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A CHARACTERIZATION OF ISOMETRIES BETWEEN
RIEMANNIAN MANIFOLDS BY USING DEVELOPMENT

ALONG GEODESIC TRIANGLES

Petri Kokkonen

Abstract. In this paper we characterize the existence of Riemannian
covering maps from a complete simply connected Riemannian manifold
(M, g) onto a complete Riemannian manifold (M̂, ĝ) in terms of deve-
loping geodesic triangles of M onto M̂ . More precisely, we show that
if A0 : T |x0M → T |x̂0M̂ is some isometric map between the tangent
spaces and if for any two geodesic triangles γ, ω of M based at x0 the
development through A0 of the composite path γ · ω onto M̂ results in a
closed path based at x̂0, then there exists a Riemannian covering map
f : M → M̂ whose differential at x0 is precisely A0. The converse of this
result is also true.

1. Introduction

Consider two Riemannian manifolds (M, g) and (M̂, ĝ) of the same dimension
an suppose that one is given an isometry A0 between given tangent spaces
T |x0M and T |x̂0M̂ of M and M̂ , respectively. Given a piecewise smooth path
γ : [0, 1]→M starting from x0, one develops this curve onto the tangent space
T |x0M to obtain a curve Γ: [0, 1]→ T |x0M such that Γ(t) =

∫ t
0 P

0
s (γ)γ̇(s)ds

where P 0
s (γ) is the parallel transport on M along γ from γ(s) to γ(0) = x0.

Consider the curve Γ̂ := A0 ◦ Γ on T |x̂0M̂ and let γ̂ : [0, 1]→ M̂ be the unique
curve (if it exists) on M̂ , called the anti-development of Γ̂, starting at x̂0 such
that Γ̂(t) =

∫ t
0 P

0
s (γ̂) ˙̂γ(s)ds where P 0

s (γ̂) is a parallel transport on M̂ along γ̂
from γ̂(s) to γ̂(0) = x̂0. We say that γ̂ is the development of γ onto M̂ through
A0.

It happens, as it is easy to verify, that if (M, g) and (M̂, ĝ) are isometric
through an isomorphism f : M → M̂ whose differential at x0 is A0, that
γ̂ = f ◦ γ. Thus, in particular, if γ is a loop based at x0, then γ̂ will be a loop
based at x̂0.
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This paper addresses the converse of this result: For a given A0 as above,
suppose that for every loop γ based at x0 its development γ̂ onto M̂ through
A0 is a loop (necessarily based at x̂0), then does there exist an isomorphism
f : M → M̂ whose differential at x0 is A0 ? Under the technical assumptions
that (M, g) and (M̂, ĝ) are complete and simply connected, we are able to answer
affirmatively to this question. Indeed, instead of an arbitrary piecewise smooth
loop γ based at x0, it is enough to consider loops γ that are composites of two
geodesic triangles based at x0. Also, the assumptions of simply connectedness
can be relaxed; see the main Theorem 3.1 and its Corollary 3.3.

This result is related to, and was originally inspired by, the so-called rolling
model of Riemannian manifolds (cf. [1, 4, 5, 7, 6, 11, 13]). Consider two
complete, oriented and simply-connected Riemannian manifolds (M, g), (M̂, ĝ)
of the same dimension and suppose A0 is an oriented isometry from T |x0M

onto T |x̂0M̂ , called an initial relative orientation of M and M̂ at the initial
contact points x0 and x̂0. Let γ : [0, 1] → M be a piecewise smooth path on
M such that γ(0) = x0. Put M and M̂ in contact at the points x0 and x̂0,
respectively, (here it might be useful to think of M and M̂ as submanifolds
of some RN and g, ĝ being the metrics induced by the Euclidean metric of
RN ) and identify the tangent spaces at these points by using A0. Then let M
roll against M̂ along γ so that the motion contains no instantaneous spinning
nor slipping. The set of contact points on M̂ that are produced by this rolling
motion form a piecewise smooth curve γ̂(t) i.e. at instant t ∈ [0, 1] the contact
point γ̂(t) of M̂ corresponds to that of γ(t) of M . In fact, the model explicitly
tells that P 0

t (γ̂) ˙̂γ(t) = A0P
0
t (γ)γ̇(t) for all t ∈ [0, 1] i.e. γ̂ is nothing more than

the development of γ on M̂ through A0 as defined just above. Therefore, to
detect if M and M̂ are isomorphic, through some isomorphism f : M → M̂
with f∗|x0 = A0, it is enough to make M roll against M̂ along loops of M
based at x0, identifying initially T |x0M to T |x̂0M̂ through A0, and to observe
whether or not the paths so traced on M̂ by the rolling motion are loops based
at x̂0. Indeed, as mentioned above, it is even enough to consider the rolling
along loops γ that are composites of two geodesic triangles based at x0. This
is a way of interpreting the main result, Theorem 3.1, of this paper in terms of
a mechanical model and “physical experiments”.

The outline of the paper is as follows. Section 2 introduces basic concepts,
notations and results. The next Section 3 contains the statement of the main
Theorem 3.1 of the paper along with its immediate corollaries. The proof of the
main theorem is found in Section 4. Actually, there we first prove a technical
result (Proposition 4.1) in a more general context of affine manifolds and use it
to prove the main theorem. Section 5 relates Theorem 3.1 to the well known
Cartan-Ambrose-Hicks theorem ([2, 3, 10, 12]). We give in Theorem 5.2 a total
of 8 different characterizations for the existence of a Riemannian covering map
between two Riemannian manifolds, one of which is the Cartan-Ambrose-Hicks
theorem and one is the main theorem of the paper. Finally, Section 6 contains
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an application to the main theorem related to the affine holonomy group of a
Riemannian manifold ([8]).

2. Notations and basic results

All the manifolds that appear are assumed to be smooth, second countable
and Hausdorff (cf. [9, 12]). If M,M̂ are manifolds and x ∈ M , x̂ ∈ M̂ , we
write T ∗|xM ⊗ T |x̂M̂ for the set of all R-linear maps T |xM → T |x̂M̂ . We
define T ∗M ⊗TM̂ :=

⋃
(x,x̂)∈M×M̂ T |xM ⊗T |x̂M̂ for the set of all linear maps

between different tangent spaces.
If M is a manifold and x ∈ M , write Ωx(M) for the set of all piecewise

smooth loops γ : [0, 1]→M based at x i.e. γ(0) = γ(1) = x. If γ : [a, b]→M
and ω : [c, d] → M are paths such that γ(b) = ω(c) we define the composite
path as

ω t γ : [a, b+ d− c]→M ; ω t γ(t) =
{
γ(t) , if t ∈ [a, b]
ω(t− b+ c) , if t ∈ [b, b+ d− c] .

If a = c = 0 and b = d = 1, i.e. γ, ω : [0, 1]→M , then one defines the composite
path ω · γ as

ω · γ : [0, 1]→M ; ω · γ :=
{
γ(2t) , t ∈ [0, 1

2 ]
ω(2t− 1) , t ∈ [ 1

2 , 1] ,

i.e. ω ·γ = (t 7→ ω(2t))|[0,1/2]t(t 7→ γ(2t))|[0,1/2]. The inverse path γ−1 : [a, b]→
M of γ : [a, b] → M is defined as γ−1(t) = γ(b + a − t). Observe that if
γ : [a, b] → M , ω : [c, d] → M and Γ: [A,B] → M are three path such that
γ(b) = ω(c) and ω(d) = Γ(A), then (Γ t ω) t γ = Γ t (ω t γ). However, if γ,
ω, Γ: [0, 1] → M and γ(1) = ω(0), ω(1) = Γ(0), then Γ · (ω · γ) 6= (Γ · ω) · γ.
This lack of associativity for ‘·’-operation will not be a handicap for us, as
will be explained in Remark 2.9 below, and usually we prefer working with
“normalized” paths whose domain of definition is [0, 1].

A manifold M equipped with a linear connection ∇ is called an affine
manifold (M,∇). If γ : [a, b] → M is a piecewise smooth path and (M,∇) is
an affine manifold, we write (P∇)ts(γ), where t, s ∈ [a, b], for the ∇-parallel
transport from γ(s) to γ(t). Since the connection to be used is usually clear
from the context, we write simply P ts(γ) for (P∇)ts(γ). The exponential map of
(M,∇) at x is written as exp∇x and (M,∇) is said to be geodesically accesible
from x ∈ M if exp∇x is surjective onto M . If exp∇x is defined on the whole
tangent space T |xM for all x ∈ M , then (M,∇) is said to be geodesically
complete. The curvature (resp. torsion) tensor on (M,∇) is denoted by R∇

(resp. T∇). If (M̂, ∇̂) is another affine manifold, then a smooth map f : M → M̂
is called affine, if for any piecewise smooth path γ : [a, b]→M , one has

f∗|γ(b) ◦ (P∇)ba(γ) = (P ∇̂)ba(f ◦ γ) ◦ f∗|γ(a) .

A manifold M equipped with a positive definite (i.e. Riemannian) metric g
is called a Riemannian manifold (M, g). If (M, g) and (M̂, ĝ) are Riemannian
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manifolds and if A ∈ T ∗|xM ⊗T |x̂M̂ is such that ĝ(AX,AY ) = g(X,Y ) for all
X,Y ∈ T |xM , we say that A is an infinitesimal isometry.

Definition 2.1. Let (M,∇) be an affine manifold and k ≥ 1.
(i) A path γ : [a, b] → M is called a k-times broken geodesic, if there are

geodesics γ0, . . . , γk such that γi ends where γi+1 starts from and γ =
γk t γk−1 t · · · t γ1 t γ0.

We use ∠x(M,∇) to denote the set of 1-times broken geodesics defined
on [0, 1] and starting from x ∈M .

(ii) A loop γ ∈ Ωx(M) based at x is said to be a geodesic k-polygon based
at x if it is a (k − 1)-times broken geodesic.

Geodesic 3-polygons (resp. 4-polygons) based at x are called geodesic
triangles (resp. quadrilaterals) based x and they constitute a set denoted
by 4x(M,∇) (resp. x(M,∇)). We also define

42
x0

(M,∇) := {γ · ω | γ, ω ∈ 4x0(M,∇)} .

Fig. 1: A typical element γ · ω of 42
x0

(M,∇).

Remark 2.2. Notice that a path γ : [a, b]→M is a k-times broken geodesic
if and only if there is a partition {t0, . . . , tk+1} of [a, b] such that γ|[ti,ti+1] is a
∇-geodesic for i = 0, . . . , k.

Definition 2.3. Let (M,∇) and (M̂, ∇̂) be affine manifolds and let A ∈
T ∗|xM⊗T |x̂M̂ . We define T (∇,∇̂)

A :
∧2

T |xM → T |x̂M̂ andR(∇,∇̂)
A :

∧2
T |xM →

T ∗|xM ⊗ T |x̂M̂ called the relative torsion and relative curvature of (M,∇),
(M̂, ∇̂) at A by

T (∇,∇̂)
A (X,Y ) :=AT∇(X,Y )− T ∇̂(AX,AY )

R(∇,∇̂)
A (X,Y )Z :=A(R∇(X,Y )Z)−R∇̂(AX,AY )AZ ,
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where X,Y, Z ∈ T |xM . We will often write simply TA and RA for T (∇,∇̂)
A and

R(∇,∇̂)
A , respectively, when ∇, ∇̂ are clear from the context.

Definition 2.4. Let (M,∇) be an affine manifold. For a piecewise smooth
γ : [a, b]→M we define a piecewise smooth Λ∇γ(a)(γ) : [a, b]→ T |γ(a)M by

Λ∇γ(a)(γ)(t) =
∫ t

a

(P∇)0
s(γ)γ̇(s)ds , t ∈ [a, b] .

We call Λ∇γ(a)(γ) the development of γ on T |γ(a)M with respect to the connec-
tion ∇.

In the Riemannian setting, one can characterize the completeness in terms
of the development map.

Theorem 2.5 ([8, Theorem IV.4.1]). A Riemannian manifold (M, g), with
Levi-Civita connection ∇, is complete if and only if for every x ∈ M and
every piecewise smooth curve Γ: [a, b] → T |xM , Γ(a) = 0, there exists a
(necessarily unique) piecewise smooth curve γ : [a, b]→M such that γ(a) = x
and Λ∇x (γ) = Γ.

Definition 2.6. Given (M,∇), (M̂, ∇̂), A0 ∈ T ∗|x0M⊗T |x̂0M̂ and a piecewise
smooth γ : [a, b]→M such that γ(a) = x0.

(i) We define

Λ(∇,∇̂)
A0

(γ)(t) := (Λ∇̂x̂0
)−1(A0 ◦ Λ∇x0

(γ))(t) ,

for all t ∈ [a, b] where defined. If c ∈ [a, b] is such that Λ(∇,∇̂)
A0

(γ)(c)
exists, we call Λ(∇,∇̂)

A0
(γ)|[a,c] the development of γ onto M̂ through A0

with respect to (∇, ∇̂). We will usually write simply ΛA0(γ) for Λ(∇,∇̂)
A0

(γ)
when there is no risk of confusion.

(ii) If Λ(∇,∇̂)
A0

(γ)(t) is defined, we define the relative parallel transport of A0
along γ to be the linear map

(P(∇,∇̂))ta(γ)A0 : T |γ(t)M → T |
Λ(∇,∇̂)
A0

(γ)(t)
M̂ ;

(P(∇,∇̂))ta(γ)A0 := (P ∇̂)ta
(
Λ(∇,∇̂)
A0

(γ)
)
◦A0 ◦ (P∇)at (γ) .

As before, one writes briefly Pta(γ)A0 for (P(∇,∇̂))ta(γ)A0 when the connec-
tions in question are evident.

Remark 2.7. It is evident that Λ(∇,∇̂)
A0

(γ)(t) exists for all t > a near a and
if Λ(∇,∇̂)

A0
(γ)(t) exists for some t > a then Λ(∇,∇̂)

A0
(γ)(t′) exists for all t′ ∈ [a, t]

as well. By Theorem 2.5, if (M̂, ĝ) is a complete Riemannian manifold with
Levi-Civita connection ∇̂, the development Λ(∇,∇̂)

A0
(γ)(t) is defined for every

t ∈ [a, b].

We record a lemma whose easy proof we omit.
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Lemma 2.8. Let (M,∇) and (M̂, ∇̂) be affine manifold, A0 ∈ T ∗|x0M ⊗
T |x̂0M̂ and γ : [a, b]→M a piecewise smooth path with γ(a) = x0.

(i) If ω : [c, d]→M is a piecewise smooth path such that γ(b) = ω(c), then
ΛA0(ω t γ) = ΛPba(γ)A0(ω) t ΛA0(γ)

Pta(ω t γ)A0 =
{
Pta(γ)A0 , if t ∈ [a, b]
Pt−b+cc (ω)Pba(γ)A0 , if t ∈ [b, b+ d− c] .

Moreover,
ΛA0(γ−1 t γ)(2b− a) = x0 , P2b−a

a (γ−1 t γ)A0 = A0 .

(ii) If γ : [a, b]→M is a k-times broken geodesic on (M,∇) and if ΛA0(γ)(t)
exists for all t ∈ [a, b] then ΛA0(γ) is a k-times broken geodesic on
(M̂, ∇̂). In particular, if γu(t) := exp∇x0

(tu), γ̂A0u(t) := exp∇̂x̂0
(tA0u),

then ΛA0(γu) = γ̂A0u.
(iii) Let γ̂ : [a, b] → M̂ be a piecewise smooth curve such that γ̂(a) = x̂0.

Then γ̂ = ΛA0(γ) if and only if
P at (γ̂) ˙̂γ(t) = A0P

a
t (γ)γ̇(t) , t ∈ [a, b] .

(iv) If X(·) is a vector field along γ : [a, b]→M , then for all t ∈ [a, b] such
that γ̂(t) := ΛA0(γ)(t) is defined, one has

∇̂ ˙̂γ(t)
(
(Pta(γ)A0)X(t)

)
=
(
Pta(γ)A0

)
∇γ̇(t)X(t) .

(v) Suppose φ : [α, β]→ [a, b] is smooth and φ̇(t) 6= 0 ∀t ∈ [α, β]. Then the
following hold for all t ∈ [α, β] such that left or right hand side is defined:

ΛA0(γ)
(
φ(t)

)
= ΛA0(γ ◦ φ)(t)

Pφ(t)
a (γ)A0 = Ptα(γ ◦ φ)A0 .

Remark 2.9. Suppose γ, ω, Γ: [0, 1]→M are such that γ(1) = ω(0), ω(1) =
Γ(0). As remarked earlier, Γ · (ω · γ) 6= (Γ · ω) · γ. Lemma 2.8, however, implies
that

ΛA0

(
(Γ · ω) · γ

)
(1) = ΛA0

(
Γ · (ω · γ)

)
(1)

P1
0
(
(Γ · ω) · γ

)
A0 = P1

0
(
Γ · (ω · γ)

)
A0 .

Indeed, the latter (which implies the former) follows by computing
P1

0
(
(Γ · ω) · γ

)
A0 = P1

0 (Γ · ω)P1
0 (γ)A0 = P1

0 (Γ)P1
0 (ω)P1

0 (γ)A0

= P1
0 (Γ)P1

0 (ω · γ)A0 = P1
0 (Γ · (ω · γ))A0 .

We recall next the Cartan-Ambrose-Hicks theorem (C-A-H Theorem for
short) in the context of Riemannian manifolds of equal dimension.

Theorem 2.10 ((C-A-H)[2, 3, 10, 12]). Let (M, g) and (M̂, ĝ) be complete
Riemannian manifolds of the same dimension, dimM = dim M̂ , and let
A0 ∈ T ∗|x0M ⊗ T |x̂0M̂ be an infinitesimal isometry. Then there exists a
complete Riemannian manifold (N,h), z0 ∈ N and Riemannian covering maps
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F : (N,h) → (M, g), G : (N,h) → (M̂, ĝ) such that G∗|z0 = A0 ◦ F∗|z0 if and
only if

(1) R(∇,∇̂)
P1

0 (γ)A0
= 0 , ∀ γ ∈ ∠x0(M,∇) ,

where ∇, ∇̂ are the Levi-Civita connections of (M, g) and (M̂, ĝ).

3. Main result

We begin this section with the statement of the main theorem of the paper.
The result will then be followed by two corollaries and some remarks. The proof
of the theorem is postponed to Section 4.

Theorem 3.1. Suppose (M, g), (M̂, ĝ) are complete Riemannian manifolds
of the same dimension, dimM = dim M̂ , M simply connected and let A0 ∈
T ∗|x0M ⊗T |x̂0M̂ be an infinitesimal isometry. Then there exists a Riemannian
covering map f : M → M̂ with f∗|x0 = A0 if and only if

(2) Λ(∇,∇̂)
A0

(
42
x0

(M,∇)
)
⊂ Ωx̂0(M̂) ,

where ∇, ∇̂ are the Levi-Civita connections of (M, g), (M̂, ĝ), respectively.

Remark 3.2. Notice that by Lemma 2.8(ii) the condition (2) is equivalent to

Λ(∇,∇̂)
A0

(
42
x0

(M,∇)
)
⊂ 42

x̂0
(M̂, ∇̂)

and that it is implied by the condition

(3) Λ(∇,∇̂)
A0

(
Ωx0(M)

)
⊂ Ωx̂0(M̂) .

If one wishes not to assume M to be simply connected in Theorem 3.1, then
the result can be modified as follows:

Corollary 3.3. Suppose (M, g), (M̂, ĝ) are complete Riemannian manifolds
of the same dimension, dimM = dim M̂ and let A0 ∈ T ∗|x0M ⊗ T |x̂0M̂ be
and infinitesimal isometry. The condition (2) holds if and only if there exists a
complete simply connected Riemannian manifold (N,h), Riemannian covering
maps F : N →M , G : N → M̂ and a z0 ∈ N such that G∗|z0 = A0 ◦ F∗|z0 and
(4)
{Γ(1) | Γ: [0, 1]→ N continuous , Γ(0) = z0, F ◦Γ ∈ 42

x0
(M,∇)} ⊂ G−1(x̂0) ,

Proof. Sufficiency. Let (N,h) and the maps F,G be given as stated and
suppose (4) is true. For a γ ∈ 42

x0
(M,∇), let Γ be the unique path in N

such that γ = F ◦ Γ and Γ(0) = z0. It follows that G ◦ Γ = ΛA0(γ) and since
Γ(1) ∈ G−1(x̂0), we have ΛA0(γ)(1) = G(Γ(1)) = x̂0 i.e. (2) holds.

Necessity. Let F : N →M be the universal covering of M and lift the metric
g onto N , which we denote by h. As is well known, (N,h) is complete. Fix a
point z0 ∈ F−1(x0) and write D for the Levi-Civita connection of (N,h). Let
B0 := A0 ◦ F∗|z0 ∈ T ∗|z0N ⊗ T |x̂0M̂ which is an infinitesimal isometry and
notice that if Γ: [0, 1]→ N is a piecewise smooth path starting from z0, then
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ΛB0(Γ) = ΛA0(F ◦Γ). In particular, if Γ ∈ 42
z0

(N,D), then F ◦Γ ∈ 42
x0

(M,∇)
and hence ΛB0(Γ) ∈ Ωx̂0(M̂) by assumption (2).

Thus Theorem 3.1 implies the existence of a Riemannian covering map
G : N → M̂ such that G∗|z0 = B0 = A0 ◦F∗|z0 . To prove (4), let Γ: [0, 1]→ N
be such that Γ(0) = z0 and F ◦ Γ ∈ 42

x0
(M,∇). Then G ◦ Γ = ΛB0(Γ) =

ΛA0(F ◦ Γ) ∈ Ωx̂0(M̂) so in particular, G(Γ(1)) = ΛA0(F ◦ Γ)(1) = x̂0 i.e.
Γ(1) ∈ G−1(x̂0). The proof is complete. �

Remark 3.4. If the the previous corollary one replaces the condition (2) by
(3), then (4) can be replaced by the condition F−1(x0) ⊂ G−1(x̂0). This is
clear from the proof of the corollary.

The above theorem has an easy corollary.

Corollary 3.5. Let (M, g), (M̂, ĝ) be complete Riemannian manifolds of
the same dimension, dimM = dim M̂ . Given an infinitesimal isometry A0 ∈
T ∗|x0M⊗T |x̂0M̂ and x1 ∈M , x̂1 ∈ M̂ , then there exists a Riemannian covering
map f : M → M̂ with f∗|x0 = A0 and f(x1) = x̂1 if and only if

∀ 6-broken geodesic γ : [0, 1]→M s.t. γ(0) = x0 , γ(1) = x1

=⇒ Λ(∇,∇̂)
A0

(γ)(1) = x̂1 .

Proof. Necessity. Suppose we are given a Riemannian covering map f : M →
M̂ with f∗|x0 = A0 and f(x1) = x̂1. Then if γ is a 6-broken geodesic with
γ(0) = x0, γ(1) = x1, it follows that ΛA0(γ) = f ◦ γ and hence ΛA0(γ)(1) =
f(γ(1)) = f(x1) = x̂1.

Sufficiency. Let Γ: [0, 1] → M be any geodesic from x0 to x1 (such a
geodesic exists since (M, g) is complete) and define A1 := P1

0 (Γ)A0. Taking
any γ, ω ∈ 4x1(M,∇), we see that (see Lemma 2.8)

ΛA1(γ · ω)(1) = ΛP1
0 (Γ)A0(γ · ω)(1) = ΛA0((γ · ω) · Γ)(1) = x̂1 ,

where the last equality follows from the fact that (γ · ω) · Γ is a 6-broken
geodesic that starts from x0 and ends to x1. Thus ΛA1(42

x1
(M,∇)) ⊂ Ωx̂1(M̂)

and Theorem 3.1 implies that there is a covering map f : M → M̂ such that
f∗|x1 = A1. In particular, f(x1) = x̂1. Moreover,

f∗|Γ−1(t) = Pt0(Γ−1)A1 = P1−t
0 A0 ,

which implies that f∗|x0 = f∗|Γ−1(1) = P0
0A0 = A0. The proof is finished. �

Remark 3.6. The condition of the corollary means that 6-times broken
geodesics of M with end points x0 and x1 map by the development Λ(∇,∇̂)

A0
to

6-times broken geodesics of M̂ with end points x̂0 and x̂1.
Also observe that this condition is implied by the following stronger one:

∀ γ : [0, 1]→M , piecewise smooth s.t. γ(0) = x0 , γ(1) = x1

=⇒ Λ(∇,∇̂)
A0

(γ)(1) = x̂1 .
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4. Proof of the main result

The proof of Theorem 3.1 (see p.223) makes use of the following key propo-
sition which we state and prove in a more general setting of affine manifolds.

Proposition 4.1. Suppose that (M,∇), (M̂, ∇̂) are affine manifolds (possibly
of different dimensions) and let A0 ∈ T ∗|x0M ⊗ T |x̂0M̂ be given. Let U ⊂
T |x0M , Û ⊂ T |x̂0M̂ be the domains of definitions of exp∇x0

, exp∇̂x̂0
, respectively,

and write γu(t) = exp∇x0
(tu), γ̂û(t) = exp∇̂x̂0

(tû) for u ∈ U , û ∈ Û . Then if

Λ(∇,∇̂)
A0

(
4x0 (M,∇)

)
⊂ 4x̂0(M̂, ∇̂)(5)

T (∇,∇̂)
P1

0 (γu)A0
(γ̇u(1), ·) = 0 , ∀u ∈ U ∩A−1

0 (Û) ,(6)

hold, one has for all u ∈ U ∩A−1
0 (Û) that

(P ∇̂)0
1(γ̂A0u) ◦ (exp∇̂x̂0

)∗|A0u ◦A0 = A0 ◦ (P∇)0
1(γu) ◦ (exp∇x0

)∗|u(7)

R(∇,∇̂)
P1

0 (γu)A0
(γ̇u(1), ·)γ̇u(1) = 0 .(8)

Remark 4.2. Since Λ(∇,∇̂)
A0

(γ) might not be defined on whole interval [0, 1]
for every γ ∈ 4x0(M,∇), except if e.g. (M̂, ∇̂) is geodesically complete, we
understand the assumption (5) to mean that if γ ∈ 4x0(M,∇) and if Λ(∇,∇̂)

A0
(γ)

is defined on [0, 1], then Λ(∇,∇̂)
A0

(γ) ∈ 4x̂0(M̂, ∇̂).

Proof. We will not make the assumption Eq. (6) until later on. Notice also
that U and Û are star-shaped around the origin of T |x0M and hence so is
U ∩A−1

0 (Û). In the proof we write γX(t) = exp∇x (tX) and γ̂X̂(t) = exp∇̂x̂ (tX̂)
whenever x ∈M , x̂ ∈ M̂ and X ∈ T |xM , X̂ ∈ T |x̂M̂ and t ∈ R are such that
these are defined. If they are defined for all t ∈ [0, 1], we assume, by default,
that the domains of definitions of γX and γ̂X̂ are the interval [0, 1].

Given u ∈ U ∩A−1
0 (Û) and v ∈ T |x0M we define a vector field along γu by

Yu,v(t) := ∂

∂s

∣∣
0 exp∇x0

(
t(u+ sv)

)
= t(exp∇x0

)∗|tu(v)

i.e. Yu,v is the unique Jacobi field along γu such that Yu,v(0) = 0,
∇γ̇u(t)Yu,v|t=0 = v. Moreover, we write CTx0

for the set of tangent conjugate
points in T |x0M of exp∇x0

i.e.

CTx0
= {u ∈ U | ∃v ∈ Tx0M, v 6= 0 s.t. Yu,v(1) = 0}
= {u ∈ U | rank (exp∇x0

)∗|u < dimM} .

Fix, for now, u ∈ U ∩A−1
0 (Û), v ∈ T |x0M , and assume that u /∈ CTx0

. Let Vu
be an open neighbourhood of u in T |x0M such that exp∇x0

|Vu is a diffeomorphism
and Vu ⊂ A−1

0 (Û). Define ωu,w ∈ 4x0(M,∇), for all w ∈ T |x0M near enough
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to the origin such that ∃γYu,w(1)(t) ∈ exp∇x0
(Vu) for all t ∈ [0, 1], by

ωu,w := γ−1
Zu,w

· (γYu,w(1) · γu) ,

where Zu,w := (exp∇x0
|Vu)−1(γYu,w(1)(1)). For such a w we also define

ω̂u,w(t) := Λ(∇,∇̂)
A0

(ωu,w)(t) , t ∈ [0, 1] ,

which exists if w is near enough to the origin in T |x0M . Notice that, by
assumption, ω̂u,w ∈ 4x̂0(M̂, ∇̂).

Fig. 2: Construction of the geodesic triangle
ωu,v = γ−1

Zu,v
· (γYu,v(1) · γu).

In particular, if s ∈ R is near zero, ωu,sv and ω̂u,sv are defined and

ω̂u,sv(t) = Λ(∇,∇̂)
A0

(ωu,sv)(t) .

It follows that (see Lemma 2.8 case (ii)) for every s near zero, the curve
t 7→ ω̂−1

u,sv(t/2), t ∈ [0, 1], is a geodesic and ω̂−1
u,0(t/2) = γ̂A0u(t) for t ∈ [0, 1].

Therefore a vector field along γ̂A0u defined by

Ŷu,v(t) := ∂

∂s

∣∣
0ω̂
−1
u,sv(t/2) , t ∈ [0, 1]
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is a Jacobi field. Since ω̂−1
u,sv(0) = ω̂u,sv(1) = x̂0, we have that Ŷu,v(0) = 0

which implies that there is a unique v̂(u, v) ∈ T |x̂0M̂ such that

Ŷu,v(t) = ∂

∂s

∣∣
0 exp∇̂x̂0

(
t(A0u+ sv̂(u, v))

)
= t(exp∇̂x̂0

)∗|tA0u

(
v̂(u, v)

)
, t ∈ [0, 1] ,(9)

i.e. v̂(u, v) = ∇̂ ˙̂γA0u(t)Ŷu,v(t)|t=0. Notice that Ŷu,v(t), and hence also v̂(u, v), is
well defined for all (u, v) ∈ (U ∩A−1

0 (Û) \CTx0
)× T |x0M and t ∈ [0, 1] and it is

clear that v̂ is a smooth map. �

We will now state and prove three lemmas and come back to the proof of
the proposition after them.

Lemma 4.3. Under the above assumptions, one has

(10) ∇̂ ˙̂γu(t)Ŷu,v|t=1 =
(
P1

0 (γu)A0
)
∇γ̇u(t)Yu,v|t=1−TP1

0 (γu)A0

(
γ̇u(1), Yu,v(1)

)
.

for all (u, v) ∈ (U ∩A−1
0 (Û) \ CTx0

)× T |x0M .

Proof. In the proof we always assume that s ∈ R that appears is near zero.
Then we may assume that ωu,sv, ω̂u,sv and Ŷu,sv are defined.

Writing ∂t := ∂
∂t exp∇x0

(t(u+sv)), ∂s := ∂
∂s exp∇x0

(t(u+sv)) ∂̂t := ∂
∂t ω̂
−1
u,sv(t/2),

∂̂s := ∂
∂s ω̂

−1
u,sv(t/2), we have (here ∂

∂t |1− means the left hand side derivative at
t = 1)

∇̂ ˙̂γA0u(t)Ŷu,v|t=1 − T ∇̂(∂̂t, ∂̂s)|(t,s)=(1,0)

= ∇̂∂̂t
∂

∂s

∣∣∣
0
ω̂−1
u,sv(t/2)

∣∣∣
t=1−

− T ∇̂(∂̂t, ∂̂s)|(t,s)=(1,0)

= ∇̂∂̂s
∂

∂t

∣∣∣
1−
ω̂−1
u,sv(t/2)

∣∣∣
s=0

= −∇̂∂̂s
∂

∂t

∣∣∣
1−
ω̂u,sv(1− t/2)

∣∣∣
s=0

= −∇̂∂̂s
(
P1/2

0 (ωu,sv)A0
∂

∂t

∣∣∣
1−
ωu,sv(1− t/2)

)∣∣∣
s=0

= ∇̂∂̂s
(
P1

0 (γYu,sv(1) · γu)A0
∂

∂t

∣∣
1 exp∇x0

(tZu,sv)
)∣∣∣
s=0

where at the second to last equality we used the fact that
˙̂ωu,sv(t) = (Pt0(ωu,sv)A0)ω̇u,sv(t), t ∈ [0, 1] (using one-sided derivatives at
break points); see Lemma 2.8 case (iii). Notice that Yu,sv(t) = sYu,v(t) and
so γYu,sv(1)(t) = γsYu,v(1)(t) = γYu,v(1)(ts), which leads us to conclude that if
s > 0,

P1
0 (γYu,sv(1) · γu)A0 = P1

0 (t 7→ γYu,v (ts))P1
0 (γu)A0 = Ps0(γYu,v(1))P1

0 (γu)A0 .
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Therefore
∇̂ ˙̂γA0u(t)Ŷu,v|t=1 − T ∇̂(∂̂t, ∂̂s)|(t,s)=(1,0)

= ∇̂∂̂s
(

(Ps0(γYu,v(1))P1
0 (γu)A0) ∂

∂t

∣∣
1 exp∇x0

(tZu,sv)
)∣∣∣
s=0+

=
(
P1

0 (γu)A0
)
∇∂s

( ∂
∂t

∣∣
1 exp∇x0

(tZu,sv)
)∣∣
s=0

=
(
P1

0 (γu)A0
)(
∇γ̇u(t)

( ∂
∂s

∣∣
0 exp∇x0

(tZu,sv)
)∣∣
t=1 + T (∂s, ∂t)|(t,s)=(1,0)

)
,

where at the second to last equality we used Lemma 2.8 case (iv) (notice that
s 7→ ∂

∂t

∣∣
1 exp∇x0

(tZu,sv) is a vector field along s 7→ γYu,v(1)(s) = γYu,sv(1)(1))
and at the last equality we noticed that Zu,0 = u, so ∂

∂t exp∇x0
(tZu,sv)

∣∣
s=0 =

γ̇u(t) = ∂t. At this moment we make the following observations:

∂̂t|(t,s)=(1,0) = (P1
0 (γu)A0)∂t|(t,s)=(1,0)

∂s|(t,s)=(1,0) = Yu,v(1) ,

∂̂s|(t,s)=(1,0) = Ŷu,v(1) = ∂

∂s

∣∣
0ω̂
−1
u,sv(1/2) = ∂

∂s

∣∣
0ω̂u,sv(1/2)

= ∂

∂s

∣∣
0ΛA0(γYu,sv(1) · γu)(1)

= ∂

∂s

∣∣
0ΛP1

0 (γu)A0(γYu,sv(1))(1) = ∂

∂s

∣∣
0γ̂(P1

0 (γu)A0)Yu,sv(1)(1)

= ∂

∂s

∣∣
0γ̂(P1

0 (γu)A0)Yu,v(1)(s) = (P1
0 (γu)A0)Yu,v(1) .

These allow us to write the above equation into the form
∇̂ ˙̂γA0u(t)Ŷu,v|t=1 + TP1

0 (γu)A0(γ̇u(1), Yu,v(1))

=
(
P1

0 (γu)A0
)
∇γ̇u(t)

( ∂
∂s

∣∣
0 exp∇x0

(tZu,sv)
)∣∣
t=1 .

Therefore, it remains to show that ∂
∂s

∣∣
0 exp∇x0

(tZu,sv) = Yu,v(t), ∀t ∈ [0, 1].
Indeed, J(t) := ∂

∂s

∣∣
0 exp∇x0

(tZu,sv) is a Jacobi field along γu and it satisfies the
boundary conditions J(0) = 0 = Yu,v(0) and

J(1) = ∂

∂s

∣∣
0 exp∇x0

(Zu,sv) = ∂

∂s

∣∣
0γYu,sv(1)(1) = ∂

∂s

∣∣
0γYu,v(1)(s) = Yu,v(1) .

Since u /∈ CTx0
, it follows that J = Yu,v and thus the proof is finished. �

From the last proof, we record for later use the following fact:
(11) Ŷu,v(1) = (P1

0 (γu)A0)Yu,v(1) ,

for all (u, v) ∈ (U ∩A−1
0 (Û)\CTx0

)× T |x0M .

Lemma 4.4. Under the above assumptions, for all (u, v) ∈ (U ∩ A−1
0 (Û) \

CTx0
)× T |x0M the following holds:

(exp∇̂x̂0
)∗|A0u

(
∂1v̂(u, v)(u)

)
= TP1

0 (γu)A0(γ̇u(1), Yu,v(1)) .
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Hence in particular,

TA0 = 0 .

Proof. By assumption, u ∈ U ∩A−1
0 (Û) \ CTx0

and so for all t near 1, one has
tu ∈ U ∩A−1

0 (Û) \ CTx0
. In the proof of the first claim, we assume always that

t is near enough to 1 so that this is the case.
Since Ytu,v(1) = 1

tYu,v(t), Eq. (11) implies that

tŶtu,v(1) = t(P1
0 (γtu)A0)Ytu,v(1) = (Pt0(γu)A0)Yu,v(t) .

Writing ∂t := γ̇u(t), ∂̂t := ˙̂γA0u(t) to simplify the notation, we have

Ŷu,v(1) + ∇̂∂̂t Ŷtu,v(1)|t=1 = ∇̂∂̂t(tŶtu,v(1))|t=1

= ∇̂∂̂t
(
(Pt0(γu)A0)Yu,v(t)

)
|t=1 = (Pt0(γu)A0)∇∂tYu,v(t)|t=1

= ∇̂∂t Ŷu,v(t)|t=1 + TP1
0 (γu)A0(γ̇u(1), Yu,v(1)) ,

where at the third equality we used Lemma 2.8 case (iv) and at the fourth
equality we used (10). But

∇̂∂̂t Ŷu,v(t)|t=1 = ∇̂∂̂t
(
t(exp∇̂x̂0

)∗|tA0u(v̂(u, v))
)∣∣
t=1

= (expx̂0)∗|A0u(v̂(u, v)) + ∇̂∂̂t
(
(exp∇̂x̂0

)∗|tA0u(v̂(u, v))
)∣∣
t=1

= Ŷu,v(1) + ∇̂∂̂t
(
(exp∇̂x̂0

)∗|tA0u(v̂(u, v))
)∣∣
t=1 ,

while

∇̂∂̂t Ŷtu,v(1)|t=1 = ∇̂∂̂t
(
(exp∇̂x̂0

)∗|tA0u(v̂(tu, v))
)∣∣
t=1 ,

so combining these three formulas, one gets

TP1
0 (γu)A0(γ̇u(1), Yu,v(1)) = ∇̂∂̂t

(
(exp∇̂x̂0

)∗|tA0u(v̂(tu, v))
)∣∣
t=1

− ∇̂∂̂t
(
(exp∇̂x̂0

)∗|tA0u(v̂(u, v))
)∣∣
t=1

= ∇̂∂̂t
(
(exp∇̂x̂0

)∗|tA0u

(
v̂(tu, v)− v̂(u, v)

))∣∣
t=1 .

Writing ∂1v̂(u, v)(X) for the differential of v̂ at (u, v) with respect to v in the
direction X, we have

v̂(tu, v)− v̂(u, v) =
∫ t

1

∂

∂s
v̂(su, v)ds =

∫ t

1
∂1v̂(su, v)(u)ds .

Notice that (exp∇̂x̂0
)∗|tA0u ∈ T ∗(T |x̂0M̂)⊗TM̂ for t ∈ [0, 1], so if we write D̂ for

the vector bundle connection on T ∗(T |x̂0M̂)⊗ TM̂ → T |x̂0M̂ × M̂ naturally
induced by the canonical connection on vector space T |x̂0M̂ and ∇̂, we get
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finally

TP1
0 (γu)A0(γ̇u(1), Yu,v(1)) = ∇̂∂̂t

(
(exp∇̂x̂0

)∗|tA0u

(∫ t

1
∂1v̂(su, v)(u)ds

))∣∣∣
t=1

=
(
D̂ d

dt (tA0u,γA0u(t))(exp∇̂x̂0
)∗|tA0u

)∣∣∣
t=1

∫ 1

1
∂1v̂(su, v)(u)ds

+ (exp∇̂x̂0
)∗|A0u

d
dt
∣∣
t=1

∫ t

1
∂1v̂(su, v)(u)ds

= (exp∇̂x̂0
)∗|A0u(∂1v̂(u, v)(u)),

which proves the first part of the lemma.
It remains to prove that TA0 = 0. Indeed, by what was just proved, we have

that for all u, v ∈ T |x0M and for all t small,

(exp∇̂x̂0
)∗|tu(∂1v̂(tu, v)(tu)) = TP(γtu,A0)(1)

(
γ̇tu(1), Ytu,v(1)

)
holds, i.e., because Ytu,v(1) = 1

tYu,v(t),

t(exp∇̂x̂0
)∗|tu(∂1v̂(tu, v)(u)) = TP(γu,A0)(t)

(
γ̇u(t), 1

t
Yu,v(t)

)
.

But as t → 0, one has 1
tYu,v(t) → ∇γ̇u(t)Yu,v|t=0 = v, ∂1v̂(tu, v)(u) →

∂1v̂(0, v)(u) and P(γu, A0)(t) → A0, so in the limit one gets 0 = TA0(u, v).
Since u, v ∈ T |x0M were arbitrary, the result follows. �

From now on we will make all the assumption in the statement of Proposition
4.1, i.e. we also include the torsion condition Eq. (6).

Lemma 4.5. Under the above assumptions and for all (u, v) ∈ (U∩A−1
0 (Û)\CTx0

)×
T |x0M and t ∈ [0, 1], one has

Ŷu,v(t) = ∂

∂s

∣∣
0 exp∇̂x̂0

(
tA0(u+ sv)

)
(12)

Ŷu,v(t) =
(
Pt0(γu)A0

)
Yu,v(t) .(13)

Proof. Write ĈTx̂0
for the tangent conjugate set of (M̂, ∇̂) at x̂0 defined in the

same way as CTx0
. By Lemma 4.4 and condition (6), one has

(exp∇̂x̂0
)∗|A0u(∂1v̂(u, v)(u)) = 0 for all (u, v) ∈ (U ∩ A−1

0 (Û)\CTx0
) × T |x0M .

Given such a (u, v), if A0u /∈ ĈTx̂0
, then ∂1v̂(u, v)(u) = 0. Otherwise A0u ∈ ĈTx̂0

,
but then ∃ε > 0 such that tu ∈ U ∩ A−1

0 (Û)\CTx0
and tA0u /∈ ĈTx̂0

for all
t ∈]1− ε, 1 + ε[\{1}, hence ∂1v̂(tu, v)(tu) = 0. Letting t→ 1 then implies that
∂1v̂(u, v)(u) = 0. Therefore we have shown that

∂1v̂(u, v)(u) = 0 , ∀(u, v) ∈
(
U ∩A−1

0 (Û)\CTx0

)
× T |x0M .

Now fix u ∈ U ∩A−1
0 (Û)\CTx0

and v ∈ T |x0M . Notice that the set
S := {t ∈ [0, 1] | tu ∈ CTx0

} is finite or empty. If S 6= ∅, we write S = {ti}i=1,...,N
where 0 < ti < ti+1 < 1 for all i and we set tN+1 := 1. In the case where S is
empty, we set t1 := 1, N := 0.
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Write t0 := 0 and notice that for t, τ ∈]ti, ti+1[ we have

v̂(tu, v) = v̂(τu, v) +
∫ t

τ

1
s
∂1v̂(su, v)(su)︸ ︷︷ ︸

=0

ds = v̂(τu, v) ,

i.e. the value of t 7→ v̂(tu, v) is constant on each interval ]ti, ti+1[ , i = 0, . . . , N .
Let v̂i(u, v) be the constant value of v̂(tu, v) for t ∈]ti, ti+1[.

Define Ĵu,v(t), t ∈ [0, 1]\S, by

Ĵu,v(t) := t(exp∇̂x̂0
)∗|tA0u

(
v̂(tu, v)

)
, if t ∈]ti, ti+1[ .

Then Ĵu,v is a Jacobi field on each interval ]ti, ti+1[ since for t ∈]ti, ti+1[.

Ĵu,v(t) = t(exp∇̂x̂0
)∗|tA0u

(
v̂i(u, v)

)
= ∂

∂s

∣∣
0 exp∇̂x̂0

(
t(A0u+ sv̂i(u, v))

)
.

But we observe that

Ĵu,v(t) = tŶtu,v(1) =
(
Pt0(γu)A0

)
Yu,v(t) , ∀t ∈ [0, 1]\S ,

hence because t 7→ (Pt0(γu)A0)Yu,v(t) is smooth and S is finite, we see that
Ĵu,v(t) uniquely extends to a Jacobi field along γ̂A0u defined on the whole
interval [0, 1]. We still denote this Jacobi field by Ĵu,v(t) and notice that since

Ĵu,v(t) = t(exp∇̂x̂0
)∗|tA0u

(
v̂0(u, v)

)
holds for t ∈]0, t1[, it holds for all t ∈ [0, 1].

To identify Ĵu,v(t) once and for all, it remains to compute the value of
v̂0(u, v). We have

v̂(0, v) = (exp∇̂x̂0
)∗|0
(
v̂(0, v)

)
= Ŷ0,v(1) =

(
P1

0 (γ0)A0
)
Y0,v(1)

= A0Y0,v(1) = A0(exp∇x0
)∗|0(v) = A0v

and thus v̂0(u, v) = limt→0+ v̂(tu, v) = v̂(0, v) = A0v. We have thus shown the
following:

(exp∇̂x̂0
)∗|A0u

(
v̂(u, v)

)
= Ŷu,v(1) = Ĵu,v(1) = (exp∇̂x̂0

)∗|A0u(A0v) .

We will prove that v̂(u, v) = A0v. Indeed, if A0u /∈ ĈTx̂0
, then the above

equation readily implies that v̂(u, v) = A0v. On the other hand, if A0u ∈ ĈTx̂0
,

then for all t 6= 1 near 1, one has tA0u /∈ ĈTx̂0
and (exp∇̂x̂0

)∗|tA0u(v̂(tu, v)−A0v) =
0, which implies that v̂(tu, v) = A0v and finally v̂(u, v) = A0v by passing to
the limit t→ 1.

Since v̂(u, v) = A0v, the claimed Eq. (12) follows from (9). To prove (13),
notice that(

Pt0(γu)A0
)
Yu,v(t) = tŶtu,v(1) = t

∂

∂s

∣∣
0 exp∇̂x̂0

(
A0(tu+ sv)

)
= t(exp∇̂x̂0

)∗|tA0u(A0v) = Ŷu,v(t) .

This concludes the proof. �
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We are now ready to finish the proof of the proposition. Let u ∈ U ∩
A−1

0 (Û)\CTx0
. Because Yu,v(1) = (exp∇x0

)∗|u(v) by definition and since Ŷu,v(1) =
(exp∇̂x̂0

)∗|A0u(A0v), by (12), the formula (7) is an immediate consequence of
(13) and Definition 2.6. Since CTx0

has no interior points in T |x0M , it follows
that (7) holds for all u ∈ U ∩A−1

0 (Û).
It remains to prove the formula (8). Let (u, v) ∈ U ∩A−1

0 (Û)\CTx0
× T |x0M .

Taking twice the covariant derivative w.r.t. ∇̂ ˙̂γA0u(t) of both sides of the equation
(13), recalling that Yu,v, Ŷu,v are Jacobi fields and using Lemma 2.8 case (iv),
we get

R∇̂
( ˙̂γA0u(t), Ŷu,v(t)

) ˙̂γA0u(t) + ∇̂ ˙̂γA0u(t)
(
T ∇̂( ˙̂γA0u(t), Ŷu,v(t))

)
= ∇̂ ˙̂γA0u(t)∇̂ ˙̂γA0u(·)Ŷu,v(·) =

(
Pt0(γu)A0

)
∇γ̇u(t)∇γ̇u(·)Yu,v(·)

=
(
Pt0(γu)A0

)(
R∇(γ̇u(t), Yu,v(t))γ̇u(t) +∇γ̇u(t)

(
T∇(γ̇u(t), Yu,v(t))

))
.

Using the last two equations above, the fact that ˙̂γA0u(t) = P(γu, A0)(t)γ̇u(t)
and Definition 2.3 we get that, for all (u, v) ∈ U ∩A−1

0 (Û)\CTx0
× T |x0M ,

RPt0(γu)A0

(
γ̇u(t), Yu,v(t)

)
γ̇u(t) = −∇̂ ˙̂γA0u(t)TP·0(γu)A0

(
γ̇u(·), Yu,v(·)

)
= 0 ,

since TPt0(γu)A0(γ̇u(t), Yu,v(t)) = TP1
0 (γtu)A0(γ̇tu(1), Ytu,v(1)) = 0, t ∈ [0, 1], by

assumption (6).
Let then u ∈ U ∩A−1

0 (U) and let 0 < t1 < t2 < . . . be the conjugate times
along γu (i.e {t1u, t2u, . . .} = {tu | t ∈ [0, 1]} ∩ CTx0

). Suppose X(t) is any
vector field along γu. If t 6= tj for all j, then there is a v(t) ∈ T |x0M such that
Yu,v(t)(t) = X(t), and so

RPt0(γu)A0

(
γ̇u(t), X(t)

)
γ̇u(t) = 0 .

By continuity, this holds for all t ∈ [0, 1] and hence the result follows once we
set t = 1.

Remark 4.6. Notice that (5) is equivalent to the condition

Λ(∇,∇̂)
A0

(
4x0 (M,∇)

)
⊂ Ωx̂0(M̂) .

On the other hand, if (5) is replaced by a stronger condition

Λ(∇,∇̂)
A0

(
Ωx0(M)

)
⊂ Ωx̂0(M̂) ,

then in the proof one can define ωu,v to be γ−1
u+v ·

(
(s 7→ γu+sv(1)) · γu

)
∈

Ωx0(M). Then ωu,v and hence ω̂u,v, Ŷu,v and finally v̂(u, v) are defined for all
(u, v) ∈ (U ∩ A−1

0 (Û))× T |x0M . The proof goes through in the same way as
above, all the Lemmas 4.3–4.5 being true even with the set U ∩A−1

0 (Û)\CTx0

replaced with U ∩A−1
0 (Û) everywhere. Moreover, the proof becomes slightly

easier since one does not need to pay attention to the tangent conjugate set
CTx0

.

We will now proceed to the proof of Theorem 3.1.
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Proof of Theorem 3.1. Necessity. If f : M → M̂ is a Riemannian covering
with f∗|x0 = A0, then for γ ∈ 42

x0
(M,∇), one has ΛA0(γ) = f ◦ γ and hence

ΛA0(γ)(1) = f(γ(1)) = f(x0) = x̂0. So ΛA0(γ) ∈ Ωx̂0(M̂).
Sufficiency. The idea is to prove, using Proposition 4.1, that the condition

of C-A-H Theorem 2.10 given by Eq. (1) holds, which then implies the claim.
Define

A := {P1
0 (γ)A0 | γ ∈ 4x0(M,∇)}

and notice that assumption (5) implies that A ⊂ T ∗|x0M ⊗ T |x̂0M̂ and it is
clear that each A ∈ A is an infinitesimal isometry.

We claim that
P 0

1 (γ̂Au) ◦ (exp∇̂x̂0
)∗|Au ◦A = A ◦ P 0

1 (γu) ◦ (exp∇x0
)∗|u ,(14)

∀A ∈ A, u ∈ T |x0M .

Indeed, fix A ∈ A and let ω ∈ 4x0(M,∇) be arbitrary. Then there is an
γ ∈ 4x0(M,∇) such that A = P1

0 (γ)A0. But then ω · γ ∈ 42
x0

(M,∇) and
hence by Lemma 2.8(i) and the assumptions of the theorem,

ΛA(ω)(1) =
(
ΛP1

0 (γ)A0(ω) · ΛA0(γ)
)
(1) = ΛA0(ω · γ)(1) = x̂0

i.e. ΛA(4x0(M,∇)) ⊂ 4x̂0(M̂, ∇̂). Thus the above claim follows from Proposi-
tion 4.1.

For a unit vector u ∈ T |x0M , let τ(u) ∈]0,+∞] be cut-time for the geodesic
γu and set

UT := {tu | u ∈ T |x0M, ‖u‖g = 1, 0 ≤ t < τ(u)} , U := expx0(UT ) .
For every A ∈ A one defines a map

φA : U → M̂ ; φA = exp∇̂x̂0
◦A ◦ (exp∇x0

|UT )−1 .

We are to show that each φA is an isometry onto its open image. Indeed, if
x ∈ U and X ∈ T |xM , let u = (expx0 |UT )−1(x) and use (14) to compute

‖(φA)∗(X)‖ĝ =
∥∥(P 1

0 (γ̂Au) ◦A ◦ P 0
1 (γu))X

∥∥
ĝ

=
∥∥(A ◦ P 0

1 (γu))X
∥∥
ĝ

=
∥∥P 0

1 (γu)X
∥∥
g

= ‖X‖g .

Since dimM = dim M̂ , it follows that φA is a diffeomorphism onto its (open)
image and is isometric. This settles the claim.

Knowing this, we may now show a property which then allows us (eventually)
to call for the C-A-H Theorem 2.10: For all A ∈ A and all unit vectors
u ∈ T |x0M ,
(15) RPt0(γu)A = 0 , ∀t; 0 ≤ t ≤ τ(u)
with the understanding that 0 ≤ t ≤ τ(u) is replaced by t ≥ 0 if τ(u) = +∞.
To prove this, notice that since φA is an isometry onto its open image, one has

(φA)∗
(
R∇((X,Y )Z)

)
= R∇̂(((φA)∗X, (φA)∗Y )((φA)∗Z)) ,
∀x ∈ U, X, Y, Z ∈ T |xM
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i.e. R(φA)∗|x = 0 for all x ∈ U . But we know from (14) that if 0 ≤ t < τ(u)
(whence tu ∈ UT ), one has (φA)∗|γu(t) = P t0(γAu) ◦ A ◦ P 0

t (γu), which equals
to Pt0(γu)A. Hence RPt0(γu)A = 0 if 0 ≤ t < τ(u) and by continuity this also
holds when t = τ(u) (if τ(u) < +∞) which establishes the claim.

We are now ready to finish the proof by appealing to C-A-H Theorem 2.10.
Indeed, let ω ∈ ∠x0(M,∇). Since (M, g) is complete, there exists a unit vector
u ∈ T |x0M such that γu : [0, τ(u)]→M is a minimal geodesic from x0 to ω(1).
Because then γ−1

τ(u)u · ω ∈ 4x0(M,∇), one has that A := P1
0 (γ−1

τ(u)u · ω)A0 is in
A and therefore RPτ(u)

0 (γu)A = 0 by (15). But by Lemma 2.8,

Pτ(u)
0 (γu)A = P1

0 (γτ(u)u)P1
0 (γ−1

τ(u)u · ω)A0

= P1
0 (γτ(u)u)P1

0 (γ−1
τ(u)u)P1

0 (ω)A0 = P1
0 (ω)A0 ,

which proves that RP1
0 (ω)A0 = 0 for all ω ∈ ∠x0(M,∇).

Therefore the condition (1) of C-A-H Theorem 2.10 is satisfied and hence
there exists a complete Riemannian manifold (N,h), z0 ∈ N and Riemannian
covering maps F : N →M , G : N → M̂ such that A0 = G∗|z0 ◦(F∗|z0)−1. Since
M is simply connected, F : N →M is a Riemannian isomorphism and setting
f := G ◦ F−1 finishes the proof. �

Remark 4.7. In the case where there are no cut-points on any geodesic of
(M, g) emanating from x0, then one may replace (2) in Theorem 3.1 by the
condition

Λ(∇,∇̂)
A0

(4x0

(
M,∇)

)
⊂ Ωx̂0(M̂) .

Indeed, in this case exp∇x0
: T |x0M →M is a diffeomorphism and in the above

proof UT = T |x0M , U = M and so φA0 : M → M̂ is an isometry onto its
open image. It follows from a standard result on Riemannian manifolds that
f := φA0 is a covering map and obviously f∗|x0 = A0.

5. Different formulations of the Cartan-Ambrose-Hicks Theorem

In this section, we will complement the C-A-H Theorem 2.10 by giving eight
equivalent characterizations for the existence of a Riemannian covering map
f : (M, g)→ (M̂, ĝ) (under specific assumptions).

First we recall a well-known proposition and, for the sake of completeness,
give its easy proof.

Proposition 5.1. Suppose (M,∇), (M̂, ∇̂) are affine manifolds such that M
is simply connected and geodesically accessible from x0 and that (M̂, ∇̂) is
geodesically complete. Given A0 ∈ T ∗|x0M ⊗T |x̂0M̂ , there exists an affine map
f : M → M̂ such that f∗|x0 = A0 if and only if

(P(∇,∇̂))1
0(γ)A0 = A0 , ∀γ ∈

x0
(M,∇) .(16)
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Proof. Necessity. If f : M → M̂ is an affine map such that f∗|x0 = A0 and
if γ ∈

x0
(M,∇), then ΛA0(γ) = f ◦ γ and hence ΛA0(γ)(1) = f(γ(1)) =

f(x0) = x̂0.
Sufficiency. In the proof we write γu(t) = exp∇x (tu), when u ∈ T |xM . Let

x ∈M be given. Let γ, ω ∈ ∠x0(M,∇) be such that γ(1) = x, ω(1) = x, which
exist since (M,∇) is geodesically accessible from x0. Then ω−1 ·γ ∈

x0
(M,∇)

and hence

P1
0 (ω−1 · γ)A0 = A0 .

It follows that (see Lemma 2.8 and Remark 2.9)

ΛA0(ω)(1) =ΛP1
0 (ω−1·γ)A0(ω)(1) = ΛA0(ω · (ω−1 · γ))(1) = ΛA0((ω · ω−1) · γ)(1)

=ΛP1
0 (γ)A0(ω · ω−1)(1) = ΛA0(γ)(1) .

This shows that if for x ∈M one defines

f(x) := {ΛA0(γ)(1) | γ ∈ ∠x0(M,∇), γ(1) = x},

then f(x) is a singleton set for all x ∈M and hence f can be seen as a map
f : M → M̂ .

We show that f is an affine map. To do that, we first make a construction
for its differential that is analogous to that for f above. Let x ∈ M and
let γ, ω ∈ ∠x0(M,∇) be such that γ(1) = x, ω(1) = x as above, then since
ω−1 · γ ∈

x0
(M,∇),

P1
0 (γ)A0 = P1

0 (ω · ω−1)P1
0 (γ)A0 = P1

0 ((ω · ω−1) · γ)A0

= P1
0 (ω)P1

0 (ω−1 · γ)A0 = P1
0 (ω)A0 ,

and so

A(x) := {P1
0 (γ)A0 | γ ∈ ∠x0(M,∇), γ(1) = x}

is a singleton set for every x ∈ M and thus we can view A as a map M →
T ∗M ⊗ TM̂ .

We claim that ∃f∗|x = A(x) for all x ∈M . Indeed, for any γ ∈ ∠x0(M,∇),
one has f(γ(t)) = Λ(∇,∇̂)

A0
(γ)(t) and so

d
dtf

(
γ(t)

)
= d

dtΛA0(γ)(t) =
(
Pt0(γ)A0

)
γ̇(t) = A

(
γ(t)

)
γ̇(t) .

Then if X ∈ T |xM , choose u ∈ T |x0M such that γu(1) = x and notice that
γ := γX .γu is a 1-broken geodesic. Thus the above formula gives by letting
t→ 1

2+,

f∗(X) = A(x)X ,

showing also that the differential f∗|x exists.
To show that f is an affine map, it is enough to show that for any geodesic

Γ: [0, 1]→M and any vector field X(t) parallel to it, the vector field f∗(X(t))
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along f ◦ Γ is parallel. So choose such Γ = γv and X. Let u ∈ T |x0M be such
that γu(1) = Γ(0) and notice that γtv · γu ∈ ∠x0(M,∇). Then for all t ∈ [0, 1],

f(Γ(t)) = f((γtv · γu)(1)) = ΛA0(γtv · γu)(1) = ΛP1
0 (γu)A0(Γ)(t) ,

where the right hand side is a geodesic by Lemma 2.8. Moreover,

f∗(X(t)) = A
(
(γtv · γu)(1)

)
X(t)

=
(
P1

0 (γtv · γu)A0
)
X(t) =

(
Pt0(Γ)P1

0 (γu)A0
)
X(t) ,

which, by using P 0
t (Γ)X(t) = X(0) and ΛP1

0 (γu)A0(Γ) = f ◦ Γ, simplifies to

f∗
(
X(t)

)
= P t0(f ◦ Γ)

(
(P1

0 (γu)A0)X(0)
)
.

Thus t 7→ f∗(X(t)) is the parallel transport of (P1
0 (γu)A0)X(0) along f ◦Γ and

the proof is finished. �

We now give the reformulation of the C-A-H Theorem 2.10. The equivalence
of (i), (ii), (v), (vi), (vii), (ix) can essentially be found in [11], the Global C-A-H
Theorem 4.47.

Theorem 5.2. Suppose (M, g), (M̂, ĝ) are complete Riemannian manifolds
of the same dimension, dimM = dim M̂ , M simply connected and let A0 ∈
T ∗|x0M ⊗ T |x̂0M̂ be an infinitesimal isometry. Let ∇, ∇̂ be the Levi-Civita
connections of (M, g), (M̂, ĝ), respectively. Then the following are equivalent
(for the sake of clarity we write Pba(γ) instead of (P(∇,∇̂))ba(γ)):

(i) There exists a Riemannian covering map f : M → M̂ such that f∗|x0 =
A0;

(ii) For all γ ∈ ∠x0(M,∇) one has R(∇,∇̂)
P1

0 (γ)A0
= 0;

(iii) Λ(∇,∇̂)
A0

(Ωx0(M)) ⊂ Ωx̂0(M̂);
(iv) Λ(∇,∇̂)

A0
(42

x0
(M,∇)) ⊂ 42

x̂0
(M̂, ∇̂);

(v) P1
0 (γ)A0 = A0 for all γ ∈ Ωx0(M);

(vi) P1
0 (γ)A0 = A0 for all γ ∈ 42

x0
(M,∇);

(vii) P1
0 (γ)A0 = A0 for all γ ∈

x0
(M,∇);

(viii) There exist points x1 ∈M , x̂1 ∈ M̂ such that (pw.=‘piecewise’)

∀γ : [0, 1]→M pw. smooth, γ(0) = x0, γ(1) = x1 =⇒ Λ(∇,∇̂)
A0

(γ)(1) = x̂1 .

(ix) If γ, ω : [0, 1] → M are piecewise smooth, γ(0) = ω(0) = x0 and
γ(1) = ω(1), then Λ(∇,∇̂)

A0
(γ)(1) = Λ(∇,∇̂)

A0
(ω)(1).

Proof. We write γu(t) = exp∇x (tu) if u ∈ T |xM and γ̂û(t) = exp∇̂x̂ (tû) if
û ∈ T |x̂M̂ , t ∈ [0, 1].

We will do the following four cycles of deductions: (i) ⇐⇒ (ii) and (i) ⇒
(v) ⇒ (iii) ⇒ (iv) ⇒ (i) and (i) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (i) and (i) ⇒ (ix) ⇒
(viii) ⇒ (i).
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(i)⇒ (ii): Since f∗ is a local isometry and f∗|x0 = A0, we have ΛA0(γ) = f ◦γ,
f∗|γ(1) = P1

0 (γ)A0 and hence if X,Y, Z ∈ T |γ(1)M ,

RP1
0 (γ)A0(X,Y )Z = f∗R

∇(X,Y )Z −R∇̂(f∗X, f∗Y )Z = 0 .

(ii) ⇒ (i): C-A-H Theorem 2.10
(i)⇒ (v): Again, since f∗ is a local isometry and f∗|x0 = A0, then P1

0 (γ)A0 =
f∗|γ(1) for any piecewise smooth γ. In particular, γ ∈ Ωx0(M) implies P1

0 (γ)A0 =
f∗|γ(1) = f∗|x0 = A0.

(v) ⇒ (iii): Since P1
0 (γ)A0 : T |γ(1)M → T |ΛA0 (γ)(1)M̂ , and A0 : T |x0M →

T |x̂0M̂ , it follows that if γ ∈ Ωx0(M) and if P1
0 (γ)A0 = A0, that ΛA0(γ)(1) = x̂0

i.e. ΛA0(γ) ∈ Ωx̂0(M̂).
(iii) ⇒ (iv): Obvious (cf. Lemma 2.8).
(iv) ⇒ (i): Theorem 3.1 (and the remark that follows it).
(v) ⇒ (vi): Obvious.
(vi) ⇒ (vii): Let Γ ∈

x0
(M,∇). After reparameterizing if necessary (see

Lemma 2.8 case (v)), we may assume that Γ is γ4.γ3.γ2.γ1 with γi : [0, 1]→M ,
i = 1, 2, 3, 4, geodesics. Let ρ : [0, 1]→M be a geodesic from x0 to γ2(1) = γ3(0).
Then γ := ρ−1 · (γ2 ·γ1) ∈ 4x0(M,∇) and ω := (γ4.γ3) ·ρ ∈ 4x0(M,∇). Hence
by assumption and Lemma 2.8 one has

P1
0 (Γ)A0 = P1

0 (γ4 · γ3)P1
0 (γ2 · γ1)A0 = P1

0 (γ4 · γ3)P1
0 (ρ · ρ−1)P1

0 (γ2 · γ1)A0

= P1
0 (γ · ω)A0 = A0 .

(vii) ⇒ (i): By Proposition 5.1 there is an affine map f : M → M̂ such that
f∗|x0 = A0. Let x ∈ M and take some geodesic γ : [0, 1] → M from x0 to x.
>From the affinity of f and f∗|x0 = A0, it follows that P1

0 (γ)A0 = f∗|γ(1) = f∗|x
and since A0 is an infinitesimal isometry, then so is P1

0 (γ)A0 and hence f is a
local isometry. It follows from a standard result in Riemannian geometry that
f is a Riemannian covering map.

(i) ⇒ (ix): If f : M → M̂ is a Riemannian covering with f∗|x0 = A0
and γ, ω are as stated, then ΛA0(γ) = f ◦ γ, ΛA0(ω) = f ◦ ω and hence
ΛA0(γ)(1) = f(γ(1)) = f(ω(1)) = ΛA0(ω)(1).

(ix) ⇒ (viii): Take any point x1 ∈ M , fix any piecewise smooth path
ω : [0, 1]→M from x0 to x1 and set x̂1 := ΛA0(ω)(1). Then if γ : [0, 1]→M
is an arbitrary piecewise smooth path from x0 to x1, we have γ(1) = x1 = ω(1)
and hence by the assumption, ΛA0(γ)(1) = ΛA0(ω)(1) = x̂1.

(viii) ⇒ (i): Corollary 3.5 (and the Remark after it). �

Remark 5.3.
(a) Although we don’t prove it here, the condition (ii) in the previous

theorem (and Eq. (1) in C-A-H Theorem 2.10) can in fact be replaced
with

(ii)’ For all γ ∈ ∠x0(M,∇) and X ∈ T |γ(1)M , one has
R(∇,∇̂)
P1

0 (γ)A0
(γ̇(1), X)γ̇(1) = 0.
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(b) We point out that the condition (v) (resp. (vi)) is significantly stronger
than (iii) (resp. (iv)). To see this, consider the set Q ⊂ T ∗M ⊗ TM̂ of
infinitesimal isometries as a bundle over M (resp. over M̂), where the
bundle map πM : Q→M (resp. πM̂ : Q→ M̂) maps A to x (resp. to x̂),
if A : T |xM → T |x̂M̂ . As a manifold Q has dimension 2n+ n(n−1)

2 .
If γ : [0, 1]→M is a piecewise smooth path that starts from x0, then

t 7→ Pt0(γ)A0, t ∈ [0, 1], is a piecewise smooth path in Q that starts from
A0 and ΛA0(γ)(t) = πM̂ (Pt0(γ)A0), γ(t) = πM (Pt0(γ)A0).

The condition (v) says that if γ is a loop of M based at x0, then
Pt0(γ)A0 is a loop of Q based at A0 (and therefore automatically ΛA0(γ)
is a loop of M̂ based at x̂0). In other words,

{P1
0 (γ)A0 | γ ∈ Ωx0(M)} = {A0} .

On the other hand, condition (iii) demands that for any loop γ of M
based at x0, the path Pt0(γ)A0 comes back to the set fiber π−1

M̂
(x̂0) (and

of course to π−1
M (x0)), where it started from i.e.

{P1
0 (γ)A0 | γ ∈ Ωx0(M)} ⊂ π−1

M (x0) ∩ π−1
M̂

(x̂0) .

The set π−1
M (x0) ∩ π−1

M̂
(x̂0) is n(n−1)

2 dimensional in contrast to {A0}
which is 0-dimensional. This can be seen as an illustration of the stringency
of condition (v) with respect to (iii).

(c) It is an open problem to determine if actually there is a weaker version of
(vii) i.e. if (i)–(ix) are equivalent to the following: Λ(∇,∇̂)

A0
(

x0
(M,∇)) ⊂

x̂0
(M̂, ∇̂). See also Remark 4.7.

(d) In (viii) the assumption that γ be piecewise smooth can be replaced by
the assumption that it be 6-times broken geodesic (see Corollary 3.5).

(d) The condition (ix) can be replaced by the assumption that γ, ω be
1-broken geodesics.

To see this, we use the argument from [11] which is essentially the same
as for Proposition 5.1 (but in Riemannian setting). For any x ∈M , the
set

{ΛA0(γ)(1) | γ ∈ ∠x0(M,∇), γ(1) = x}

is a singleton set by assumption, so one may define f(x) to be its unique
element. This defines f : M → M̂ . If X ∈ T |xM , let ω : [0, 1]→M be any
geodesic from x0 to x. Then γtX ·ω ∈ ∠x0(M,∇), γtX ·ω(1) = γX(t), and
so

f
(
γX(t)

)
= ΛA0(γtX · ω)(1) = ΛP1

0 (ω)A0(γX)(t) = γ̂(P1
0 (ω)A0)X(t) .

This implies that f is differentiable at x and f∗(X) = (P1
0 (ω)A0)X.

Since P1
0 (ω)A0 is an infinitesimal isometry, this implies that f is a local

Riemannian isometry (the smoothness of f is easily established) and
therefore a Riemannian covering map, i.e. we arrive at case (i).
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(e) We also remark that the condition (ix) is much stronger than (viii).
To see this, observe that (viii) can be written in the following way that
resembles more condition (ix):

(viii) There exist a point x1 ∈ M such that if γ, ω : [0, 1] → M are
piecewise smooth, γ(0) = ω(0) = x0 and γ(1) = ω(1) = x1, then
Λ(∇,∇̂)
A0

(γ)(1) = Λ(∇,∇̂)
A0

(ω)(1).
To put it another way, in (ix) the endpoints γ(1) of the curves γ are

allowed to move freely on M while in (viii) one only uses curves γ whose
endpoints γ(1) are fixed to the pre-given point x1.

Remark 5.4. In [10] the following local version of C-A-H Theorem was proven
in the context of affine manifolds: Let (M,∇), (M̂, ∇̂) be affine manifolds
(possibly of different dimensions), let A0 ∈ T ∗|x0M ⊗ T |x̂0M̂ and suppose
U ⊂ T |x0M is an open set containing the origin such that exp∇x0

|U is a
diffeomorphism onto its image and that exp∇̂x̂0

is defined on A0(U). If

R(∇,∇̂)
P1

0 (γu)A0
(γ̇u(1), X)Y = 0, T (∇,∇̂)

P1
0 (γu)A0

(γ̇u(1), X) = 0,(17)

for all u ∈ U and X, Y ∈ T |γu(1)M , then exp∇̂x̂0
◦A0 ◦ (exp∇x0

|U )−1 : U → M̂ is
an affine map.

We point out that the conclusion (8) of Proposition 4.1 is not enough to
invoke this local of C-A-H Theorem in the general setting of affine manifolds,
since (8) gives (17) only in the special case where Y = γ̇u(1). It is an open
question whether one is able to reach the former condition in (17) from the
assumptions of Proposition 4.1.

6. An application of the main result

Recall that the affine group Aff(V ) of a vector space V is GL(V )× V as a
set and it is equipped with a group multiplication ? given by

(A, v) ? (B,w) := (AB,Aw + v), (A, v), (B,w) ∈ Aff(V ).

Also, there is a natural action ? of Aff(V ) on V given by

(A, v) ? w := Aw + v , (A, v) ∈ Aff(V ) , w ∈ V .

Recall also that if (M,∇) is an affine manifold and x ∈M , then its affine
holonomy group Ax at x is a subgroup of the affine group Aff(T |xM) given by

Ax =
{(
P 0

1 (γ),
∫ 1

0
P 0
s (γ)γ̇(s)ds

) ∣∣∣ γ ∈ Ωx(M)
}
.

As an application of Theorem 3.1 we will give a different proof of Theorem IV.7.2
in [8].

Theorem 6.1. Suppose (M, g) is a simply connected, complete Riemannian
manifold and x ∈ M . If the affine holonomy group Ax has a fixed point
W ∈ T |xM , then (M, g) is isometric to the Euclidean space.
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Proof. Suppose W ∈ T |xM is a fixed point of Ax. Then for all γ ∈ Ωx(M) one
has W =

(
P 0

1 (γ),
∫ 1

0 P
0
s (γ)γ̇(s)ds

)
?W . Write γW : [0, 1]→M for the geodesic

with γ̇W (0) = W and define x0 := γW (1).
Then if ω ∈ Ωx0(M), it follows that γ−1

W · (ω · γW ) ∈ Ωx(M),

W =
(
P 0

1
(
γ−1
W · (ω · γW )

)
,

∫ 1

0
P 0
s

(
γ−1
W · (ω · γW )

) d
ds
(
γ−1
W · (ω · γW )

)
(s)ds

)
? W

i.e. if W ′ := P 0
1 (γ−1

W )W +
∫ 1

0 P
0
s (γ−1

W ) d
dsγ
−1
W (s)ds,

W ′ =
(
P 0

1 (ω),
∫ 1

0
P 0
s (ω)ω̇(s)ds

)
? W ′ .

But

W ′ = P 1
0 (γW )W −

∫ 1

0
P 1

1−s(γW )γ̇W (1− s)ds = γ̇W (1)−
∫ 1

0
γ̇W (1)ds = 0 ,

so one has

0 =
∫ 1

0
P 0
s (ω)ω̇(s)ds, ∀ω ∈ Ωx0(M) .(18)

Let A0 be the identity map idT |x0M
: T |x0M → T |x0M and define (M̂, ĝ) :=

(T |x0M, g|T |x0M
) and x̂0 := 0, the origin of T |x0M . Then using the natural

identification of T |x̂0M̂ = T |0(T |x0M) with T |x0M , one sees that A0 is an
infinitesimal isometry. For any piecewise smooth γ : [0, 1] → M such that
γ(0) = x0 we obviously have

Λ(∇,∇̂)
A0

(γ) =
∫ 1

0
P 0
s (γ)γ̇(s)ds ,

with ∇, ∇̂ the Levi-Civita connections of (M, g), (M̂, ĝ), respectively. The
above equation (18) shows that Λ(∇,∇̂)

A0
(ω)(1) = 0 = x̂0 for all ω ∈ Ωx0(M) i.e.

Λ(∇,∇̂)
A0

(Ωx0(M)) ⊂ Ωx̂0(M̂) and thus one may invoke Theorem 3.1 (see also the
Remark following the Theorem) to obtain a Riemannian covering f : M → M̂ .
Since (M̂, ĝ) is an Euclidean space and in particular simply connected, it follows
that f is an isometry from (M, g) to the Euclidean space. This completes the
proof. �

Remark 6.2. The above result is used e.g. to determine all the possible affine
Riemannian holonomy groups from the usual (linear) holonomy groups (see
[8]). Moreover, the affine Riemannian holonomy group turn out to determine
the orbits of the the control system associated to the rolling (without slipping
and spinning) of a Riemannian manifold onto its tangent plane (see [5]).
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