
Kybernetika

Bořivoj Melichar; Jan Janoušek; Tomas Flouri
Arbology: Trees and pushdown automata

Kybernetika, Vol. 48 (2012), No. 3, 402--428

Persistent URL: http://dml.cz/dmlcz/142946

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/142946
http://project.dml.cz

KYB ERNET IK A — VO LUME 4 8 (2 0 1 2) , NUMBER 3 , PAGES 4 0 2 – 4 2 8

ARBOLOGY: TREES AND PUSHDOWN AUTOMATA

Bořivoj Melichar, Jan Janoušek and Tomáš Flouri

We present a unified and systematic approach to basic principles of Arbology, a new algo-
rithmic discipline focusing on algorithms on trees. Stringology, a highly developed algorithmic
discipline in the area of string processing, can use finite automata as its basic model of com-
putation. For various kinds of linear notations of ranked and unranked ordered trees it holds
that subtrees of a tree in a linear notation are substrings of the tree in the linear notation.
Arbology uses pushdown automata reading such linear notations of trees as its basic model of
computation. Basic principles known from stringology are used for the construction of particu-
lar arbology algorithms, in which the underlying tree structure is processed with the use of the
pushdown store. Arbology results are shown for the basic problems subtree matching and tree
indexing for ranked and unranked ordered trees.

Keywords: trees, pushdown automata, tree pattern matching, indexing trees, arbology

Classification: 05C05, 68Q68

1. INTRODUCTION

Trees are one of the fundamental hierarchical data structures used in Computer Science.
Many methods have been described for solving various tree–related problems. However,
most of them lack clear references to a systematic approach of the theory of formal
languages, grammars and automata.

The theory of formal tree languages has been extensively studied and developed since
the 1960s [5, 6, 10, 13]. Models of computation of this theory are various kinds of tree au-
tomata, which represent the generalisation of automata on strings to automata on trees.
The most researched kind of tree automata are finite tree automata, which recognize
regular tree languages, and their implementation is based on recursive procedures.

Linearising trees and using standard string automata reading the linear notations
represents another approach for solving tree algorithms. Generally, every sequential
algorithm working on a tree traverses nodes of the tree in a sequential order of nodes,
which follows a corresponding linear notation of the tree. It holds that linear notations of
trees are context–free languages. In [20] it is proved that (string) deterministic pushdown
automata reading linear notations of trees are more powerful than finite tree automata:
the class of tree languages whose postfix notation can be accepted by deterministic
pushdown automata is a proper superclass of regular tree languages. These ways of
reasoning can lead to the conclusion that a pushdown automaton reading linear notations

Arbology: Trees and pushdown automata 403

of trees can be an appropriate model of computation for tree algorithms.
Some particular tree algorithms based on pushdown automata are known, for example

the Graham–Glanville technique used for code selection [14] or other similar methods
[21, 25] using an LR–like pushdown automaton for ranked trees. Stringology [8, 9, 23, 26]
is a highly developed systematic algorithmic discipline in the area of string processing
and it can use finite automata as its basic model of computation. However, a systematic
theory for tree algorithms which would be analogous to that of the stringology did
not exist. In 2008 we founded a new algorithmic discipline called arbology from the
Latin, Spanish, French words (arbor, arbol, arbre) meaning tree. Our main motivation
for founding arbology was to apply some of the well–known principles of algorithms
from stringology to trees so that effective analogous tree algorithms based on pushdown
automata would be created. As is proved in this paper, for various kinds of linear
notations of both ranked and unranked ordered trees, it holds that subtrees of a tree in
a linear notation are substrings of the tree in the linear notation. This is a key property,
which allows the use of some principles from stringology in the area arbology.

This paper presents an unified and systematic approach to basic arbology principles
and results. Arbology results are shown for the basic problems subtree matching and
tree indexing for ranked and unranked ordered trees. The paper is an extended journal
version of contributions of two invited talks from two conferences [22, 19]. In comparison
with [22], this paper contains the most important proofs which are omitted in [22] and
also principles for processing unranked ordered trees.

The rest of the paper is organised as follows. Section 2 contains basic definitions.
Section 3 deals with linear notations of ranked and unranked trees and some of their
important properties. Basic pushdown automata for processing these linear notations
are presented in Section 4. Section 5 is devoted to determinising pushdown automata.
Section 6 deals with exact subtree matching. Subtree and tree pattern pushdown au-
tomata, which represent a complete index of a tree for subtrees and for tree patterns,
respectively, are presented in Section 7. Sections 6 and 7 present the results for ranked
trees in prefix notation. Section 8 describes analogous algorithms for processing the
other linear notations, also for unranked trees. The last section is the conclusion.

2. BASIC NOTIONS

We define notions on trees similarly as they are defined in [1, 6, 13, 15].

2.1. Alphabet

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite nonempty
set of symbols each of which has a unique non–negative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary
(constants), unary, binary, . . ., p-ary symbols. We assume that A contains at least one
constant. In the examples we use numbers at the end of the identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.

404 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

2.2. Tree, tree pattern, tree template

Based on concepts from graph theory (see [1]), a tree over an alphabet A can be defined
as follows:

A directed graph G is a pair (N,R), where N is a set of nodes and R is a set of lists
of edges such that each element of R is of the form ((f, g1), (f, g2), . . . , (f, gn)), where
f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indicate that, for node f , there are n
edges leaving f , entering node g1, node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to
node fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A
cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for Directed
Acyclic Graph) is an ordered directed graph that has no cycle. A labelling of an ordered
graph G = (N,R) is a mapping of N into a set of labels. In the examples we use af for
a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where g ∈ N .
By analogy, the in-degree of node f is the number of distinct pairs (g, f) ∈ R, where
g ∈ N .

A tree is an acyclic connected graph. Any node of a tree can be selected as a root of
the tree. A tree with a root is called rooted tree. Nodes of the tree with out-degree 0
are called leaves.

A tree can be directed. A rooted and directed tree t is a dag t = (N,R) with a special
node r ∈ N , called the root, such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r.

A labelled, (rooted, directed) tree is a tree having the following property:
(4) every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

An ordered, (labelled, rooted, directed) tree is a tree where direct descendants af1, af2,
. . . , afn of a node af having an Arity(af) = n are ordered.

A ranked, (labelled, rooted, directed, ordered) tree is a tree labelled by symbols from
a ranked alphabet and out-degree of a node f labelled by symbol a ∈ A is Arity(a).
Nodes labelled by nullary symbols (constants) are leaves.

Similarly, an unranked, (labelled, rooted, directed, ordered) tree is a tree labelled by
symbols from an unranked alphabet, which means that the out-degree of a node f
labelled by symbol a is not given by the symbol a.

Example 2.1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled, rooted, and directed tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R1)
over A, where R1 is a set of the following ordered sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07)).

The unranked version of tree t1 is tree t2 = ({a1, a2, a3, a4, a5, a6, a7}, R2) over {a},
where R2 is a set of the following ordered sequences of pairs:

Arbology: Trees and pushdown automata 405

((a1, a2), (a1, a6)),
((a2, a3), (a2, a4)),
((a4, a5)),
((a6, a7)).

Trees can be represented graphically, and trees t1 and t2 are illustrated in Figure 1.

a0

a0 a1 a0

a2 a1

a2

a

a a a

a a

a

Fig. 1. Tree t1 (left) and its unranked version tree t2 (right) from

Example 2.1.

The height of a tree t, denoted by Height(t), is defined as the maximal length of a
path from the root of t to a leaf of t.

To define a tree pattern, we use a special nullary symbol S, not in A, Arity(S) = 0,
which serves as a placeholder for any complete subtree. A tree pattern is defined as a
labelled ordered tree over an alphabet A ∪ {S}. We will assume that the tree pattern
contains at least one node labelled by a symbol from A. A tree pattern containing at
least one symbol S will be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches an object tree t at
node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of the tree t such
that the tree p′, obtained from p by substituting the subtree ti for the ith occurrence of
S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted at n.

Example 2.2. Consider tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R1) from Example
2.1, which is illustrated in Figure 1. Consider a tree pattern p1 over A ∪ {S} p1 =
({a21, a02, a13, a04}, Rp1), where Rp1 is a set of the following ordered sequences of pairs:

((a21, a02), (a21, a13)),
((a13, a04)).

Consider a tree pattern (template) p2 over A ∪ {S} p2 = ({a21, S2, a13, S4}, Rp2),
where Rp2 is a set of the following ordered sequences of pairs:

((a21, S2), (a21, a13)),
((a13, S4)).

Tree patterns p1 and p2 are illustrated in Figure 2. Tree pattern p1 has one occurrence
in tree t1 – it matches at node 2 of t1. Tree pattern p2 has two occurrences in tree t1 –
it matches at nodes 1 and 2 of t1.

406 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

a0

a0 a1

a2

S

S a1

a2

Fig. 2. Tree pattern p1 (left) and tree pattern (template) p2 (right)

from Example 2.2.

2.3. Language, grammar, finite and pushdown automata

We define notions from the theory of string languages similarly as they are defined in
[1, 16].

A language over an alphabet A is a set of strings over A. Symbol A∗ denotes the
set of all strings over A including the empty string, denoted by ε. Set A+ is defined
as A+ = A∗ \ {ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-
fold concatenation of x with x0 = ε. Set x∗ is defined as x∗ = {xm : m ≥ 0} and
x+ = x∗ \ {ε} = {xm : m ≥ 1}.

A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0, F),
where Q is a finite set of states, A is an input alphabet, δ is a mapping from Q × A
into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of
final (accepting) states. A finite automaton FM is deterministic (DFA) if δ(q, a) has no
more than one member for any q ∈ Q and a ∈ A. We note that the mapping δ is often
illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1]. The transformation con-
structs the states of the DFA as subsets of states of the NFA and selects only such
accessible states (ie subsets). These subsets are called d–subsets.

A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-tuple
M = (Q,A, G, δ, q0, Z0, F), where Q is a finite set of states, A is an input alphabet, G
is a pushdown store alphabet, δ is a mapping from Q× (A∪ {ε})×G into a set of finite
subsets of Q×G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store symbol,
and F ⊆ Q is the set of final (accepting) states.

An extended nondeterministic pushdown automaton is a seven-tuple M = (Q,A,
G, δ, q0, Z0, F), where δ is a mapping from Q× (A∪{ε})×G∗ into a set of finite subsets
of Q×G∗ and all other symbols have the same meaning as above.

Triple (q, w, x) ∈ Q×A∗×G∗ denotes the configuration of a pushdown automaton. We
will write the top of the pushdown store x on its left hand side. The initial configuration
of a pushdown automaton is a triple (q0, w, Z0) for the input string w ∈ A∗. The relation
`M⊂ (Q×A∗ ×G∗) × (Q×A∗ ×G∗) is a transition of a pushdown automaton M . It
holds that (q, aw, αβ) `M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The kth power, transitive
closure, and transitive and reflexive closure of the relation `M is denoted `k

M , `+
M , `∗M ,

respectively.
An extended pushdown automaton M is an deterministic extended pushdown au-

Arbology: Trees and pushdown automata 407

tomaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not a

suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of α.

A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) `∗M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) `∗M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty pushdown store, then the
set F of final states is the empty set.

2.4. String pattern matching automata

Given a string pattern p ∈ A∗, the string pattern matching automaton constructed for
the string pattern p reads an input text and reaches its final state whenever the end of
the string pattern has been read in the input text. In this way every occurrence of the
string pattern in the text is found. The searching phase is performed in time linear to
the length of the input text.

Example 2.3. Given a string p1 = a2 a0 a1 a0, which is a subtree of tree t1 from Exam-
ple 2.1 in prefix notation, the corresponding nondeterministic string pattern matching
automaton is FMnpat(p1) = ({0, 1, 2, 3, 4},A, δ1, 0, {4}), where its transition diagram is
illustrated in Figure 3. (For the construction of the nondeterministic string pattern
matching automaton, see [23].)

After the standard transformation of a nondeterministic string pattern matching
automaton to a deterministic one [16], the deterministic string pattern matching au-
tomaton for p1 is FMdpat(p1) = ({[0], [0, 1], [0, 2], [0, 3], [0, 4]}, A, δ2, [0], {[0, 4]}), where
its transition diagram is illustrated in Figure 4.

2.5. Indexing strings by finite automata

String suffix and factor automata are finite automata, and were introduced in [4, 7] as a
mechanism for eliminating redundancy in string suffix trees [8, 9, 23, 26]. Given a string
s ∈ A∗, the suffix and factor automaton constructed for the string s accepts all suffixes
and substrings, respectively, of the string s in time linear to the length of the input suffix
and the input substring, respectively, and not depending on the length of the string s.
In [8, 9, 26], suffix and factor automata are defined as such minimal deterministic finite
automata. In [23], their basic nondeterministic versions are also presented. In some
literature [9], the deterministic suffix automaton is also called the directed acyclic word
graph (DAWG).

408 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

0 1 2 3 4

a2 a0 a1 a0

a2, a1, a0

Fig. 3. Transition diagram of the nondeterministic string pattern

matching automaton FMnpat(p1) for string pattern p1 = a2 a0 a1 a0

from Example 2.3.

[0] [0, 1] [0, 2] [0, 3] [0, 4]

a2 a0 a1 a0

a1, a0 a2

a1 a2

a0
a2

a2a1

a1, a0

Fig. 4. Transition diagram of the deterministic string pattern

matching automaton FMdpat(p1) for string pattern p1 = a2 a0 a1 a0

from Example 2.3.

0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

Fig. 5. Transition diagram of the nondeterministic string suffix

automaton FMnsuf (p2) for string p2 = a2 a2 a0 a1 a0 a1 a0 from

Example 2.4.

Arbology: Trees and pushdown automata 409

Example 2.4. Given a string p2 = a2 a2 a0 a1 a0 a1 a0, which is tree t1 from Ex-
ample 2.1 in prefix notation, the corresponding nondeterministic suffix automaton is
FMnsuf (p2) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7}), where its transition diagram is illus-
trated in Figure 5. (For the construction of the nondeterministic suffix automaton, see
[23].)

After the standard transformation of a nondeterministic suffix automaton to a deter-
ministic one [16], the deterministic suffix automaton for p2 is
FMdsuf (p2) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},
A, δd, 0, {[7], [3, 5, 7], [5, 7]}), where its transition diagram is illustrated in Figure 6.

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0
a0

a1

a0

Fig. 6. Transition diagram of the deterministic suffix automaton

FMdsuf (p2) for string p2 = a2 a2 a0 a1 a0 a1 a0 from Example 2.4.

3. LINEAR NOTATIONS OF TREES

Every sequential algorithm traverses a processed tree in a sequential order of nodes,
which creates a corresponding linear notation of the tree. In this paper we consider
depth first oriented traversing of the processed tree in which every node is recorded just
once during some visit.

3.1. Ranked trees

There are two standard one–visit depth–first oriented linear notations of ranked trees:
prefix (also called preorder) notation, and postfix (also called postorder) notation.

Definition 3.1. The prefix notation pref(t) of a tree t is defined as follows:

1. pref(t) = a if af is a leaf,
2. pref(t) = a pref(b1) pref(b2) . . . pref(bn), where a is the root of the tree t and

b1, b2, . . . bn are direct descendants of a.

We note that in many papers on the theory of tree languages, such as [6, 13, 15],
labelled ordered ranked trees are defined with the use of ordered ranked ground terms.
Ground terms can be regarded as labelled ordered ranked trees in prefix notation.

410 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

Definition 3.2. The postfix notation post(t) of a tree t is defined as follows:

1. post(t) = a if af is a leaf,
2. post(t) = post(b1) post(b2) . . . post(bn) a, where a is the root of the tree t and

b1, b2, . . . bn are direct descendants of a.

Example 3.3. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over
A from Example 2.1, which is illustrated in Figure 1. Prefix and postfix notations of
tree t1 are strings pref(t1) = a2 a2 a0 a1 a0 a1 a0 and post(t1) = a0 a0 a1 a2 a0 a1 a2,
respectively.

3.2. Unranked trees

Definitions of the basic prefix and postfix notations are very useful for ranked trees. If
the tree is not ranked it is necessary to include information regarding the rank of every
node. This can be done in two ways: (1) by representing a node in both notations as a
pair (a,Arity(a)), (2) by using other principles of linearisation based on incorporating
some special symbols. The second approach can be done using a prefix and a postfix
bar notation in which each subtree is delimited by a bar symbol.

Definition 3.4. The prefix bar notation pref bar(t) and postfix bar notation
post bar(t) of a tree t are defined as follows:

1. pref bar(a) = a ↑ and post bar(a) = ↑ a if a is a leaf,
2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) ↑ and

post bar(t) = ↑ post bar(b1) post bar(b2) . . . post bar(bn) a for prefix and postfix
bar notation, respectively, where a is the root of the tree t and b1, b2, . . . bn are
direct descendants of a.

Example 3.5. Consider an unranked tree t2 from Example 2.1, which is illustrated in
Figure 1. Prefix and postfix bar notations of tree t2 are strings pref bar(t2) = a a a ↑
a a ↑ ↑ ↑ a a ↑ ↑ ↑ and post bar(t2) = ↑ ↑ ↑ a ↑ ↑ a a a ↑ ↑ a a a, respectively.

3.3. Properties of one–visit linear notations of trees

It holds for any tree that each of its subtrees in a one–visit linear notation is a substring
of the tree in the linear notation.

Theorem 1. Given a tree t and its notations pref(t), post(t), pref bar(t) and
post bar(t), all subtrees of t in prefix, postfix, prefix bar and postfix bar notation are
substrings of pref(t), post(t), pref bar(t) and post bar(t), respectively.

P r o o f . The proof for prefix notation can be found in [18]. Proofs for the other three
notations can be made by analogy. For example, the proof for the prefix bar notation is
as follows:
By induction on the height of the subtree:

Arbology: Trees and pushdown automata 411

1. If a subtree t′ has just one node a, where Arity(a) = 0, then Height(t′) = 0,
pref bar(t′) = a ↑ and the claim holds for that subtree.

2. Assume that the claim holds for subtrees t1, t2, . . . , tp, where p ≥ 1,
Height(t1) ≤ m, Height(t2) ≤ m, . . ., Height(tp) ≤ m, m ≥ 0. We have to prove
that the claim also holds for each subtree t′ = at1t2 . . . tp, where Arity(a) = p,
Height(t′) = m + 1:
As pref bar(t′) = a pref bar(t1) pref bar(t2) . . . pref bar(tp) ↑, the claim holds for
the subtree t′. �

However, not every substring of a tree in a linear notation is the linear notation of its
subtree. This can easily be seen from the fact that for a given tree with n nodes there
can be O(n2) distinct substrings of its linear notation, but there are just n subtrees
– each node of the tree is the root of just one subtree. Only those substrings which
themselves are trees in a linear notation are subtrees in the linear notation.

4. BASIC PUSHDOWN AUTOMATA FOR PARTICULAR LINEAR NOTATIONS
OF TREES

In this section, we present basic pushdown automata which accept the one–visit linear
notations of trees defined in the previous section and compute the underlying structure
of trees by means of pushdown operations and pushdown store. These basic pushdown
automata are defined by Definitions 4.1, 4.2, 4.5, and 4.6 for trees in prefix, postfix,
prefix bar and postfix bar notations, respectively. They contain a pushdown symbol
S and we would like to note that each pushdown symbol S which is present in the
pushdown store during the reading of a tree in a linear notation corresponds to just one
subtree.

4.1. Ranked trees

Basic pushdown automata for processing prefix and postfix notations of trees are defined
as follows. We would like to note that the language of all trees in prefix notation is
prefix–free, which means that no prefix of a sentence from the language is a sentence
from the language. Therefore, the end of the input can be recognised by a pushdown
automaton using no lookahead symbol. On the other hand, the language of all trees in
postfix notation is not prefix–free. Therefore, in pushdown automata processing trees
in postfix notation we add an appended right marker a to the input and the resulting
language of trees in postfix notation with the appended right marker is prefix–free.

Definition 4.1. Let A be a ranked alphabet. Then, the basic pushdown automaton for
trees in prefix notation is a PDA Mp = ({q0},A, {S}, δp, q0, S, ∅), where each transition
from δp is of the form δp(q0, a, S) = (q0, S

i), where a ∈ A, i = arity(a).

Definition 4.2. Let A be a ranked alphabet. Then, the basic pushdown automaton for
trees in postfix notation with an appended right marker a is a PDA Mt = ({q0},A ∪
{a},{Z0, S}, δt, q0, Z0, ∅), where each transition from δp is of the form δt(q0, a, Si) =
(q0, S) and δt(q0,a, Z0 S) = (q0, ε), where a ∈ A, i = Arity(a).

412 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

Example 4.3. Consider a ranked alphabet A = {a2, a1, a0}. The transition diagrams
of the basic pushdown automata for trees in prefix and postfix notation are illustrated
in Figure 7.

q0

a2|S 7→ SS

a1|S 7→ S

a0|S 7→ ε

q0

a2|SS 7→ S

a1|S 7→ S

a0|ε 7→ S

⊣ |Z0S 7→ ε

Fig. 7. Transition diagrams of the basic pushdown automata for

ranked alphabet A = {a2, a1, a0} and trees in prefix (left) and postfix

(right) notation from Example 4.3.

The rest of this subsection is devoted to the behaviour of the basic pushdown au-
tomata for prefix and postfix notations. Prefix and postfix notations of ranked trees
possess the following properties, which are described by a definition and two theorems.

Definition 4.4. Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = arity(a1) + arity(a2) + . . . + arity(am) − m + 1=∑m

i=1 arity(ai)−m + 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation and a substring of pref(t),
respectively. Then, w is the prefix notation of a subtree of t, if and only if ac(w) = 0,
and ac(w1) ≥ 1 for each proper prefix w1 of w (ie. w = w1x, x 6= ε).

P r o o f . In [18]. �

The dual principle holds for the postfix notation.

Theorem 3. Let post(t) and w be a tree t in postfix notation and a substring of post(t),
respectively. Then, w is the postfix notation of a subtree of t, if and only if ac(w) = 0,
and ac(w1) ≤ 0 for each proper prefix w1 of w (ie. w = w1x, x 6= ε).

P r o o f . For any two different subtrees st1 and st2 it holds that post(st1) and post(st2)
are either two different strings or one is a substring of the other. The former case occurs
if the subtrees st1 and st2 are two trees with no shared part, and the latter case occurs
if one tree is a subtree of the other tree. No partial overlapping of subtrees is possible
in trees. Moreover, it holds for any two subtrees which are adjacent siblings that their
postfix notations are two adjacent substrings.

— If: By induction on the height of a subtree st, where w = post(st):

Arbology: Trees and pushdown automata 413

1. We assume that Height(st) = 0, which means we consider the case w = a.
where arity(a) = 0. Then, ac(w) = 0. Thus, the claim holds for the case
Height(st) = 0.

2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where p ≥ 1,
Height(st1) ≤ m, Height(st2) ≤ m, . . ., Height(stp) ≤ m,
ac(post(st1)) = 0, ac(post(st2)) = 0, . . ., ac(post(stp)) = 0.
We are to prove that it also holds for a subtree w of height m + 1. Assume
w = post(st1) post(st2) . . . post(stp) a, where arity(a) = p. Then ac(w) =
ac(post(st1)) + ac(post(st2)) + . . . + ac(post(stp)) + p − (p + 1) + 1 = 0 and
ac(w1) ≥ 0 for each w1 , where w = w1x, x 6= ε.
Thus, the claim holds for the case Height(st) = m + 1.

— Only if : Assume ac(w) = 0, and w = a1a2 . . . am, where m ≥ 1, and arity(am) = p.
Since ac(w1) ≥ 0 for each w1, where w = w1x, x 6= ε, the only possibility for
ac(w) = 0 is that w is of the form w = post(t1) post(t2) . . . post(tp) a, where
p ≥ 0, and t1, t2 . . . tp are subtrees which are adjacent siblings. In such a case
ac(w) = 0 + p− (p + 1) + 1 = 0.

No other possibility of the form of w for ac(w) = 0 is possible. Thus, the claim
holds.

Thus, the theorem holds. �

The basic pushdown automata for prefix and postfix notations compute the arity
checksum by pushdown operations. Their behaviour is formally described by the follow-
ing two theorems.

Theorem 4. Let Mp = ({{q0},A, {S}, δp, q0, S, ∅) be the basic pushdown automaton
for trees in prefix notation. Then, (q0, w1w2, S) `+

Mp
(q0, w2, S

j) `∗Mp
(q0, ε, ε), where

w1 ∈ A+, w2 ∈ A∗, if and only if j = ac(w1) and w1w2 is a tree in prefix notation.

P r o o f . In [18]. �

Theorem 5. Let Mt = ({q0},A ∪ {a}, {Z0, S}, δpost, q0, Z0, ∅) be the basic pushdown
automaton for trees in postfix notation with an appended right marker. Then, (q0, w1w2a,
Z0) `+

Mt
(q0, w2a,Z0 Sj) `∗Mt

(q0, ε, ε), where w1 ∈ A+, w2 ∈ A∗, if and only if j =
−ac(w1) + 1 and w1w2 is a tree in a postfix notation.

P r o o f . The relation (q0, w1w2a, Z0) `+
Mt

(q0, w2a, Z0 Sj), which matches with Theo-
rem 3, is proved by induction on the length of w1:

1. Assume w1 = a. Then, (q0, aw2a, Z0) `Mt (q0, w2a, Z0 S), where
Arity(a) = 0. Thus, the claim holds for the case w1 = a.

2. Assume that the claim holds for a string w1 = a1a2 . . . am, where
m ≥ 1. This means that (q0, a1a2 . . . amw2a, Z0) `m

M (q0, w2a, Z0S
j), where

j = −ac(a1a2 . . . am) + 1. We have to prove that the claim also holds for w1 =

414 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

a1a2 . . . ama. It holds that
(q0, a1a2 . . . amaw2a, Z0) `m

M (q0, aw2a, Z0S
j) `M (q0, ε, Z0S

l),
where l = j − arity(a) + 1 = −ac(w1) − arity(a) + 1 = −ac(a1a2 . . . ama) + 1.
Thus, the claim holds for the case w1 = a1a2 . . . ama.

The relation (q0, w2a, Z0 Sj) `+
Mt

(q0, ε, ε) holds if
(q0, w2a, Z0 Sj) `∗Mt

(q0,a, Z0S) `Mt (q0, ε, ε). This means that ac(w1w2) = 0, which
matches with Theorem 3. �

4.2. Unranked trees

Basic pushdown automata for trees in prefix bar notation and in postfix bar notation are
defined by the following two definitions. We would like to note that no appended right
marker to the input is needed as in the case of postfix notation, because the languages
of trees in prefix bar notation and of trees in postfix bar notation are prefix–free and
therefore the end of the input can be recognised by a pushdown automaton using no
lookahead symbol.

Definition 4.5. Let A be an alphabet. Then, the basic pushdown automaton for trees
in prefix bar notation is a PDA Mpb = ({q0},A∪ {↑}, {Z0, S}, δpb, q0, Z0, ∅), where each
transition from δpb is of the form δpb(q0, a, Z0) = (q0, S),
δpb(q0, a, S) = (q0, SS), δpb(q0, ↑, S) = (q0, ε), where a ∈ A.

Definition 4.6. Let A be an alphabet. Then, the basic pushdown automaton for trees
in postfix bar notation is a PDA Mtb = ({q0},A∪{↑}, {Z0, S}, δtb, q0, Z0, ∅), where each
transition from δtb is of the form δtb(q0, ↑, Z0) = (q0, S),
δtb(q0, ↑, S) = (q0, SS), δtb(q0, a, S) = (q0, ε), where a ∈ A.

Example 4.7. Consider an alphabet A = {a}. The transition diagrams of the basic
pushdown automata for trees in prefix bar and postfix bar notation are illustrated in
Figure 8.

q0

a|Z0 7→ S

a|S 7→ SS

↑ |S 7→ ε

q0

↑ |Z0 7→ S

↑ |S 7→ SS

a|S 7→ ε

Fig. 8. Transition diagrams of the basic pushdown automata for

alphabet A = {a} and trees in prefix bar (left) and postfix bar (right)

notation from Example 4.7.

The rest of this subsection is devoted to the behaviour of the basic pushdown au-
tomata for prefix bar and postfix bar notations. A similar definition and similar theorems

Arbology: Trees and pushdown automata 415

as for prefix and postfix notations hold for prefix and postfix bar notations. Instead of
arity checksum ac a bar checksum bc is defined.

Definition 4.8. Given a string w ∈ (A ∪ {↑})+, its bar checksum bc(w) is defined as
follows:

1. bc(a) = 1, a ∈ A, and bc(↑) = −1,
2. bc(b w1) = bc(b) + bc(w1), b ∈ A ∪ {↑}, w1 ∈ (A ∪ {↑})∗.

Theorem 6. Let pref bar(t) and w be a tree t in prefix bar notation and a substring of
pref bar(t), respectively. Then, w is the prefix bar notation of a subtree of t, if and only
if bc(w) = 0, and bc(w1) ≥ 1 for each proper prefix w1 of w (ie. w = w1x, x 6= ε).

P r o o f .

— If: By induction on the height of a subtree st, where w = pref bar(st):

1. We assume that Height(st) = 0, which means we consider the case w = a ↑.
Then, bc(w) = 0. Thus, the claim holds for the case Height(st) = 0.

2. Assume that the claim holds for the subtrees st1, st2, . . . , stp where p ≥ 1,
Height(st1) ≤ m, Height(st2) ≤ m, . . ., Height(stp) ≤ m,
bc(pref bar(st1)) = 0, bc(pref bar(st2)) = 0, . . ., bc(pref bar(stp)) = 0.
We are to prove that it also holds for a subtree w of height m + 1. Assume
w = a pref bar(st1) pref bar(st2) . . . pref bar(stp) ↑. Then
bc(w) = bc(pref bar(st1)+bc(pref bar(st2))+ . . .+bc(pref bar(stp))+1−1 = 0
and bc(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.
Thus, the claim holds for the case Height(st) = m + 1.

— Only if : Assume bc(w) = 0, and w = a1a2 . . . am, where m ≥ 1. Since bc(w1) ≥ 1
for each w1, where w = w1x, x 6= ε, the only possibility for bc(w) = 0 is that w is
of the form
w = a pref bar(t1) pref bar(t2) . . . pref bar(tp) ↑, where p ≥ 0, and t1, t2 . . . tp are
subtrees which are adjacent siblings. In such a case bc(w) = 1 + 0− 1 = 0.

There is no other possible form of w for bc(w) = 0.

Thus, the theorem holds. �

Theorem 7. Let post bar(t) and w be a tree t in postfix bar notation and a substring of
post bar(t), respectively. Then, w is the postfix bar notation of a subtree of t, if and only
if bc(w) = 0, and bc(w1) ≤ −1 for each proper suffix w1 of w (ie. w = xw1, x 6= ε).

P r o o f . The proof can be done by analogy with the proof of Theorem 6. �

The basic pushdown automata for prefix bar and postfix bar notations compute the
bar checksum by pushdown operations. Their behaviour is formally described by the
following two theorems.

416 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

Theorem 8. Let Mpb = ({q0},A ∪ {↑}, {Z0, S}, δpb, q0, Z0, ∅) be the basic pushdown
automaton for trees in prefix bar notation. Then, (q0, w1w2, Z0) `+

Mpb
(q0, w2, S

j) `∗Mpb

(q0, ε, ε), where w1 ∈ (A ∪ {↑})+, w2 ∈ (A ∪ {↑})∗, if and only if j = bc(w1) and w1w2

is a tree in a prefix bar notation.

P r o o f . The statement j = bc(w1) follows directly from the transition function and
Def. 4.8. The sequence of moves (q0, w1w2, Z0) `+

Mpb
(q0, w2, S

j) `∗Mpb
(q0, ε, ε) is possible

because the pushdown store contains at least one symbol before each of its moves. w1w2

is a tree in a prefix bar notation because it matches with Theorem 6. �

Theorem 9. Let Mtb = ({q0},A ∪ {↑}, {Z0, S}, δtb, q0, Z0, ∅) be the basic pushdown
automaton for trees in postfix bar notation. Then, (q0, w1w2, Z0) `+

Mtb
(q0, w2, S

j) `∗Mtb

(q0, ε, ε), where w1 ∈ (A∪{↑})+, w2 ∈ (A∪{↑})∗, if and only if j = −bc(w1) and w1w2

is a tree in a postfix bar notation.

P r o o f . The sequence of moves (q0, w1w2, Z0) `+
Mpb

(q0, w2, S
j) `∗Mpb

(q0, ε, ε) is pos-
sible because the pushdown store contains at least one symbol before each of its move.
w1w2 is a tree in a postfix bar notation because it matches with Theorem 7. �

5. DETERMINISING PUSHDOWN AUTOMATA

No universal algorithm for determinising nondeterministic pushdown automata to equiv-
alent deterministic ones exists. We have identified three classes of nondeterministic
pushdown automata for which algorithms for determinising are known. They are called
input–driven, visible [2] and height–deterministic pushdown automata [24]. This section
describes a simple algorithm of the determinisation of input–driven pushdown automata,
which is used in the rest of this paper.

The notion of a pushdown operation will frequently be used in the following meaning.

Definition 5.1. Let M = (Q,A,G, δ, q0, Z0, F) be a pushdown automaton. Let δ(q, a, α)
contain a pair (p, β) for p, q ∈ Q, a ∈ A∪ ε, α, β ∈ G∗. Then the notation α 7→ β is used
for the operation popping α from the top of the pushdown store and pushing β to the
top of the pushdown store. This operation is called a pushdown operation.

Definition 5.2. A pushdown automaton M = (Q,A,G, δ, q0, Z0, F) is an input–driven
pushdown automaton if each pushdown operation α 7→ β during every transition is
explicitly determined by the input symbol. In more formal notation: For each q ∈ Q
and a ∈ A ∪ {ε} there exists the only mapping δ(q, a, α) = {(p1, β), (p2, β), ..., (pm, β)}
for one pair α, β ∈ G∗ and p1, p2, . . . , pm ∈ Q.

Given a nondeterministic input–driven PDA, it can be determinised as follows:

Algorithm 1. Transformation of an input–driven nondeterministic PDA to an equiva-
lent deterministic PDA.
Input: Input–driven nondeterministic PDA Mn(t) = ({0, 1, 2, . . . , n},A, G,
δ, 0, Z0, ∅).
Output: Equivalent deterministic PDA Md(t) = (Q′,A, G, δ′, qI , Z0, ∅).
Method:

Arbology: Trees and pushdown automata 417

1. Initially, Q′ = {[0]}, qI = [0], and [0] is an unmarked state.

2. (a) Select an unmarked state q′ from Q′.

(b) Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for all
p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ as an unmarked state.

(c) Set the state q′ as marked.

3. Repeat step 2 until all states in Q′ are marked.

The correctness of Algorithm 1 is proved in [18].

6. EXACT SUBTREE MATCHING

This section deals with subtree matchers by deterministic pushdown automata, which
read subject trees in prefix notation. The method is analogous to the construction of
string pattern matchers: for a given pattern, a nondeterministic pushdown automaton is
created and then it is determinised. The pushdown automaton and its pushdown oper-
ations are constructed according to Theorems 2 and 4, where the pushdown operations
check the prefix notation of the processed tree.

Definition 6.1. Let s and pref(s) be a tree and its prefix notation, respectively. Given
an input tree t, a subtree matching pushdown automaton constructed over pref(s) accepts
all matches of tree s in the input tree t by final state.

By analogy with stringology, the nondeterministic subtree matching pushdown au-
tomaton can be constructed in the following way.

Algorithm 2. Construction of a nondeterministic subtree matching PDA for a tree t
in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ,
0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) =
(i, SArity(ai)), where S0 = ε.

2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)), where
S0 = ε.

The correctness of Algorithm 2 is proved in [12].
For constructing deterministic subtree matching PDA, we use the transformation

described by Algorithm 1. In [12] it is proved that given a tree t with n nodes in its
prefix or postfix notation, the deterministic subtree matching PDA Mpds(t) constructed
by Algorithm 2 and 1 is made of exactly n+1 states, one pushdown symbol and |A|(n+1)
transitions.

Given an input tree t with n nodes, the searching phase of the deterministic subtree
matching automaton constructed by Algorithms 2 and 1 is O(n), which is also proved
in [12].

418 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

Example 6.2. Consider a ranked alphabet A = {a0, a1, a2}. Consider a subtree pat-
tern p1 from Example 2.2, where pref(p1) = a2 a0 a1 a0. The corresponding non-
deterministic subtree matching PDA constructed by Algorithm 2 is PDA Mnps(p1) =
({0, 1, 2, 3, 4},A, δnps(p1), {S}, 0, S, {4}), where its transition diagram is illustrated in
Figure 9.

After determinising according to Algorithm 1, the deterministic subtree matching
PDA for p1 is
FMdps(p1) = ({[0], [0, 1], [0, 2], [0, 3], [0, 4]},A, δdps(p1), {S}, [0], S, {[0, 4]}), where its tran-
sition diagram is illustrated in Figure 10.

0 1 2 3 4

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a1|S 7→ S

a0|S 7→ ε

Fig. 9. Transition diagram of the nondeterministic subtree matching

automaton FMnps(p1) for tree pattern in prefix notation

pref(p1) = a2 a0 a1 a0 from Example 6.2.

[0] [0, 1] [0, 2] [0, 3] [0, 4]

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε a2|S 7→ SS

a1|S 7→ S a2|S 7→ SS

a0|S 7→ ε

a2|S 7→ SS

a2|S 7→ SSa1|S 7→ S

a1|S 7→ S

a0|S 7→ ε

Fig. 10. Transition diagram of the deterministic subtree matching

automaton Mdps(p1) from Example 6.2.

Consider a tree t3 over A t3 = ({a21, a22, a03, a14, a05, a26, a07, a18, a09}, R2) illus-
trated in Figure 11. pref(t3) = a2 a2 a0 a1 a0 a2 a0 a1 a0.

Given a tree t3 the sequence of moves by PDA Mdps(p1) is shown in Figure 12. There
are two matching actions in this sequence, which means there are two occurrences of
subtree p1 in tree t3 at the corresponding positions.

Arbology: Trees and pushdown automata 419

a21

a22

a03 a14

a05

a26

a07 a18

a09

pref(t3) = a2a2a0a1a0a2a0a1a0

Fig. 11. Tree t3 from Example 6.2 and its prefix notation.

State Input Pushdown Store Action
[0] a2 a2 a0 a1 a0 a2 a0 a1 a0 S
[0, 1] a2 a0 a1 a0 a2 a0 a1 a0 S S
[0, 1] a0 a1 a0 a2 a0 a1 a0 S S S
[0, 2] a1 a0 a2 a0 a1 a0 S S
[0, 3] a0 a2 a0 a1 a0 S S
[0, 4] a2 a0 a1 a0 S match
[0, 1] a0 a1 a0 S S
[0, 2] a1 a0 S
[0, 3] a0 S
[0, 4] ε ε match
accept

Fig. 12. Trace of deterministic pushdown automaton Mdpt from

Example 6.2.

Subtree matching for multiple subtrees can easily be performed by a PDA created as
a union of subtree matching PDAs for the particular subtrees, for more details see [12].

7. INDEXING TREES

This section describes subtree PDAs [17] and tree pattern PDAs [18] for a tree in prefix
notation. Subtree pushdown automata accept all subtrees of the tree. Tree pattern
pushdown automata accept all tree patterns which match the tree. Given a tree with n
nodes, the deterministic subtree and the deterministic tree pattern pushdown automaton
represent a complete index of the tree, and the search phase of all occurrences of a
subtree or a tree pattern, respectively, of size m is performed in time linear in m and
not depending on n. The total size of the deterministic subtree pushdown automaton is
linear in n. Although the number of distinct tree patterns which match the tree can be

420 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

exponential in n, for specific cases of trees the total size of the deterministic tree pattern
pushdown automaton is linear in n.

7.1. Indexing for subtrees

Definition 7.1. Let t and pref(t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref(t) accepts all subtrees of t in prefix notation.

First, we start with a PDA which accepts the whole subject tree in prefix notation
by empty pushdown store, the construction of which is described by Algorithm 3. The
constructed PDA is deterministic.

Algorithm 3. Construction of a PDA accepting pref(t) by empty pushdown store.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε.

The correctness of Algorithm 3 is proved in [18].
The construction of the deterministic subtree PDA for trees in prefix notation consists

of two steps. First, a nondeterministic subtree PDA is constructed by Algorithm 4.
This nondeterministic subtree PDA is an extension of the PDA accepting tree in prefix
notation, which is constructed by Algorithm 3. Second, the constructed nondeterministic
subtree PDA is input–driven and therefore can easily be determinised.

Algorithm 4. Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Algorithm 3.

2. For each state i, where 2 ≤ i ≤ n, create a new transition
δ(0, ai, S) = (i, SArity(ai)), where S0 = ε.

The correctness of Algorithm 4 is proved in [18].

Example 7.2. A subtree pushdown automaton for tree t1 in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 2.1, which has been constructed by
Algorithm 4, is nondeterministic pushdown automaton
Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅), where its transition diagram is illus-
trated in Figure 13.

The deterministic subtree pushdown automaton, which has been constructed accord-
ing to Algorithm 1 from nondeterministic subtree pushdown automaton
Mnps(t1), is deterministic pushdown automaton
Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},A, {S}, δ3, [0], S, ∅),

Arbology: Trees and pushdown automata 421

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Fig. 13. Transition diagram of nondeterministic subtree pushdown

automaton Mnps(t1) for tree t1 in prefix notation

pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7.2.

where its transition diagram is illustrated in Figure 14. We note that the nondeter-
ministic subtree pushdown automaton is always acyclic and therefore the contents of
the pushdown store of the deterministic pushdown automaton in particular states can
be computed beforehand. Consequently, all transitions leading from states [3, 5, 7] and
[5, 7] can be omitted because the contents of the pushdown store in these state is al-
ways ε and therefore no transition is possible from these states due to the pushdown
operations. This means that deterministic subtree pushdown automaton Mdps(t1) has
fewer transitions than the deterministic string suffix automaton constructed for pref(t1)
[8, 23, 26] shown in Figure 6.

Figure 15 shows the sequence of transitions (the trace) performed by determinis-
tic subtree pushdown automaton Mdps(t1) for an input subtree p3 in prefix notation
pref(p3) = a1a0. The accepting state is [5, 7], which means there are two occurrences of
the input subtree st in tree t1 and their rightmost leaves are nodes a05 and a07.

Given a tree t with n nodes, the number of distinct subtrees of tree t is equal or
smaller than n. The deterministic subtree PDA has only one pushdown symbol S, and
all its states and transitions correspond to the states and the transitions, respectively,
of the deterministic suffix automaton constructed for pref(t). Therefore, the total size of
the deterministic subtree PDA cannot be greater than the total size of the deterministic
suffix automaton constructed for pref(t) [9]. This means that given a tree t with n nodes
and its prefix notation pref(t), the deterministic subtree PDA Mdps(t) constructed by
Algorithms 4 and 1 has just one pushdown symbol, fewer than N ≤ 2n + 1 states and
at most N + n− 1 ≤ 3n transitions.

7.2. Indexing for tree patterns

Definition 7.3. Let t and pref(t) be a tree and its prefix notation, respectively. A

422 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Fig. 14. Transition diagram of deterministic subtree pushdown

automaton Mdps(t1) for tree in prefix notation

pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7.2.

State Input Pushdown Store
[0] a1 a0 S
[4, 6] a0 S
[5, 7] ε ε
accept

Fig. 15. Trace of deterministic subtree pushdown automaton

Mdps(t1) from Example 7.2.

tree pattern pushdown automaton for pref(t) accepts all tree patterns in prefix notation
which match the tree t.

Given a subject tree, first we construct a so–called deterministic treetop PDA for
this tree in prefix notation, which accepts all tree patterns that contain the root of the
subject tree and match the subject tree. The deterministic treetop PDA is defined as
follows.

Definition 7.4. Let t, r and pref(t) be a tree, its root and its prefix notation, re-
spectively. A treetop pushdown automaton for pref(t) accepts all tree patterns in prefix
notation which have the root r and match the tree t.

Definition 7.5. Let t and pref(t) be a tree and its prefix notation, respectively. The set
srms(t) of subtree rightmost states is defined as srms = {i : pref(t) = a1a2 . . . an, 1 ≤
i ≤ n, Arity(ai) = 0}.

The construction of the treetop PDA is described by the following algorithm.

Algorithm 5. Construction of a treetop PDA for a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.

Arbology: Trees and pushdown automata 423

Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A ∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. Create Mpt(t) as Mp(t) by Algorithm 3.

2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i− 1, a, S) = (i, ε), a ∈ A0}.

3. For each state i, where i = n−1, n−2, . . . , 1, δ(i, a, S) = (i+1, Sp), a ∈ Ap, create
a new transition δ(i, S, S) = (l, ε) such that (i, xy, S) `+

Mp(t) (l, y, ε) as follows:
If p = 0, create a new transition δ(i, S, S) = (i + 1, ε).
Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the pth
smallest integer such that l ∈ srms and l > i. Remove all j, where j ∈ srms, and
i < j < l, from srms.

The correctness of Algorithm 5 is proved in [18].

Example 7.6. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 2.1, which is illustrated in Figure 1. The deterministic treetop push-
down automaton, constructed by Algorithm 5, is deterministic pushdown automaton
Mpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ4, 0, S, ∅)), where its transition diagram is illus-
trated in Figure 16.

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 16. Transition diagram of deterministic treetop pushdown

automaton Mpt(t1) for tree in prefix notation

pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 7.6.

The nondeterministic tree pattern PDA for trees in prefix notation is constructed as
an extension of the deterministic treetop PDA. The nondeterministic tree pattern PDA
Mnpt(t) is input–driven and therefore can be determinised to an equivalent deterministic
tree pattern PDA Mdpt(t).

Algorithm 6. Construction of a nondeterministic tree pattern PDA for a tree t in pre-
fix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A ∪ {S},
{S}, δ, 0, S, ∅).
Method:

424 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

1. Create Mnpt(t) as the treetop PDA Mpt(t) by Algorithm 5.

2. For each state i, where 2 ≤ i ≤ n, create a new transition
δ(0, ai, S) = (i, SArity(ai)), where S0 = ε.

The correctness of Algorithm 6 is proved in [18].

Example 7.7. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 2.1, which is illustrated in Figure 1. The nondeterministic tree pattern push-
down automaton accepting all tree patterns matching tree t1, which has been constructed
by Algorithm 6, is nondeterministic pushdown automaton Mnpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},
A, {S}, δ5, 0, S, ∅)), where its transition diagram is illustrated in Figure 17.

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

Fig. 17. Transition diagram of nondeterministic tree pattern

pushdown automaton Mnpt(t1) from Example 7.7 for tree in prefix

notation pref(t1) = a2 a2 a0 a1 a0 a1 a0.

The deterministic tree pattern pushdown automaton Mdpt(t1) constructed according
to Algorithm 1 is
Mdpt(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [3, 5], [4, 6], [5, 7]},A, {S}, δ6, [0], S, ∅)),
where its transition diagram is illustrated in Figure 18. Again, all transitions leading
from states [3, 5, 7] and [5, 7] can be omitted because the contents of the pushdown store
in these state is always ε.

Figure 19 shows the sequence of transitions (the trace) performed by deterministic
tree pattern pushdown automaton Mdpt(t1) for input tree pattern p1, which is illustrated
in Figure 2.

Arbology: Trees and pushdown automata 425

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

[3, 5]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε

S|S 7→ ε

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

S|S 7→ ε

a1|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ ε

S|S 7→ εS|S 7→ ε S|S 7→ ε

Fig. 18. Transition diagram of deterministic tree pattern pushdown

automaton Mdpt(t1) from Example 7.7 for tree in prefix notation

pref(t1) = a2 a2 a0 a1 a0 a1 a0.

State Input Pushdown Store
[0] a2 S a1 S S
[1, 2] S a1 S SS
[3, 5] a1 S S
[4, 6] S S
[5, 7] ε ε
accept

Fig. 19. Trace of deterministic pushdown automaton Mdpt(t1) from

Example 7.7 for an input tree template p1 from Example 2.2.

As is proved in [18], the number of distinct tree patterns which match a tree t with n
nodes can be at most 2n−1 +n. For specific cases of trees with an exponential number of
tree patterns matching the tree, the total size of the deterministic tree pattern PDA is
linear. For a detailed discussion on the total size of the deterministic tree pattern PDA,
see [18].

8. PROCESSING TREES IN POSTFIX, PREFIX BAR AND POSTFIX
BAR NOTATIONS

In Sections 6 and 7 particular algorithms assume ranked ordered trees in prefix notation.
All these algorithms can easily be modified also for trees in the other linear notations
whose basic pushdown automata are defined in Section 4. According to Theorem 1, a
subtree of a tree in such a linear notation is a substring of the tree in the same linear

426 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

notation. The consequence of this theorem is that the same principles from stringology
which are used for the prefix notation can also be used for the other three notations.
The construction of subtree matching, subtree and tree pattern pushdown automata for
trees in postfix, prefix bar and postfix bar notations differ only in pushdown operations.
Instead of the pushdown operations according to the basic pushdown automaton for
prefix notation defined in Definition 4.1, the pushdown operations according to the
other basic pushdown automata defined by Definitions 4.2, 4.5, and 4.6 are used for
processing trees in postfix, prefix bar and postfix bar notations, respectively.

9. CONCLUSION AND FUTURE WORK

The basic arbology principles and algorithms have been presented. Arbology uses a
pushdown automaton reading a linear notation of a tree as its basic model of computa-
tion. The construction of arbology pushdown automata is based on the same principles
ar they are used in stringology with the addition that the underlying tree structure
is processed by the pushdown operations. In the basic pushdown automata presented
in this paper the only one pushdown symbol S (and the initial pushdown symbol Z0)
is used, which means that the pushdown store can be replaced by an integer counter.
However, this does not hold for arbology algorithms in general - more complicated al-
gorithms, such as tree pattern matching for tree templates [11], can use more than one
pushdown symbol to remember information on different kinds of subtrees. We should
point out that such pushdown automata do not have to be input–driven and determin-
ising algorithms different from those shown in Section 5 must be used.

Up-to-date information on arbology research can be found on arbology web pages [3].
Recently we have extended principles presented in this paper and developed algorithms
and pushdown automata for other tree problems such as finding repeats of tree patterns
in trees, tree compression, nonlinear tree pattern matching, indexing trees for nonlinear
tree pattern matching, oracle versions of indexing pushdown automata for trees, and
others.

Topics for future arbology research are approximate tree pattern matching which
involves operations renaming, inserting, and deleting a node, tasks of XML processing,
problems of determinisation of pushdown automata, finding various kinds of regularities
in trees, and others.

The well developed theory of tree automata [5, 6, 10, 13] also describes many par-
ticular solutions for operations on trees. As is described in [20], every tree automaton
can be transformed to an equivalent deterministic pushdown automaton which accepts
the same tree language in a linear notation, and the total size of the resulting pushdown
automaton is the same as the total size of the deterministic tree automaton. This agrees
with the subtree matching pushdown automata presented in Section 6, the total size of
which directly corresponds to the total size of the corresponding tree automata [5, 6].

ACKNOWLEDGEMENT

This research has received support from the Czech Technical University as project
No. SGS12/092/OHK3/1T/18.

(Received July 6, 2011)

Arbology: Trees and pushdown automata 427

R E FER E NCE S

[1] A. V. Aho and J. D. Ullman: The Theory of Parsing, Translation, and Compiling. Prentice-
Hall Englewood Cliffs, N.J. 1972.

[2] R. Alur and P. Madhusudan: Visibly pushdown languages. In: STOC (L. Babai, ed.),
ACM (2004), pp. 202–211.

[3] Arbology www pages. Available on: http://www.arbology.org/ (2012).

[4] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. I. Seiferas: The
smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40 (1985),
31–55.

[5] L. Cleophas: Tree Algorithms. Two Taxonomies and a Toolkit. Ph.D. Thesis, Technische
Universiteit Eindhoven 2008.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi: Tree automata techniques and applications. Available on: http:

//www.grappa.univ-lille3.fr/tata (2007).

[7] M. Crochemore: Transducers and repetitions. Theoret. Comput. Sci. 45 (1986), 1, 63–86.

[8] M. Crochemore, C. Hancart: Automata for matching patterns. In: Handbook of Formal
Languages (G. Rozenberg and A. Salomaa, eds.), Vol. 2 Linear Modeling: Background and
Application, Chap. 9, pp. 399–462. Springer–Verlag, Berlin 1997.

[9] M. Crochemore and W. Rytter: Jewels of Stringology. World Scientific, New Jersey 1994.

[10] J. Engelfriet: Tree Automata and Tree Grammars. University of Aarhus 1975.

[11] T. Flouri, C. Iliopoulos, J. Janoušek, B. Melichar, and S. Pissis: Tree template matching
in ranked, ordered trees by pushdown automata. To appear at CIAA 2011.

[12] T. Flouri, J. Janoušek, and B. Melichar: Subtree matching by pushdown automata.
Comput. Sci. Inform. System 7 (2010), 2, 331–357.

[13] F. Gecseg and M. Steinby: Tree languages. In: Handbook of Formal Languages (G. Rozen-
berg and A. Salomaa, eds.), Vol. 3 Beyond Words. Handbook of Formal Languages, pp. 1–
68. Springer–Verlag, Berlin 1997.

[14] R. S. Glanville and S. L. Graham: A new method for compiler code generation. In: POPL
1978, pp. 231–240.

[15] C.M. Hoffmann and M. J. O’Donnell: Pattern matching in trees. J. Assoc. Comput. Mach.
29 (1982), 1, 68–95.

[16] J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation. Second edition. Addison-Wesley, Boston 2001.

[17] J. Janoušek: String suffix automata and subtree pushdown automata. In: Proc. Prague
Stringology Conference 2009 (J. Holub and J. Žďárek, eds.), Czech Technical University
in Prague 2009, pp. 160–172. Available on: http://www.stringology.org/event/2009.

[18] J. Janoušek: Arbology: Algorithms on Trees and Pushdown Automata. Habilitation
Thesis, TU FIT, Brno 2010.

[19] J. Janoušek: Introduction to arbology. An invited talk at AAMP WIII conference, Prague
2011.

[20] J. Janoušek and B. Melichar: On regular tree languages and deterministic pushdown
automata. Acta Inform. 46 (2009), 7, 533–547.

http://www.arbology.org/
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://www.stringology.org/event/2009

428 B. MELICHAR, J. JANOUŠEK AND T. FLOURI

[21] M. Madhavan, P. Shankar, S. Rai, and U. Ramakrishna: Extending graham-glanville
techniques for optimal code generation. ACM Trans. Program. Lang. Syst. 22 (2000), 6,
973–1001.

[22] B. Melichar: Arbology: Trees and pushdown automata. In: LATA 2010 (A. H. Dediu,
H. Fernau, and C. Mart́ın-Vide, eds.), Lecture Notes in Comput. Sci. 6031 (2010), pp. 32–
49. Invited paper.

[23] B. Melichar, J. Holub, and J. Polcar: Text searching algorithms. Available on: http:

//stringology.org/athens/ (2005).

[24] D. Nowotka and J. Srba: Height-deterministic pushdown automata. In: MFCS 2007
(L. Kucera and A. Kucera, eds.), Lecture Notes in Comput. Sci. 4708 (2007), pp. 125–134.

[25] P. Shankar, A. Gantait, A. R. Yuvaraj, and M. Madhavan: A new algorithm for linear
regular tree pattern matching. Theor. Comput. Sci. 242 (2000), 1–2, 125–142.

[26] B. Smyth: Computing Patterns in Strings. Addison-Wesley-Pearson Education Limited,
Essex 2003.

Bořivoj Melichar, Department of Theoretical Computer Science, Faculty of Information Tech-

nology, Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6. Czech Republic.

e-mail: Borivoj.Melichar@fit.cvut.cz

Jan Janoušek, Department of Theoretical Computer Science, Faculty of Information Technol-

ogy, Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6. Czech Republic.

e-mail: Jan.Janousek@fit.cvut.cz

Tomas Flouri, Department of Theoretical Computer Science, Faculty of Information Technol-

ogy, Czech Technical University in Prague, Thákurova 9, 160 00 Praha 6. Czech Republic.

e-mail: Tomas.Flouri@fit.cvut.cz

http://stringology.org/athens/
http://stringology.org/athens/

		webmaster@dml.cz
	2013-09-24T12:27:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

