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Abstract. This paper presents a unified framework for the dual-weighted residual (DWR)
method for a class of nonconforming FEM. Our approach is based on a modification of the
dual problem and uses various ideas from literature which are combined in a new manner.
The results are new error identities for some nonconforming FEM. Additionally, a posteriori
error estimates with respect to the discrete H
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1. Introduction

We study the model problem

−∆u = f in Ω ⊂ R
2, u = 0 on Γ = ∂Ω,

in a bounded, polygonal and simply connected domain Ω, where f ∈ L2(Ω) is a given

function.

A weak formulation is: Find u ∈ V = H1
0 (Ω) such that

(1.1) a(u, v) = F (v) ∀ v ∈ V

with

a(v, w) = (grad v,gradw)Ω =

∫∫

Ω

[grad v]T grad w and F (v) = (f, v)Ω.
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We study the Galerkin-FEM on regular partitions Th with Ω = Ωh (=
⋃

K∈Th

K).

Furthermore, for the seminorm and norm in the Sobolev space Hm(G) we use the

notation | · |m,G and ‖ · ‖m,G, respectively. The number C denotes a generic positive

constant, independent of the step size, and Pk denotes the space of polynomials of

degree k.

As a starting point of our study, we give a brief summary of some aspects and

results of a posteriori error indicators and the DWR method.

For K ∈ Th a local a posteriori error indicator ηK provides an information about

the error eh = u − uh of the FEM solution uh. This is important for measuring the

global accuracy within a prescribed tolerance with a minimal amount of work. Such

indicators only use the computed numerical solution and the data of the PDE.

However, if we want to determine the accuracy of FEM-solutions, the question

which occurs is: Which measure of accuracy can we use? Traditionally, norms like

the H1-seminorm or the L2-norm are used. A norm induced accuracy leads to a

posteriori error indicators. The DWR method is a generalization of this approach.

First, let us discuss a posteriori error indicators with respect to a norm ‖ · ‖.

For given local a posteriori error indicators ηK , K ∈ Th, the associated global a

posteriori error indicator η is defined by

(1.2) η =

(

∑

K∈Th

|ηK |2
)1/2

.

Usually, ηK and η satisfy

(1.3) ‖u − uh‖Ω 6 Cη (reliability) and ηK 6 C‖u − uh‖ωK
(efficiency)

or comparable inequalities. Here, ωK is a suitable and possibly small neighbourhood

of K.

Relations (1.3) state the upper (global) and lower (local) boundedness of the

norm ‖ · ‖ of the error eh = u − uh in terms of the global and of the local error

indicators η and ηK , respectively. If η is small enough the first inequality in (1.3)

provides the wanted global accuracy. If in addition the second inequality in (1.3) is

satisfied the local a posteriori error indicator ηK is of the same scale and does not

overestimate the error on ωK . If the first inequality in (1.3) holds with C = 1 the

error indicators are called error estimators (see [4]).

Now, let a nonconforming FEM be defined by: Find uh ∈ V nc
h such that

(1.4) ah(uh, vh) = F (vh) ∀ vh ∈ V nc
h
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with

ah(v, w) =
∑

K∈Th

aK(v, w) and aK(v, w) = (grad v,grad w)K .

For a nonconforming FEM we have V nc
h 6⊂ V in contrast to V c

h ⊂ V for a conforming

FEM.

As a measure of accuracy, the discrete H1-seminorm on Ω can be used:

(1.5) |v|1,Ω,h =

(

∑

K∈Th

|v|21,K

)1/2

.

In [8], for our model problem, a triangular partition and the linear nonconform-

ing FEM, a local a posteriori error indicator is given comparable to

ηK =
{

h2
K‖f + ∆uh‖

2
0,K +

1

2
hK

[

‖Jh,∂K\Γ,n(uh)‖2
0,∂K\Γ(1.6)

+ ‖Jh,∂K\Γ,t(uh)‖2
0,∂K\Γ

]

+ hK‖∂tK
uh‖

2
∂K∩Γ

}1/2

.

Here, hK is the diameter of K, tK is a tangent vector to ∂K defined as

(1.7) tK = tK(nK) = [−n2, n1]
T

with nK = [n1, n2]
T being the outer unit normal vector of K, and the terms

(1.8) Jh,∂K\Γ,ν(uh) = [νK ]T
[

| gradh uh |
]

for ν ∈ {n, t}

are defined on ∂K \Γ and denote the jump of ∂νK
uh = [νK ]T gradh uh with respect

to K (for the definition of the discrete gradient gradh see (2.4)). More precisely:

Let Eh be the set of all edges of the triangulation Th,

(1.9) Eh,in = {E ∈ Eh : ∃K1, K2 ∈ Th with K1 6= K2 and E = K1 ∩ K2}

and w ∈ {vh,gradh vh} with vh ∈ V nc
h . Then for K ∈ Th and E ∈ Eh,in with

E ⊂ ∂K, on int(E) the jump
[

|w |
]

with respect to K is given by

(1.10)
[

|w |
]

(x) = w
∣

∣

E∩∂Kout(x)
(x) − w

∣

∣

E∩∂K
(x) ∀x ∈ int(E).

Here, Kout(x) ∈ Th is defined by Kout(x) 6= K and x ∈ K ∩ Kout(x) (see 1.9), and

for K̃ ∈ Th and E ∈ Eh with E ⊂ ∂K̃, the value w
∣

∣

E∩K̃
(x) for x ∈ int(E) is defined

by

w
∣

∣

E∩∂K̃
(x) = lim

z→x,z∈int(K̃)
w(z).
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R em a r k 1.

1. The jump
[

|v |
]

is only defined on int(E) with E ∈ Eh,in. However, this is

sufficient because it is only used in terms like (1,
[

|v |
]

)0,∂K\Γ or ‖
[

|v |
]

‖0,∂K\Γ.

2. For a piecewise linear FE-space, ∆uh

∣

∣

K∈Th
= 0 holds, which simplifies ηK .

3. Sometimes, e.g. hK‖Jh,∂K\Γ,n(uh)‖2
0,∂K\Γ is also given in the equivalent form

∑

E∈Eh∩(∂K\Γ)

hE‖Jh,∂K\Γ,n(uh)‖2
0,E

with Eh being the set of all edges of the triangulation and hE the length of E.

To simplify matters, we do not distinguish between hK and hE , because under

usual assumptions like the minimal angle condition these are equivalent.

In [8], the authors proved (1.6) using a Helmholtz decomposition of the space

[L2(Ω)]2 that we will also use.

Compared to the above norm-based measure, the DWR (dual-weighted residual)

method as given in [5] is a more general approach using other measures of accuracy.

In the following, we repeat the main ideas of this approach for the conforming FEM

defined by: Find uh ∈ V c
h (⊂ V ) such that

a(uh, vh) = F (vh) ∀ vh ∈ V c
h .

A linear error function J (·) : V → R is used to control the error eh, i.e., instead of

the usual ‖eh‖Ω we use |J (eh)| to measure the accuracy.

In [5], various examples for the choice of J are given some of which yield error

estimates with respect to norms like the H1-seminorm or the L2-norm.

With the unique solution z ∈ V of the dual problem

(1.11) a(v, z) = J (v) ∀ v ∈ V,

we obtain J (eh) = a(eh, z) and, because of the Galerkin orthogonality a(eh, vh) = 0,

J (eh) = a(eh, z − vh) ∀ vh ∈ V c
h .

Partial integration over K ∈ Th yields the error identity

(1.12) J (eh) =
∑

K∈Th

{(RK(uh), z − vh)K − (r∂K\Γ(uh), z − vh)∂K\Γ} ∀ vh ∈ V c
h

with the local computable cell residuals RK(uh) = (f + ∆uh)
∣

∣

K
and edge resid-

uals r∂K\Γ(uh) = 1
2 J∂K\Γ,n(uh) with J∂K\Γ,n(uh) = [nK ]T

[

| graduh |
]

(compare

to (1.8)).
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Now, in the derivation and also in the practical computation of local a posteriori

error indicators we have to distinguish two cases.

For some J , local a posteriori error indicators like (1.6) are computable without

knowing the solution z of (1.11). This is possible, if the following two conditions

hold:

• The solution z of (1.11) satisfies z ∈ Hβ(Ω) for some β > 1, and

• for an interpolation operator Ih : V → V c
h a local interpolation error estimate

(1.13) ‖v − Ihv‖0,K + h
1/2
K ‖v − Ihv‖0,∂K 6 Ch

β
K |v|β,ωK

∀K ∈ Th, v ∈ V

is satisfied, where ωK is a suitable and possibly small neighbourhood of K.

Then a computable local a posteriori error indicator is given by

ηK = h
β
K

{

‖f + ∆uh‖
2
0,K +

1

2
h−1

K ‖J∂K\Γ,n(uh)‖2
0,∂K\Γ

}1/2

,

and the global a posteriori error indicator η defined by (1.2) obviously satisfies

(1.14) |J (eh)| 6 Cη (reliability).

This follows with the change from the error identity (1.12) to the error estimate

|J (eh)| 6
∑

K∈Th

{

‖f + ∆uh‖0,K‖z − vh‖0,K(1.15)

+
1

2
‖J∂K\Γ,n(uh)‖0,∂K\Γ‖z − vh‖0,∂K\Γ

}

by using the local interpolation error estimate (1.13).

This case includes such J which lead to estimates with respect to theH1-seminorm

or to the L2-norm. For all other J , different techniques have to be used (see [5]).

A proof of a property like the efficiency is not known in the general context of the

DWR method. But, as mentioned in [5], it seems to be clear that two conditions are

necessary:

• The change from identity (1.12) to (1.15) is not too bad, and

• the estimate (1.13) is satisfied with an optimal β.

Now, let us consider a nonconforming FEM. In some papers (e.g. [12], [10], [14]),

the DWR method is already studied for nonconforming FEM. In that case, because

of V nc
h 6⊂ V , an error function

(1.16) J (·) : V ⊕ V nc
h → R

has to be used.
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In [12], first of all the triangular linear nonconforming FEM is considered. The

use of the space V c
h = V nc

h ∩ V with V c
h from the triangular linear conforming FEM

is possible, so that the results follow with the same techniques as in the conforming

case.

Further, in [12] on a partition into quadrilaterals a nonconforming Q1-element is

considered, namely the Rannacher-Turek element (see [13]). For this FEM, the same

ideas as in [10] are applied and yield the additional term (
[

|uh |
]

, ∂nK
z)∂K on the

right-hand side of (1.12).

In [10] on a partition into quadrilaterals a linear nonconforming FEM is studied

(for details see [10]). But in contrast to the nonconforming triangular P1-element

in [12], it is not possible to use V nc
h ∩ V , because this space is too small (i.e., for a

given norm in a local interpolation error estimate like (1.13) β is too bad). Therefore,

in [10] V nc
h is first expanded and then restricted to a conforming space V c

h . That

yields the additional term ah(eh, vc
h) for vc

h ∈ V c
h on the right-hand side of (1.12).

In [14] for a given partition Th a class of nonconforming FEM is considered based on

polynomial elements. The nonconforming FE-space V nc
h has to satisfy

∫

E

[

|v |
]

ds = 0

for all v ∈ V nc
h and E ∈ Eh,in. The approach is based on two spaces V c

h ⊂ V and

V
c,1
h = V ∩V nc

h as well as on two operators Rh : V nc
h ⊕V c

h → V c
h and I

c,1
h : V → V

c,1
h .

The result is the error identity

J (eh) =
∑

K∈Th

{

(f + ∆uh, z − I
c,1
h z)K −

1

2
(J∂K\Γ,n(uh), z − I

c,1
h z)∂K\Γ

}

+ η(p)(uh, z)

with η(p)(uh, z) = ah(uh − Rhuh, z) − J(uh − Rhuh), where z is the solution of the

dual problem (1.11).

In some other papers ([6], [3], [2]) interesting approaches and ideas are given, how-

ever only for a posteriori error indicators with respect to the discrete H1-seminorm.

In [6], where a general class of nonconforming FEM is considered, a space V c
h ⊂ V

and a suitable linear operator Π: V → V nc
h have to be known. Then in contrast to

our approach, for the estimation of ah(uh, v − vh) not all vh ∈ V nc
h are used, but

only the ones for which vh = Πṽh holds with ṽh ∈ V c
h (for details see [6]). However,

in [6] it is shown that (1.6) is also a local a posteriori error indicator for the four

nonconforming FEM considered in Subsection 4.2.

In [3] also a class of nonconforming FEM is considered, however only based on a

triangular partition and on Pl-elements. All these FEM satisfy our assumptions (A1)

from Subsection 2.1 and (A2) from Section 3 with k = l − 1.

As in [2], where only the quadrilateral Rannancher-Turek element is considered,

an additional space V c
h ⊂ V is not needed, but in contrast to our indicator it is

556



more difficult to calculate the local a posteriori error indicators given in [3] and [2].

However, because of Lemma 2 (see Section 3) it is not surprising that the error part

Jh,∂K\Γ,n(uh) known from (1.6) is not identifiable in the estimate in [3], since this

part is not needed at all if a special interpolation operator is used.

The remainder of the paper deals with the DWR method for the nonconform-

ing FEM and is organized as follows. First, Section 2 gives necessary preliminaries

including a small modification of the dual problem. In Section 3, new error identi-

ties for some nonconforming FEM are presented comparable to (1.12). In Section 4

applications to some nonconforming FEM are given. On the one hand, the error

identities are satisfied for arbitrary error functions J . On the other hand, the choice

of a special error function yields a posteriori error indicators with respect to the

discrete H1-seminorm, which are new in certain cases.

2. Necessary preliminaries

2.1. The class of nonconforming FEM

For all K ∈ Th, let RK ⊂ C2(K) be a given finite dimensional function space.

We consider nonconforming FEM whose FE-space V nc
h is a subspace of

{v ∈ L2(Ω): v
∣

∣

K
∈ RK ∀K ∈ Th}.

Further, we introduce the following assumption

(A1) Let k ∈ N be fixed, and for all v ∈ V nc
h let (as in [14])

(p,
[

|v |
]

)E = 0 ∀E ∈ Eh,in, p ∈ Pk(E)

and

(p, v)E = 0 ∀E ∈ Eh \ Eh,in, p ∈ Pk(E).

That is, with the space

Υ nc
h =

{

v ∈ L2(Ω): v
∣

∣

K
∈ RK ∀K ∈ Th and(2.1)

(p,
[

|v |
]

)E = 0 ∀E ∈ Eh,in, p ∈ Pk(E)
}

the FE-space V nc
h has to satisfy

(2.2) V nc
h ⊂ {v ∈ Υ nc

h : (p, v)E = 0 ∀E ∈ Eh \ Eh,in, p ∈ Pk(E)}.

R em a r k 2. First,
[

|v |
]

was defined on ∂K \ Γ with respect to K (see (1.10)).

However, in (A1) it is used as if it was defined on E ∈ Eh,in which is possible because

(p,
[

|v |
]

)E = 0 for E ∈ Eh,in.
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2.2. The DWR method for nonconforming FEM

We use an error function J with (1.16), but in contrast to (1.11) we consider the

following dual problem: Find z ∈ V ⊕ V nc
h such that

(2.3) ah(v, z) = J (v) ∀ v ∈ V ⊕ V nc
h

which gives as measure of accuracy

J (eh) = ah(eh, z).

This different, yet self-evident choice of the dual problem has two advantages.

On the one hand, no additional terms arise which cannot be estimated directly (for

details see below). On the other hand, the Galerkin orthogonality is not needed.

2.3. A suitable Helmholtz decomposition and its application

As in [8] (and also in [6], [2], [3]) we use a suitable Helmholtz decomposition of the

space [L2(Ω)]2. More precisely: We use a suitable Helmholtz decomposition of the

discrete gradient gradh ṽ ∈ [L2(Ω)]2 with ṽ = v + vh, v ∈ V and vh ∈ V nc
h , where

gradh ṽ is defined by

(2.4) (gradh ṽ)
∣

∣

K
= grad (ṽ

∣

∣

K
) ∀K ∈ Th.

Denoting

rotw =
[

−
∂w

∂y
,
∂w

∂x

]T

(as in [8]), we obtain the orthogonal decomposition

gradh ṽ = gradwṽ + rotφṽ

with wṽ ∈ V = H1
0 (Ω), φṽ ∈ Φ = H1(Ω) for our model problem, where the function ṽ

as an index in wṽ and φṽ shall indicate the dependence of w and φ on ṽ.

The orthogonality is understood in the sense (grad w, rotφ)Ω = 0 for all w ∈ V ,

φ ∈ Φ, which implies

(2.5) ‖gradh ṽ‖2
0,Ω = |ṽ|21,Ω,h = |wṽ|

2
1,Ω + |φṽ|

2
1,Ω.
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R em a r k 3.

1. In [8] this decomposition is used in the case of more general boundary conditions.

2. Similarly to the conforming case, in the nonconforming one the uniform bound-

edness of both |wṽ|1,Ω and |φṽ|
2
1,Ω is needed to deduce a local a posteriori error

indicator from an error identity like (1.12) (uniform, because our choice ṽ = z

yields a dependence on h). To prove this, we have to verify the uniform bound-

edness of |z|1,Ω,h taking advantage of (2.5).

In our context, we use the Helmholtz decomposition of gradh ṽ with ṽ = z, where

z ∈ V ⊕ V nc
h is the solution of (2.3). That yields

J (eh) = ah(u − uh, z) = a(u, wz) − ah(uh, wz) − bh(u − uh, φz)

with

bh(v, φ) = −
∑

K∈Th

bK(v, φ) and bK(v, φ) = (grad v, rotφ)K .

Now, the orthogonality of w and φ mentioned above can be written equivalently

as

(2.6) bh(w, φ) = 0 ∀w ∈ V, φ ∈ Φ.

Taking into account a(u, w) = F (w) for all w ∈ V (see (1.1)) and ah(uh, wh) =

F (wh) for all wh ∈ V nc
h (see (1.4)), we obtain

a(u, w) − ah(uh, w) = F (w) − ah(uh, w) ± ah(uh, wh)

= F (w − wh) − ah(uh, w − wh) ∀wh ∈ V nc
h .

Due to (2.6), this yields the error identity

J (eh) = F (wz − wh) − ah(uh, wz − wh) + bh(uh, φz) ∀wh ∈ V nc
h .

Lemma 3.4 from [6] gives for our model problem for all Φc
h ⊂ Φ

(2.7) bh(vh, φh) = 0 ∀ vh ∈ V nc
h , φh ∈ Φc

h.

Due to (2.7) it follows for wz , φz (which originate from the Helmholtz decomposition

of gradh z, where z ∈ V ⊕ V nc
h is the solution of (2.3)), and for all Φc

h ⊂ Φ that

(2.8) J (eh) = F (wz−wh)−ah(uh, wz−wh)+bh(uh, φz−φh) ∀wh ∈ V nc
h , φh ∈ Φc

h,

which is the starting point for our further studies.

559



R em a r k 4. For J from (2.3) the Galerkin orthogonality is not needed for inser-

ting an arbitrary wh ∈ V nc
h . Moreover, so far we have no additional terms in the

error identity as in [10] or [14].

3. Main results

Lemma 1. Let Φc
h ⊂ Φ be a given finite dimensional space.

Then for all w ∈ V and φ ∈ Φ and for all vh, wh ∈ V nc
h and φh ∈ Φc

h we have

F (w − wh) − ah(vh, w − wh) + bh(vh, φ − φh)

=
∑

K∈Th

{(f + ∆vh, w − wh)K − (∂nK
vh, w − wh)∂K + (∂tK

vh, φ − φh)∂K}.

P r o o f. For v ∈ H2(K), w ∈ H1(K) partial integration yields

aK(v, w) =

∫∫

K

[grad v]T gradw = −

∫∫

K

w∆v +

∮

∂K

w [nK ]T grad v

and therefore for all w ∈ V and for all vh, wh ∈ V nc
h

F (w − wh) − ah(vh, w − wh)(3.1)

=
∑

K∈Th

{(f + ∆vh, w − wh)K − (∂nK
vh, w − wh)∂K}.

Further, because of

[grad v]T rotw = − div (w rot v) ∀w ∈ H1(K), v ∈ H2(K)

Green’s formula and (1.7) yield

bK(v, w) =

∫∫

K

[grad v]T rotw = −

∮

∂K

w [nK ]T rot v = −

∮

∂K

w [tK ]T grad v,

and therefore for all φ ∈ Φ and for all vh ∈ V nc
h and φh ∈ Φc

h

(3.2) bh(vh, φ − φh) =
∑

K∈Th

(∂tK
vh, φ − φh)∂K .

Identities (3.1) and (3.2) prove the lemma. �
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In addition to (A1), let us introduce the following assumption:

(A2) For the same k ∈ N as in (A1) we have

(3.3) ∂nK
w

∣

∣

E∩∂K
∈ Pk(E) ∀w ∈ V nc

h , K ∈ Th, and E ∈ Eh ∩ ∂K.

R em a r k 5. All nonconforming FEM in Section 4 satisfy (A1) and (A2).

Theorem 1. Assume that the FE-space V nc
h satisfies (A1) and (A2). Further, let

Φc
h ⊂ Φ be a given finite dimensional space.

Then for all w ∈ V and φ ∈ Φ and for all vh, wh ∈ V nc
h and φh ∈ Φc

h we have

F (w − wh) − ah(vh, w − wh) + bh(vh, φ − φh)

=
∑

K∈Th

{

(f + ∆vh, w − wh)K −
1

2
(Jh,∂K\Γ,n(vh), w − wh)∂K\Γ

+
1

2
(Jh,∂K\Γ,t(vh), φ − φh)∂K\Γ + (∂tK

vh, φ − φh)∂K∩Γ

}

.

P r o o f. Because of Lemma 1, obviously we only have to prove

(3.4)
∑

K∈Th

(∂nK
vh, w − wh)∂K =

1

2

∑

K∈Th

(Jh,∂K\Γ,n(vh), w − wh)∂K\Γ

and

(3.5)
∑

K∈Th

(∂tK
vh, φ − φh)∂K\Γ =

1

2

∑

K∈Th

(Jh,∂K\Γ,t(vh), φ − φh)∂K\Γ.

P r o o f of (3.4). For E ∈ Eh \ Eh,in because of the homogeneous boundary

condition and (A1) it follows for all w ∈ V and wh ∈ V nc
h

(p, w)E = (p, wh)E = 0 ∀ p ∈ Pk(E),

which due to (3.3) implies

(∂nK
vh, w − wh)∂K∩E = 0 ∀E ∈ Eh \ Eh,in.

For E ∈ Eh,in with K1, K2 ∈ Th, K1 6= K2, and E = K1 ∩ K2 (see (1.9)), we study

2
∑

i=1

(∂nKi
vh, w − wh)∂Ki∩E = (∂nK1

vh, w − wh)∂K1∩E

+ (∂nK2
vh, w − wh)∂K2∩E .
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Because of (A1), (p,
[

|wh |
]

)E = 0 holds for all wh ∈ V nc
h , E ∈ Eh,in, and p ∈ Pk(E),

which gives

(3.6) (p, w̃)∂K1∩E = (p, w̃)∂K2∩E for w̃ = wh.

Obviously, (3.6) also holds for w̃ = w ∈ V .

Because of (3.3) and (3.6) it follows that

(∂nK2
vh, w − wh)∂K2∩E = (∂nK2

vh

∣

∣

E∩∂K2

, w − wh)∂K1∩E

and therefore,

2
∑

i=1

(∂nKi
vh, w − wh)∂Ki∩E

= (∂nK1
vh

∣

∣

E∩∂K1

+ ∂nK2
vh

∣

∣

E∩∂K2

, w − wh)∂K1∩E .

In the same way we obtain

2
∑

i=1

(∂nKi
vh, w − wh)∂Ki∩E

= (∂nK1
vh

∣

∣

E∩∂K1

+ ∂nK2
vh|E∩∂K2

, w − wh)∂K2∩E ,

which implies

2
∑

i=1

(∂nKi
vh, w − wh)E∩(∂Ki\Γ) = (Jh,∂Kj\Γ,n(vh), w − wh)E∩(∂Kj\Γ), j = 1, 2.

Altogether this proves (3.4).

P r o o f of (3.5). Because of Φc
h ⊂ Φ and the fact that (3.6) is obviously true for

w̃ = φ ∈ Φ, we can follow the last part of the proof of (3.4), which proves (3.5) and

therefore the theorem. �

Conclusion 1. Assume that the nonconforming FEM (1.4) satisfies (A1) and

(A2), and let J be an error function with (1.16). Further, let Φc
h ⊂ Φ be a given

finite dimensional space, let z be the solution of the dual problem (2.3) and let

(wz , φz) be the corresponding pair from the Helmholtz decomposition of gradh ṽ

with ṽ = z as described in Subsection 2.2 (i.e. in particular wz ∈ V and φz ∈ Φ).

Then for all wh ∈ V nc
h and φh ∈ Φc

h we have the error identity

J (eh) =
∑

K∈Th

{

(f + ∆uh, wz − wh)K −
1

2
(Jh,∂K\Γ,n(uh), wz − wh)∂K\Γ(3.7)

+
1

2
(Jh,∂K\Γ,t(uh), φz − φh)∂K\Γ + (∂tK

uh, φz − φh)∂K∩Γ

}

.

P r o o f. Conclusion 1 is an easy consequence of (2.8) and Theorem 1. �
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Conclusion 1 gives the error identity (3.7) which holds for all wh ∈ V nc
h and

φh ∈ Φc
h.

However, for the practical use to measure the accuracy it is necessary to choose

two particular wh ∈ V nc
h and φh ∈ Φc

h, e.g. to use an interpolant of wz and φz ,

respectively. Now, if we choose wh to be a special interpolant of wz then the second

summand on the right-hand side of (3.7) will be equal to zero. In fact, this technique

has already been used before, e.g. in [3].

As an interpolation operator Ih,V : V → V nc
h , we use one which is an element of

(3.8) Îh = {Ih : H1(Ω) → Υ nc
h : (p, v − Ihv)E = 0 ∀E ∈ Eh, p ∈ Pk(E)},

however, restricted to V instead of H1(Ω) (i.e. Ih,V ∈ Îh

∣

∣

V
), such that the image

is V nc
h instead of Υ nc

h because of the homogeneous boundary conditions and (A1).

R em a r k 6. On the one hand, the set Îh of interpolation operators in (3.8) is

well-defined because of (A1). On the other hand, the choice of the set Îh originates

from (A1) in a self-evident way.

Lemma 2. Assume that the FE-space V nc
h satisfies (A1) and (A2). Further, let

Ih,V : V → V nc
h be given with Ih,V ∈ Îh

∣

∣

V
.

Then for all vh ∈ V nc
h and w ∈ V with the corresponding wh = Ih,V w ∈ V nc

h we

have
∑

K∈Th

(Jh,∂K\Γ,n(vh), w − wh)∂K\Γ = 0.

P r o o f. Lemma 2 is an easy consequence of (3.3), (1.8), and Ih,V ∈ Îh

∣

∣

V
. �

Conclusion 2. Under the same assumptions as in Conclusion 1 the following is

true.

Let Ih,V : V → V nc
h be given with Ih,V ∈ Îh

∣

∣

V
.

Then for all φh ∈ Φc
h we have the error identity

J (eh) =
∑

K∈Th

{

(f + ∆uh, wz − Ih,V wz)K(3.9)

+
1

2
(Jh,∂K\Γ,t(uh), φz − φh)∂K\Γ + (∂tK

uh, φz − φh)∂K∩Γ

}

.

P r o o f. Conclusion 2 is an easy consequence of Conclusion 1 and Lemma 2. �
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4. Applications

4.1. Preliminary

4.1.1. About nonconforming triangular Pl-elements. Here we have RK =

Pl in the definition of the nonconforming FE-space V nc
h (see Subsection 2.1). Further,

we choose k = l − 1; then assumption (A2) obviously holds.

In view of the application to these elements in Subsection 4.3, let us point out the

result in [3] which can be written with our notation in the following form:

If l is odd (and k = l−1) then the corresponding subclass of nonconforming FEM

defined by (A1) is not empty and the following set of degrees of freedom is Pl-

unisolvent:

(i) On E ∈ Eh, the values of v 7→ (pi,E , v)E , for i = 0, . . . , k = l− 1, where pi,E are

scaled orthogonal Legendre polynomials of degree i on E, and

(ii) in K ∈ Th, the values of v 7→ (pi,K , v)E , for i = 0, . . . , dim(Pl−3), where pi,K are

arbitrary basis functions of the space Pl−3.

The choice in (i) originates from (A1) in a self-evident way.

R em a r k 7. If l is even, the construction of the nonconforming FE-space V nc
h

is possible, but more difficult (see [3]).

4.1.2. Preparation for the application to a special error function. For

arbitrary error functions J , the difficulty is to get good approximations for wz and

φz . Here, further investigations are necessary. Therefore, for our application of the

error identities (3.7) and (3.9) we restrict ourselves to the special error function

(4.1) J (v) =
1

√

ah(eh, eh)
ah(v, eh)

(see [5]) which implies J (eh) = |eh|1,Ω,h, and to the case, where local a posteriori

error indicators are computable without knowing the solution z of (2.3).

The last is possible, if the following two conditions hold (compare to the summary

of the main ideas of the DWR method for conforming FEM in Section 1):

• For the solution z of (2.3) wz, φz ∈ Hβ(Ω) holds for some β > 1, and

• for two different interpolation operators Ih,V : V → V nc
h and Ih,Φ : Φ → Φc

h the

local interpolation error estimates

(4.2) ‖v − Ih,V v‖0,K + h
1/2
K ‖v − Ih,V v‖0,∂K 6 Ch

β
K |v|β,ωK

∀K ∈ Th, v ∈ V,

and

(4.3) ‖ϕ − Ih,Φϕ‖0,K + h
1/2
K ‖ϕ − Ih,Φϕ‖0,∂K 6 Ch

β
K |ϕ|β,ωK

∀K ∈ Th, ϕ ∈ Φ,
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respectively, are satisfied (compare to (1.13)), where ωK is again a suitable and

possibly small neighbourhood of K.

Then, on the one hand, we are able to compare our results to known a posteriori

error indicators with respect to the discrete H1-seminorm (1.5). On the other hand,

the reliability follows in the same way as in (1.14) for conforming FEM.

R em a r k 8. Because of (2.7) the choice Φc
h ⊂ Φ is determined only by the fact

that (4.3) holds with the same β as that in (4.2). Therefore, in our applications the

choice of Φc
h is simple.

4.2. The case k = 0

4.2.1. The nonconforming triangular P1-element. For this element, in (2.1)

we have RK = P1 = span{1, x, y}.

If Mh denotes the set of all midpoints of the edges E ∈ Eh, then obviously Υ nc
h

from (2.1) is equivalent to

(4.4) Υ nc
h = {v ∈ L2(Ω): v

∣

∣

K
∈ P1 ∀K ∈ Th and v is continuous at P ∈ Mh ∩ Ω}.

Further, V nc
h from (2.2) is uniquely defined and equivalent to

V nc
h = {v ∈ Υ nc

h : v(P ) = 0 ∀P ∈ Mh ∩ Γ}.

Therefore, in this case the function values at P ∈ Mh can be used as degrees of

freedom. Obviously, (A1) and (A2) are satisfied. Further, we choose

(4.5) Φc
h = {v ∈ C(Ω): v

∣

∣

K
∈ P1 ∀K ∈ Th}.

Then for the triangular linear nonconforming FEM and for Φc
h defined by (4.5)

Conclusion 1 yields (3.7) and Conclusion 2 yields (3.9). This is the first result for

this FEM and holds for arbitrary error functions J .

Further, it is known that for Υ nc
h from (4.4) the interpolation operator Îh from (3.8)

is uniquely defined and satisfies the local interpolation error estimate (4.2) with β = 1

under weak assumptions (see e.g. [1]). If we now choose J from (4.1), then (3.9)

and these properties of Îh together with the analogous properties of the interpola-

tion operator Ih,Φ : Φ → Φc
h, which are also known, obviously result in the local a

posteriori error indicator with respect to the discrete H1-seminorm

(4.6) η∗
K =

{

h2
K‖f‖2

0,K +
1

2
hK‖Jh,∂K\Γ,t(uh)‖2

0,∂K\Γ + hK‖∂tK
uh‖

2
0,∂K∩Γ

}1/2

due to ∆uh = 0 on K, which is the second result for this FEM.
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R em a r k 9.

1. For the local error indicators η∗
K from (4.6) and ηK from (1.6), we obviously

have η∗
K 6 ηK , so that the known efficiency of ηK implies that of η

∗
K .

2. The local a posteriori error indicator (4.6) was already given in [8], but deduced

in another way.

4.2.2. Nonconforming quadrilateral elements. It is easy to verify that the

following nonconforming FEM also considered in [6], namely the ones based on par-

allelograms and

• on the Rannacher-Turek element (see [13]) with RK̃ = span{1, x, y, x2 − y2} or

• on the Han element (see [11]) with RK̃ = span{1, x, y, 3x2 − 5x4, 3y2 − 5y4} or

• on the DSSY element (see [9]) with θ1(t) = 3t2 − 5t4, θ2(t) = 6t2 − 25t4 + 21t6,

and RK̃ = span{1, x, y, θ1(x) − θ1(y), θ2(x) − θ2(y)},

(the unit square K̃ = (−1, 1)2 being the reference element), satisfy (A1) and (A2) if

the degree of freedom on E ∈ Eh is chosen again as (1, v)E for v ∈ V nc
h . If we use

Φc
h = {v ∈ C(Ω): v

∣

∣

K
∈ Q1 ∀K ∈ Th},

then also Conclusion 1 yields (3.7) and Conclusion 2 yields (3.9) for these three

nonconforming quadrilateral FEM, which is again the first result for these FEM.

R em a r k 10.

1. For J from (4.1) and assuming the above properties of the interpolation op-

erators Ih,V and Ih,Φ, with the same arguments as in Subsubsection 4.2.1 it is

possible to show that

η∗
K =

{

h2
K‖f + ∆uh‖

2
0,K +

1

2
hK‖Jh,∂K\Γ,t(uh)‖2

0,∂K\Γ(4.7)

+ hK‖∂tK
uh‖

2
0,∂K∩Γ

}1/2

is a local a posteriori error indicator with respect to the discrete H1-seminorm

for these nonconforming FEM, which is a new one and which is the second result

for these FEM.

2. Again, for the local error indicators η∗
K from (4.7) and ηK from (1.6), we obvi-

ously have η∗
K 6 ηK , so that the known efficiency of ηK (see [6]) implies that

of η∗
K .

3. For the Rannacher-Turek element the above properties of the corresponding

interpolation operator Îh can be found in [2].
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4. For the Han and for the DSSY element, respectively, one additional degree of

freedom on K ∈ Th has to be chosen, which can be the value of

(1, v)K for v ∈ V nc
h .

Then Ih,V ∈ Î∗h
∣

∣

V
with the interpolation operator

Î∗h = {Ih ∈ Îh : (1, v − Ihv)K = 0 ∀K ∈ Th}

can be used, which is uniquely defined.

4.3. The case k = 2 and one nonconforming triangular P3-element

We use the P3-element described in Subsubsection 4.1.1 including the choice of

the degrees of freedom there, such that the corresponding nonconforming cubic tri-

angular FEM is uniquely defined and (A1) and (A2) are satisfied. Further, we use

(4.8) Φc
h = {v ∈ C(Ω): v

∣

∣

K
∈ P3 ∀K ∈ Th}.

Then for that nonconforming cubic triangular FEM and for Φc
h defined by (4.8)

Conclusion 1 yields (3.7) and Conclusion 2 yields (3.9).

R em a r k 11. In the same way applications are possible to nonconforming tri-

angular FEM for arbitrary even k.
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