalized distribu-tivity, Aequationes Math. 1 (1968), no. 1{2, 54{65℄ desribed only a subset ofits solution set. The set of all solutions still remains an open problem in thequasigroup theory and in the funtional equation theory.Keywords: quasigroup, funtional equation, distributive quasigroup, distributive-like funtional equation, quasigroup solution, solution set, quasigroup identity,parastrophi equivaleneClassi�ation: 20N05, 05B15IntrodutionWe ontinue investigation of the problem of quasigroup funtional equationslassi�ation up to parastrophi equivalene [11℄. This problem was onsidered inmany artiles, in partiular, in [7℄, [9℄, [10℄.In [12℄ it was stated that every generalized distributive-like quasigroup fun-tional equation is parastrophially equivalent to at least one of the equations(2){(6). The notion `distributive-like' means that the equation has three di�erentindividual variables and the number of their appearanes is equal to 2, 2, 3. Tolassify generalized distributive-like quasigroup funtional equations up to para-strophi equivalene, we have to �nd their solution sets.



448 F.M. Sokhatsky, H.V. KrainihukIn this paper, we solve the equations (3){(6). Earlier the results were statedin [8℄. As a onsequene, one an get a set of all solutions of (3){(6) over arbitraryset of funtions whih are losed under omposition. To give an example, we solvethe equation (3) over the set of all topologial quasigroup funtions, de�ned ona topologial spae (Corollary 5). In partiular, we solve (3) when the spaeoinides with the topologial spae of real numbers with the natural topology(Corollary 6).The set of all solutions of the quasigroup funtional equation (2) is still unsolvedand it is a well-known problem in the quasigroup theory and in the funtionalequation theory. V.D.Belousov [5℄ desribed its partial solution.1. PreliminariesAn operation f , de�ned on a arrier set Q, is said to be left-invertible (right-invertible) if every of its right (left) translation is a permutation of Q. In otherwords, the equation f(x; a) = b (respetively, f(a; y) = b) has a unique solutionfor all a, b 2 Q and it is denoted by f `(b; a) (respetively, by fr(a; b)). It is easyto see that f ` and fr are binary operations on Q whih are alled left and rightdivisions of f . A quasigroup operation f , its divisions, divisions of the divisions,. . . are alled parastrophs of f . It is easy to verify that every quasigroup operationhas at most six di�erent parastrophs. Left- and right-invertible operation is alledinvertible or quasigroup operation. A groupoid (Q; f) is alled a quasigroup if fis invertible.So, the equalitiesF (F `(x; y); y) = x; F `(F (x; y); y) = x;F (x;F r(x; y)) = y; F r(x;F (x; y)) = y(1)are superidentities on �, i.e., they hold for all x; y 2 Q and for all values of F inthe set � of all invertible funtions, de�ned on Q.Let W , V be terms and [W ℄ denote the set of all individual variables appearingin W . Let fx1; : : : ; xng := [W ℄ [ [V ℄;then the formula (8x1) : : : (8xn) W = Vis alled a funtional equation. As usual, the universal quanti�ers are omitted.A sequene of operations, de�ned on a set Q, is alled a solution on Q of afuntional equation if the sequene redues the equation to an identity [1℄. If allomponents of a solution are invertible, then it is alled a quasigroup solution. Theset of all solutions on Q will be alled solution set of the equation. A funtionalequation is alled:� a generalized funtional equation if all its funtional variables are pairwisedi�erent;



Solution of distributive-like quasigroup funtional equations 449� a binary funtional equation if all funtional variables are binary, i.e., theyare assumed to take their values in a set of binary operations;� a quasigroup funtional equation if its funtional variables are assumed totake their values in a set of quasigroup operations (i.e., invertible fun-tions);� a distributive-like funtional equation if it is binary and has three individ-ual variables with appearanes 2, 2, 3.Here we onsider binary quasigroup funtional equations having neither individualnor funtional onstants.Two funtional equations are said to be parastrophially equivalent [11℄ if onean be obtained from the other in a �nite number of the following steps:1) appliation (1);2) hanging the sides of the equation;3) renaming of individual variables;4) renaming of funtional variables.In [12℄, it was stated that every generalized distributive-like quasigroup fun-tional equation is parastrophially equivalent to at least one of the equationsF1(x;F2(y; z)) = F3(F4(x; y);F5(x; z));(2) F1(y;F2(x; z)) = F3(F4(y;F5(x; z));x);(3) F1(F2(x; y); y) = F3(x;F4(F5(x; z); z));(4) F1(x;F2(x; z)) = F3(F4(F5(x; y); y); z);(5) F1(y;F2(x; z)) = F3(y;F4(x;F5(x; z))):(6)If an operation is denoted by fi and an element is denoted by e, then we agreeto denote the orresponding left and right translations by Li and Ri respetively,i.e.,(7) Lix := fi(e;x); Rix := fi(x; e); i = 1; 2; 3; : : :Operations f , g are alled orthogonal (f ? g) if the system(f(x; y) = a;g(x; y) = bhas a unique solution for all a; b 2 Q.Let g(x; y) := �1f(�x;�y) for some permutations �, �,  of Q; then g isalled an isotope of f and is denoted by g := f(�; �; ); the triplet (�; �; ) isalled isotopism between g and f ; the orresponding relation on the set of allbinary operations, de�ned on Q, is alled an isotopy .



450 F.M. Sokhatsky, H.V. KrainihukAny isotope of a parastroph of f is alled an isostroph of f . It is easy to verifythat an arbitrary isostroph is a parastroph of an isotope of f and any isostrophof an invertible operation is invertible as well.The well-known funtional equation of generalized assoiativityF1(F2(x; y); z) = F3(x;F4(y; z))(8)was solved by V.D. Belousov in [3℄ but its proof was published in [2℄. Here weneed some spei�ation of Belousov's solution and so, we are giving proof of theorresponding theorem.Note that if (Q; �) is an arbitrary semigroup, �, �,  are arbitrary transfor-mations and Æ, � are permutations of Q, then it is easy to see that a quadruple(g1; g2; g3; g4) of funtions, de�ned byg1(t; z) = Æt � z; g2(x; y) = Æ�1(�x � �y);g3(x;u) = �x � �u; g4(y; z) = ��1(�y � z);(9)is a solution of (8). Here we onsider quasigroup solutions only.Theorem 1. Let (Q; �) be a group and �, �, , Æ, � be permutations on Q. Thena quadruple (g1; g2; g3; g4), de�ned by (9), is a quasigroup solution of (8) on Q.Vie versa, if a quadruple (g1; g2; g3; g4) of operations is a quasigroup solutionof (8), then for any element e 2 Q there exists a unique sequene (�;�;�; ; Æ; �)of invertible operations, de�ned on Q, suh that (Q; �) is a group with the neutralelement e, Æe = �e = e and the equalities (9) are true. In this ase, the operations(�), �, �, , Æ, � an be de�ned byÆx = g1(x; gr1(e; e)); �x = g3(x; e); �x = g3(g3̀(e; e);x)x = g1(e;x); x � y = g1(Æ�1(x); �1(y)); �x = Æg2(g3̀(e; e);x):(10)Proof: Let a quadruple of operations (g1; g2; g3; g4) be de�ned by (9). All oper-ations are invertible, sine all of them are isotopi to (�).Vie versa, let (g1; g2; g3; g4) be a quasigroup solution of (8) on Q. This meansthat the equality(11) g1(g2(x; y); z) = g3(x; g4(y; z))is an identity on Q and eah of the operations g1, g2, g3, g4 is invertible. Let ebe an arbitrary element of Q. We de�ne (�) and �, �, , Æ, � by (10). Operations(�), �, �, , Æ, � are invertible, sine g1, g2, g3, g4 are invertible.Note that Æe = �e = e and the element e is neutral for the operation (�). Really,Æe (10)= g1(e; gr1(e; e)) (1)= e; �e (10)= g3(g3̀(e; e); e) (1)= e:



Solution of distributive-like quasigroup funtional equations 451Taking into onsideration (1), the equalities (10) imply �1x = gr1(e;x) andÆ�1(x) = g1̀(x; gr1(e; e)). That is whyx � e (10)= g1(g1̀(x; gr1(e; e)); gr1(e; e)) (1)= x:Sine Æe = e, we have Æ�1e = e ande � x = g1(Æ�1e; �1x) = g1(e; gr1(e;x)) (1)= x:Thus, (Q; �) is a loop and e is its neutral element.The equalities (10) imply the �rst identity of (9). We put the obtained expres-sion for g1 in (11): Æg2(x; y) � z = g3(x; g4(y; z)):(12)Combining x := g3̀(e; e), (10), (12), we get �y � z = �g4(y; z). Consequently, theforth equality of (9) is true. Substituting the obtained value for g4 in (12), wehave Æg2(x; y) � z = g3(x; ��1(�y � z)):(13)We put z = �1e: Æg2(x; y) = g3(x; ��1�y):(14)Integrating (14) in (13), we obtaing3(x; ��1�y) � z = g3(x; ��1(�y � z)):We replae z with z and we put y = ��1e: �x � z = g3(x; ��1z), i.e., the thirdequality of (9) is true. Putting the expression for g3 in (14), we get the seondequality of (9).Combining (9) and (11), we obtain assoiativity of (�). So, the existene of (9)is established.To prove the uniqueness, we assume that an operation sequene (Æ;�1; �1; 1; Æ1;�1) satis�es the onditions of the theorem, i.e., (Q; Æ) is a group, e is its neutralelement, Æ1e = �1e = e andg1(t; z) = Æ1t Æ 1z; g2(x; y) = Æ�1(�1x Æ �1y);g3(x;u) = �1x Æ �1u; g4(y; z) = ��11 (�1y Æ 1z):(15)Comparing (9) and (15) for g1, we obtain the identity:Æt � z = Æ1t Æ 1z:If t = e, then  = 1. Replaing z with �1e, we ome to Æ = Æ1. Thus,(�) = (Æ). Equating two expressions for g3 of (9) and (15), we get the identity



452 F.M. Sokhatsky, H.V. Krainihuk�x � �u = �1x � �1u. If u = e, then � = �1. If x = ��1e, then � = �1. Equatingtwo expressions for g2, we obtain � = �1. �Reall that the left multipliation �̀ and the right multipliation �r of binaryoperations are de�ned by(g �̀ h)(x; y) := g(h(x; y); y); (g �r h)(x; y) := g(x;h(x; y)):Lemma 2 ([4℄). Let g, h be invertible operations; then the following assertionsare true:g �̀ h is invertible , g ? h`; g �r h is invertible , g ? hr:Reall that an invertible operation f , de�ned on Q, is alled topologial in atopologial spae (Q;T ) if f , f `, fr are ontinuous.Lemma 3. Let (Q;T ) be an arbitrary topologial spae, f be a topologial quasi-group operation in (Q;T ), g be de�ned on Q, and g have a neutral element. If f ,g are isotopi and at least one omponent of the isotopism is a homeomorphismof (Q;T ), then g is a topologial quasigroup in (Q;T ) and all omponents of theisotopism are homeomorphisms of (Q;T ).Proof: Let (�; �; ) denote isotopism between operations f and g, i.e.,(16) f(x; y) = �1g(�x;�y)for all x; y 2 Q. So, g is invertible. Let a := ��1e and b := ��1e, where e denotesthe neutral element of g. Put x = a and y = b in (16):Lfa = �1� and Rfb = �1�:Sine f is a topologial quasigroup operation, all its translations and their inversesare homeomorphisms. So, the lemma follows from the above equalities. �2. Solution of distributive-like funtional equationsFuntional equation (2) is well known as a generalized left distributivity quasi-group funtional equation. Its solutions set is unknown. Here the solution of(3){(6) and some orollaries are given. The other funtional equation whih isparastrophially equivalent to (3), has been solved in [7℄.Theorem 4. Let (Q; �) be a group; g be a quasigroup and g`?(�); �, �, , Æ, �be permutations of Q; then the quintuple (f1; : : : ; f5) of operations, de�ned on aset Q by(17) f1(x; y) = �x � Æy; f2(x; z) = Æ�1�g(z; x) � x�;f3(x; y) = �x � y; f4(x; y) = ��1(�x � �y);f5(x; z) = ��1g(z; x);



Solution of distributive-like quasigroup funtional equations 453is a quasigroup solution of (3).Conversely, if a quintuple (f1; : : : ; f5) is a quasigroup solution of (3), then foran arbitrary element e 2 Q there exists a unique sequene (�; g; �; �; ; Æ; �) ofquasigroup operations suh that (Q; �) is a group with neutral element e, �e =�e = Æe = e, g`?(�), (17) is valid and(18) �x = f1(x; e); �x = f3(x; fr3 (e; e)); x = f3(e;x);Æy = f1(e; y) �x = f3(f4(e;x); fr3 (e; e));x � y = f3(��1x; �1y); g(z;x) = �f5(�1x; z):Proof: Let (Q; �) be a group, �, �, , Æ, � be arbitrary permutations of Q, gbe an arbitrary binary quasigroup operation, g`?(�), and operations f1,. . . , f5 bede�ned by (17). Beause the operations f1, f3, f4, f5 are isostrophs of an invertibleoperation, eah of them is invertible. Aording to Lemma 2, orthogonality g`?(�)and invertibility of g imply invertibility of f2. Now we prove the identity(19) f1(y; f2(x; z)) = f3(f4(y; f5(x; z));x):For this purpose we alulate its left and right parts:f1(y; f2(x; z)) = �y � Æf2(x; z) = �y � g(z; x) � x;f3(f4(y; f5(x; z));x) = �f4(y; f5(x; z)) � x == �y � �f5(x; z) � x = �y � g(z; x) � x:These right parts are identially equal that is why the left parts are identiallyequal too. This means that (f1; : : : ; f5) is a quasigroup solution of (3).Conversely, let (f1; : : : ; f5) be a quasigroup solution of (3). This means thatthe identity (19) is true.Let e be an arbitrary element of Q. Combining (7) and (19) with y = e, weobtain f2(x; z) = L�11 f3(L4f5(x; z);x). We put the expression in (19):f1(y;L�11 f3(L4f5(x; z);x)) = f3(f4(y; f5(x; z));x):The variable t := L4f5(x; z) together with z takes all values in Q, therefore,(20) f3(f4(y;L�14 t);x) = f1(y;L�11 f3(t;x)):for all x; y; t 2 Q. We introdue the following notation:(21) g1 := f3; g2(y; t) := f4(y;L�14 t); g3(y;u) := f1(y;L�11 u):(20) means that the quadruple (g1; g2; g3; g1) of operations is a solution of thegeneralized funtional equation of assoiativity (8). Theorem 1 implies the equal-ities (9) and (10) with g4 = g1. (21) and (7) imply that e is a left neutral element



454 F.M. Sokhatsky, H.V. Krainihukfor both g2 and g3: g2(e;x) (21)= f4(e;L�14 x) (7)= L4L�14 x = x;g3(e;x) (21)= f1(e;L�11 x) (7)= L1L�11 x = x:Therefore, g3̀(e; e) = e and from (10) we have � = ", �e = e and � = Æ:�x = Æg2(g3̀(e; e);x) = Æg2(e;x) = Æx:Combining (21) and (9), we obtain:f1(x;L�11 u) (21)= g3(x;u) (9)= �x � u; f3(t; z) (21)= g1(t; z) (9)= �t � z;f4(x;L�14 y) (21)= g2(x; y) (9)= ��1(�x � �y):Denoting Æ := L1 and � := �L4, we get the equalities for f1, f3, f4 of (17) anddependene (18) for �, �, , Æ, (�), �. Now we return to (19):�y � Æf2(x; z) = �y � �f5(x; z) � x:We redue the equality by �y and get Æf2(x; z) = �f5(x; z) � x. De�neg(z;x) := �f5(�1x; z):Therefore, Æf2(�1x; z) = g(z;x) � x. Sine the operation f2 is invertible, byLemma 2, this equality implies orthogonality g`?(�). Thus, we obtain the expres-sions (17) for f2 and f5. The proof of uniqueness is the same as in Theorem 1. �Corollary 5. Let (Q;T ) be an arbitrary topologial spae and a quintuple(f1; : : : ; f5) of operations be de�ned on a set Q by (17), where (Q; �) is a topo-logial group, (Q; g) is a topologial quasigroup, g`?(�), �, �, , Æ, � are home-omorphisms of (Q;T ). Then (f1; : : : ; f5) is a topologial quasigroup solution ofthe funtional equation (3).Conversely, if a quintuple (f1; : : : ; f5) of topologial quasigroup operations is asolution of (3), then for an arbitrary element e 2 Q there exists a single sequene(�; g;�;�; ; Æ;�) of operations suh that (Q; �) is a topologial group and e is itsneutral element, g is a topologial quasigroup operation and g`?(�), �, �, , Æ, �are homeomorphisms, �e = �e = Æe = e and (17) are ful�lled. In this ase thesequene (�; g;�;�; ; Æ;�) is de�ned by (18).Proof: Let operations f1; : : : ; f5 be de�ned by (17); then they are topologial,sine eah of them is a omposition of topologial operations. Aording to The-orem 4, the quintuple (f1; : : : ; f5) of operations is a quasigroup solution of thefuntional equation (3).Conversely, let f1; : : : ; f5 be topologial quasigroup operations in the topolog-ial spae (Q;T ) and a quintuple (f1; : : : ; f5) be a solution of (3). Theorem 4



Solution of distributive-like quasigroup funtional equations 455implies (17) and (18). The equalities (18) imply that the operations �, �, , Æ,�, (�), g are topologial in (Q;T ). �Corollary 6. Let R be the topologial spae of the real number with the naturaltopology and binary operations f1; : : : ; f5 be de�ned on R. Then a quintuple(f1; : : : ; f5) is a topologial quasigroup solution of the funtional equation (3)if and only if there exist homeomorphisms �, �, , �, Æ, ' of the spae anda quasigroup topologial operation g suh that g` is orthogonal to the additiveoperation (+) of the �eld R and(22) f1(x; y) = '(�x + Æy); f2(x; z) = Æ�1(g(z; x) + x);f3(x; y) = '(�y + x); f4(x; y) = ��1(�x+ �y);f5(x; y) = ��1g(y; x):Proof: Let (f1; : : : ; f5) be arbitrary topologial quasigroup solution of (3) on R.Aording to Corollary 5, there exists a topologial group (R; �), topologial quasi-group (R; g) and homeomorphisms �, �, , Æ, � of R suh that the equalities (17)are valid. It is well known [6℄ that the topologial groups (R; �) and (R; +) aretopologially isomorphi, i.e., there exists a homeomorphism ' of R suh that(23) x � y = '('�1(x) + '�1(y));where (+) denotes addition of the real numbers. Using this relationship, theequalities (17) an be written as follows:(24) f1(x; y) = '('�1�x+ '�1Æy);f2(x; z) = Æ�1'('�1g(z; x) + '�1x);f3(x; y) = '('�1�y + '�1x);f4(x; y) = ��1'('�1�x + '�1�y):Now we make another notation:�0 := '�1�; �0 := '�1�; 0 := '�1;�0 := '�1�; Æ0 := '�1Æ; g0(x; y) := '�1g(x;'y)(25)and we obtain the following expressions for f1, f3 and f4:f1(x; y) = '(�0x+ Æ0y); f3(x; y) = '(�0y + 0x);f4(x; y) = ��10 (�0x+ �0y):



456 F.M. Sokhatsky, H.V. KrainihukFor f2 and f5 we have:f2(x; z) (24)= Æ�1'('�1g(z; x) + '�1x) == Æ�1'('�1g(z;'('�1x)) + '�1x) (25)= Æ�10 (g0(z; 0x) + 0x);f5(x; y) (17)= ��1g(y; x) = ��1'('�1g(y;'('�1x))) (25)=(25)= ��10 '�1g(y;'0x) (25)= ��10 g0(y; 0x):Sine f2(x; z) = Æ�10 (g0(z; 0x) + 0x), it follows thatÆ0f2(z; �10 x) = g0(z;x) + x = �(+) �̀ g0� (x; y):By Lemma 2, (+) ? g0̀.The inverse statement immediately follows from Corollary 5. �Corollary 7. Let a set Q have a prime order p and binary operations f1; : : : ; f5be de�ned on Q. Then (f1; : : : ; f5) is a quasigroup solution of the funtionalequation (3) if and only if there exist bijetions �, �, , �, Æ, ' between Q andZp,1 a quasigroup operation g suh that (+) ? g`, and the equalities (22) aretrue.Proof: It is well known that all groups of the same prime order are pairwiseisomorphi. In other words, there exists a bijetion ' between Q and the set Zpof residues modulo p suh that the groups (Q; �) and (Zp; +) are isomorphi, i.e.,the equality (23) is true. Combining (23), (25) and Theorem 4, we obtain theorollary. �Theorem 8. Let f1; : : : ; f5 be binary operations, de�ned on a set Q. Then(f1; : : : ; f5) is a quasigroup solution of the funtional equation (4) if and only iff1, f3 and f4 are quasigroup operations and there exist permutations � and � ofQ suh that the identities(26) f3(x; �x) = �x; f2(x; y) = f1̀(�x; y); f5(x; y) = f4̀(�x; y)hold.Proof: Let a quintuple (f1; : : : ; f5) of quasigroup operations be a solution of (4).This means that(27) f1(f2(x; y); y) = f3(x; f4(f5(x; z); z))is an identity on Q. Let e be an element of Q. We de�ne � and � by � := R1R2,� := R4R5.21Zp denotes the �eld of residues modulo p and (+) is the additive operation of the �eld.2Notation is given in (7).



Solution of distributive-like quasigroup funtional equations 457If y = z = e, then (27) implies the �rst identity of (26). It implies thatfr3 (x;�x) = �x. Put z = e in (27) and obtain f1(f2(x; y); y) = f3(x; �x) =�x. So, the seond identity of (26) is true. Putting y = e in (27), we havef3(x; f4(f5(x; z); z)) = �x. Applying the de�nition of right division for f3, we getf4(f5(x; z); z) = fr3 (x;�x) = �x. Using the de�nition of left division for f4, weobtain the third identity of (26).Vie versa, let the relationships (26) be true and the operations f1, f3, f4 beinvertible. Then f2 and f5 are invertible, sine eah of them is an isostroph of aninvertible operation. Moreover, we havef1(f2(x; y); y) = f1(f1̀(�x; y); y) = �x = f3(x; �x) == f3(x; f4(f4̀(�x; z); z)) = f3(x; f4(f5(x; z); z));i.e., (27) is an identity. Thus, the quintuple (f1; : : : ; f5) of operations is a quasi-group solution of the funtional equation (4). �Proposition 1. For any solution (f1; : : : ; f5) there exists only one pair (�; �) ofpermutations of Q suh that the equalities (26) are valid.Really, let (�1; �2) and (�; �) be pairs of permutations of Q satisfying (26).Therefore, f2(x; y) = f1̀(�1x; y); f5(x; y) = f4̀(�1x; y);f2(x; y) = f1̀(�2x; y); f5(x; y) = f4̀(�2x; y):So, f1̀(�1x; y) = f1̀(�2x; y) and f4̀(�1x; y) = f4̀(�2x; y), therefore, �1 = �2,�1 = �2.Theorem 9. Let Q be a set and f1; : : : ; f5 be binary operations, de�ned on Q.Then (f1; : : : ; f5) is a quasigroup solution of the funtional equation (5) if and onlyif f1, f2 and f4 are quasigroup operations, f1 ? fr2 and there exists a permutation� of Q suh that the identities(28) f3(x; z) = f1(��1x; f2(��1x; z)); f5(x; y) = f4̀(�x; y)hold.Proof: Let a quintuple (f1; : : : ; f5) satisfy the onditions of the theorem. Theoperation f5 is invertible, sine it is an isostroph of the invertible operation f4.By Lemma 2, the invertibility of f3 follows from f1 ? fr2 . Using the de�nition ofthe left division for f6, the relation (28) implies(29) f1(x; f2(x; z)) = f3(�x; z); f4(f5(x; y); y) = �x:This means that the identity(30) f1(x; f2(x; z)) = f3(f4(f5(x; y); y); z)holds. Consequently, (f1; : : : ; f5) is a quasigroup solution of the funtional equa-tion (5).



458 F.M. Sokhatsky, H.V. KrainihukVie versa, let a quintuple (f1; : : : ; f5) of quasigroup operations be a solutionof (5), therefore, the identity (30) is valid. Let e be an element of Q and � :=R4R5. Substituting y = e in (30), we obtain the �rst equality of (29). Combiningthe obtained identity and (30), we get the seond equality of (29). From theseidentities, we obtain (28). Aording to Lemma 2, the �rst equality of (29) andinvertibility of f1, f2, f3 follow f1 ? fr2 . �Proposition 2. For any solution (f1; : : : ; f5) of (5) there exists exatly one per-mutation � suh that (28) hold.Really, let �; �1 be permutations of Q satisfying (28). Therefore,f5(x; y) = f4̀(�x; y); f5(x; y) = f4̀(�1x; y):Comparing the identities, we obtain �1 = �.Theorem 10. Let Q be a set and f1; : : : ; f5 be binary operations, de�ned on Q.Then (f1; : : : ; f5) is a quasigroup solution of the funtional equation (6) if andonly if the operations f2, f3 and f5 are quasigroups, f2 ? f5 and there exists apermutation � of Q suh that the identities(31) f1(x; y) = f3(x;�y); f4(x; y) = �f2(x; fr5 (x; y))hold.Proof: Let a quintuple (f1; : : : ; f5) of operations satisfy onditions of the theo-rem. The operation f1 is invertible, sine it is an isotope of an invertible operation.Aording to Lemma 2, f2 ? f5 implies invertibility of f4. Let us prove that theequality(32) f1(y; f2(x; z)) = f3(y; f4(x; f5(x; z)))is an identity. For this purpose we alulate its left and right sides:f1(y; f2(x; z)) = f3(y;�f2(x; z));f3(y; f4(x; f5(x; z))) = f3(y;�f2(x; fr5 (x; f5(x; z)))) = f3(y;�f2(x; z)):We obtain the same expression, so (32) is true. This means that (f1; : : : ; f5) is aquasigroup solution of (6).Vie versa, let a quintuple (f1; : : : ; f5) of quasigroup operations be a solutionof (6), i.e., the identity (32) is true, and let e 2 Q. Combining (32), y = e and� := L�13 L1, we get(33) f4(x; f5(x; z)) = �f2(x; z):Using the equality, we make replaement in the right side of (32):f1(y; f2(x; z)) = f3(y;�f2(x; z)):



Solution of distributive-like quasigroup funtional equations 459Replaing f2(x; z) with t, we obtain the �rst identity of (31). De�ning the oper-ation f4 from the equality (33), we get the seond identity of (31). Aording toLemma 2, invertibility of ��1f4 implies f2 ? f5. �Proposition 3. For any solution (f1; : : : ; f5) of the funtional equation (6) thereexists exatly one permutation � suh that the equalities (31) are valid.Referenes[1℄ Az�el J., Letures on Funtional Equations and Their Appliations, Aademi Press, NewYork, London, 1966.[2℄ Az�el J., Belousov V.D., Hossz�u M., Generalized assoiativity and bisymmetry on quasi-groups, Ata. Math. Aad. Si. Hungar. 11 (1960), no. 12-2, 127-136.[3℄ Belousov V.D., Assoiative system of quasigroups, Uspekhi Mat. Nauk, (1958), 13, 3(81),243 (in Russian).[4℄ Belousov V.D., Cross isotopy of quasigroup, Quasigroups and Their Systems, Shtiintsa,Kishinev (1990), 14{20 (in Russian).[5℄ Belousov V.D., Some remarks on the funtional equation of generalized distributivity, Ae-quationes Math. 1 (1968), no. 1{2, 54{65.[6℄ Bourbaki N., General Topology. Topologial Groups. Numbers and Related to them Groupsand Spaes, Nauka, Mosow, 1969, 392 pp. (Russian, translated from the Frenh).[7℄ Koval' R.F., On a funtional equation with a group isotopy property, Bul. Aad. StiinteRepub. Mold. Mat. 2005, no. 2, 65{71.[8℄ Krainihuk H.V., Sokhatsky F.M., Solving of some funtional equations having invertiblebinary funtions, Aadem. Ya.S. Pidstryhah Conf. of Young Sientists \Modern problemsof Math. and Meh", Lviv Ivan Franko National University, Lviv, 2009, pp. 158{159 (inUkrainian).[9℄ Krape�z A., �Zivkovi� D., Parastrophially equivalent quasigroup equations, Publ. Inst. Math.(Beograd) (N.S.), 87(101), (2010), 39{58.[10℄ Krape�z A., Simi� S.K., To�si� D.V., Parastrophially unanellable quasigroup equations,Aequationes Math. 79 (2010), 261-280.[11℄ Sokhatsky F.M., On lassi�ation of funtional equations on quasigroups, Ukrainian Math.J. 56 (2004), no. 4, 1259{1266 (in Ukrainian).[12℄ Sokhatsky F.M., On lassi�ation of distributive-like funtional equations, Book of Ab-strats of the 8th International Algebrai Conferene in Ukraine, July 5{12 (2011), Lugansk,Ukraine, p. 79.University \Ukraina", Vinnytsia Institute of Eonomis and Soial Sienes,UkraineE-mail: fmsokha�ukr.netkraynihuk�ukr.net(Reeived Otober 13, 2011, revised January 25, 2012)
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