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Abstract. A fixed point theorem in ordered spaces and a recently proved monotone
convergence theorem are applied to derive existence and comparison results for solutions of
a functional integral equation of Volterra type and a functional impulsive Cauchy problem
in an ordered Banach space. A novel feature is that equations contain locally Henstock-
Kurzweil integrable functions.
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1. Introduction

The Henstock-Kurzweil integral provides a tool for integrating highly oscillatory

functions which occur in nonlinear analysis and in quantum theory. It is also easy to

understand because its definition requires no measure theory. Moreover, all Bochner

integrable (in real-valued case Lebesgue integrable) functions are Henstock-Kurzweil

(shortly HK) integrable, but not conversely. For instance, HK integrability encloses

improper integrals. The real-valued function f defined on [0, 1] by f(0) = 0 and

f(t) = t2 cos(1/t2) is differentiable on [0, 1], and f ′ is HK integrable. But f ′ is

not Lebesgue integrable on [0, 1]. More generally, let t be called a singular point of

the domain interval of a real-valued function being not Lebesgue integrable on any

interval that contains t. Then (cf. [10]) there exist HK “integrable functions on an

interval that admit a set of singular points with its measure as close as possible but

not equal to that of the whole interval.”

In this paper a fixed point theorem in the ordered normed space is applied to

prove existence and comparison results for solutions of functional Volterra integral
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equations and mild solutions of impulsive functional Cauchy problems in a Banach

space X ordered by a regular order cone. The X-valued functions in the equations

considered are locally Henstock-Kurzweil integrable with respect to the independent

variable, depend functionally on the unknown function, and may contain discontin-

uous nonlinearities.

2. Preliminaries

A closed subset X+ of a normed space X is called an order cone if X++X+ ⊆ X+,

X+ ∩ (−X+) = {0} and cX+ ⊆ X+ for each c > 0. It is easy to see that the order

relation 6, defined by

x 6 y if and only if y − x ∈ X+,

is a partial ordering in X , and that X+ = {y ∈ X : 0 6 y}. The space X , equipped

with this partial ordering, is called an ordered normed space. The order interval

[y, z] = {x ∈ X : y 6 x 6 z} is a closed subset of X . A subset C of X is said to

be a chain if x 6 y or y 6 x for all x, y ∈ X . A sequence (subset) of X is called

order bounded if it is contained in an order interval [y, z] of X . We say that an order

cone X+ of a normed space X is normal if there is such a constant γ > 1 that

(2.1) 0 6 x 6 y in X implies ‖x‖ 6 γ‖y‖.

An order cone X+ is called regular if all increasing and order bounded sequences

of X+ converge. As for the proof of the following result, see, e.g., [5, Theorems 2.2.1

and 2.4.5].

Lemma 2.1. Let X+ be an order cone of a Banach space X . If X+ is regular, it

is also normal. The converse holds if X is weakly sequentially complete.

A function from a real interval [a, b] to a Banach space X is Henstock-Kurzweil

(shortly HK) integrable if there is a function F : [a, b] → X , called a primitive of f ,

which has the following property: For every ε > 0, there is such a function δ : [a, b] →

(0,∞) that
∥

∥

∥

∥

m
∑

i=1

(f(ξi)(ti − ti−1) − (F (ti) − F (ti−1)))

∥

∥

∥

∥

< ε

for every partition {ti}
m
i=1 of [a, b] satisfying ξi ∈ [ti−1, ti] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for

every i = 1, . . . , m.
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If f is HK integrable on [a, b], it is HK integrable on every closed subinterval

J = [c, d] of [a, b], and F (d) − F (c) is the Henstock-Kurzweil integral of f over J ,

i.e.,

(2.2) F (d) − F (c) = K

∫

J

f(s) ds = K

∫ d

c

f(s) ds.

The proofs for the results of the next lemma can be found, e.g., in [12].

Lemma 2.2.

(a) The a.e. equal functions are HK integrable and their integrals are equal if one

of these functions is HK integrable.

(b) A Bochner integrable function f : [a, b] → X is HK integrable, and
∫

J
f(s) ds =

K
∫

J f(s) ds whenever I is a closed subinterval of [a, b].

The next result plays an important role in applications.

Lemma 2.3. Let X be an ordered Banach space, and let f± : [a, b] → X be

HK integrable. If f−(s) 6 f+(s) for a.e. s ∈ [a, b], and if J is a closed subinterval of

[a, b], then

(2.3) K

∫

J

f−(s) ds 6 K

∫

I

f+(s) ds.

P r o o f. By Lemma 2.2 (a) we may assume that f−(s) 6 f+(s) for all s ∈ [a, b].

Set f = f+ − f−. Then f(s) belongs to the order cone X+ of X for all s ∈ [a, b].

Let J = [c, d] be a closed subinterval of [a, b]. The function f is HK integrable on J .

To prove that K
∫

J f(s) ds ∈ X+, notice first that
K
∫

J f(s) ds = 0 ∈ X+ if c = d.

Assume next that c < d. According to the definition of HK integrability, we can

choose for each n ∈ N a function δn : [c, d] → (0,∞), partitions {tni }
mn

i=1 of [c, d] and

points ξn
i so that ξn

i ∈ [tni−1, t
n
i ] ⊂ (ξn

i − δ(ξn
i ), ξn

i + δ(ξn
i )), and that

∥

∥

∥

∥

K

∫

I

f(s) ds −

mn
∑

i=1

f(ξn
i )(tni − tni−1)

∥

∥

∥

∥

<
1

n
.

Denoting yn =
mn
∑

i=1

f(ξn
i )(tni − tni−1), n ∈ N, we obtain K

∫

J f(s) ds = lim
n→∞

yn. Since

X+ is closed and since yn ∈ X+ for every n ∈ N, we have K
∫

J
f(s) ds ∈ X+.

Consequently,

0 6
K

∫

J

f(s) ds = K

∫

I

f+(s) ds − K

∫ t

J

f−(s) ds.

This proves the assertion. �
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The next result is proved in [9, Theorem 3.1].

Lemma 2.4. Let X be a Banach space ordered by the regular cone X+. Assume

that functions fn : [a, b] → X , n ∈ N, and f± : [a, b] → X are HK integrable, that

the sequence (fn)n∈N is monotone and that f− 6 fn 6 f+ for every n ∈ N. Then

there exists such a HK integrable function f : [a, b] → X that f(s) = lim
n

fn(s) for

a.e. s ∈ [a, b], and

(2.4) lim
n→∞

K

∫ b

a

fn(s) ds = K

∫ b

a

f(s) ds.

Given a half-open real interval [a, b), −∞ < a < b 6 ∞, we say that a func-

tion f : [a, b) → X is locally Bochner (HK) integrable if f is Bochner (respectively,

HK) integrable on every closed subinterval of [a, b). Denote by L1
loc

((a, b), E) the

space of all strongly (Lebesgue) measurable and locally Bochner integrable functions

from [a, b) to X .

The following result is proved in [6, Lemma 2.4].

Proposition 2.1. Let X be a Banach space ordered by a regular order cone X+.

Assume that u± ∈ L1
loc([a, b), X), and that C is a nonempty chain in the order in-

terval [u−, u+] of L1
loc

([a, b), X). Then C contains an increasing sequence which con-

verges a.e. pointwise to sup C and a decreasing sequence which converges a.e. point-

wise to inf C.

The following result is a consequence of [7, Theorem 1.2.1 and Proposition 1.2.1].

Theorem 2.1. Given a partially ordered set Y and its order interval [u−, u+] =

{u ∈ Y : u− 6 u 6 u+}, u− 6 u+, assume that G : [u−, u+] → [u−, u+] is an

increasing mapping, and that sup G[C] and inf G[C] exist for every nonempty chain C

of [u−, u+]. Then G has the least fixed point u∗ and the greatest fixed point u∗, and

they are increasing with respect to G.

3. Applications to Volterra functional integral equations

and to impulsive Cauchy problems

In this section we apply Theorem 2.1 to a functional integral equation of Volterra

type and to a functional impulsive Cauchy problem. Throughout this section we

assume that X is a Banach space ordered by a regular order cone.
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3.1. Volterra equation

Consider the functional integral equation

(3.1) u(t) = h(t, u) + K

∫ t

a

g(s, u(s), u) ds, t ∈ [a, b),

where h : [a, b) × L1
loc

([a, b), X) → X , g : [a, b) × X × L1
loc

([a, b), X) → X , and [a, b)

is a half-open real interval, −∞ < a < b 6 ∞.

Definition 3.1. We say that u ∈ L1
loc

([a, b), X) is a lower solution of (3.1) if

(3.2) u(t) 6 h(t, u) + K

∫ t

a

g(s, u(s), u) ds for a.e. t ∈ [a, b).

If the reversed inequality holds in (3.2) for a.e. t ∈ [a, b), we say that u is an upper

solution of (3.1). If equality holds in (3.2) for a.e. t ∈ [a, b), we say that u is a

solution of (3.1).

As an application of Theorem 2.1 we prove an existence and comparison result for

least and greatest solutions of the equation (3.1) when h and g satisfy the following

hypotheses.

(g0) g(·, u(·), u) is locally HK integrable whenever u : [a, b) → X is locally Bochner

integrable.

(g1) If u, v ∈ L1
loc

([a, b), X), and if u(t) 6 v(t) for a.e. t ∈ [a, b), then g(t, u(t), u) 6

g(t, v(t), v) for a.e. t ∈ [a, b).

(h0) h(t, ·) is increasing for a.e. t ∈ [a, b), and h(·, u) is locally Bochner integrable for

every locally Bochner integrable function u : [a, b) → X .

(lu) The equation (3.1) has a lower solution u− and an upper solution u+, and

u− 6 u+.

Theorem 3.1. If the hypotheses (g0), (g1), (h0), and (lu) are satisfied, then

the equation (3.1) has least and greatest solutions in the order interval [u−, u+] of

L1
loc([a, b), X), and they are increasing with respect to h and g.

P r o o f. The hypothesis (g0) and [12, Theorem 7.4.1] imply that for every u ∈

[u−, u+] the integral on the right-hand side of the equation

(3.3) Gu(t) = h(t, u) + K

∫ t

a

g(s, u(s), u) ds, t ∈ [a, b),

is a continuous function of t, whence Gu ∈ L1
loc

([a, b), X). The hypotheses (g1), (h0),

and (lu), and Lemma 2.3 imply that if u, v ∈ [u−, u+] and u 6 v, then

u−(t) 6 h(t, u) + K

∫ t

a

g(s, u(s), u) ds 6 h(t, v) + K

∫ t

a

g(s, v(s), v) ds 6 u+(t)
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for a.e. t ∈ [a, b). It follows from this result and (3.3) that G is increasing, and

that G[[u−, u+]] ⊆ [u−, u+]. According to Proposition 2.1 chains of [u−, u+] have

suprema and infima in the space L1
loc

([a, b), X). Thus G satisfies the hypotheses of

Theorem 2.1, whence it has least and greatest fixed points u∗ and u∗. They are

also the least and greatest solutions of (3.1) in [u−, u+]. Moreover, u∗ and u∗ are

increasing with respect to G. This result and Lemma 2.3 imply that u∗ and u∗ are

increasing with respect to the functions h and g, which proves the last conclusion.

�

Next we consider the cases when the extremal solutions of the integral equa-

tion (3.1) can be obtained by successive approximations.

Proposition 3.1. Assume that the hypotheses (g0), (g1), (h0), and (lu) hold.

(a) The successive approximations

(3.4) un+1(t) = h(t, un) + K

∫ t

a

g(s, un(s), un) ds, t ∈ [a, b), u0 = u−,

form an increasing sequence converging a.e. pointwise to a function u∗ ∈

L1
loc([a, b), X). Moreover, u∗ is the least solution of (3.1) in [u−, u+] if

h(t, un) → h(t, u∗) for a.e. t ∈ [a, b) and g(s, un(s), un) → g(s, u∗(s), u∗)

for a.e. s ∈ [a, b).

(b) The successive approximations

(3.5) vn+1(t) = h(t, vn) + K

∫ t

a

g(s, vn(s), vn) ds, t ∈ [a, b), v0 = u+,

form a decreasing sequence converging a.e. pointwise to a function u∗ ∈

L1
loc

([a, b), X). Moreover, u∗ is the greatest solution of (3.1) in [u−, u+] if

h(t, vn) → h(t, u∗) for a.e. t ∈ [a, b) and g(s, vn(s), vn) → g(s, u∗(s), u∗) for a.e.

s ∈ [a, b).

P r o o f. It follows from (3.3) and (3.4) that un = Gnu− for each n ∈ N. Since

G is increasing and u−(s) 6 un(s) 6 u+(s) for a.e. s ∈ [a, b], then (un) is increas-

ing and a.e. pointwise order-bounded. Because the order cone of X is regular, the

a.e. pointwise limit u∗ of (un) exists. The hypotheses of (a) and Lemma 2.4 imply

that

h(t, un) → h(t, u∗) and
∫ t

a

g(s, un(s), un) ds →

∫ t

a

g(s, u∗(s), u∗) ds for a.e. t ∈ [a, b).
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It then follows from (3.4) as n → ∞ that u∗ is a solution of (3.1). By induction one

can show that if u is any solution of (3.1) in [u−, u+], then un 6 u for every n. Thus

u∗ = inf
n

un 6 u, so that u∗ is the least solution of (3.1) in [u−, u+].

By similar reasoning one can show that the sequence (vn) defined in (3.5) is de-

creasing, equals to (Gnu+), and converges a.e. pointwise to the greatest solution u∗

of (3.1) in [u−, u+]. �

The next result is an application of Theorem 3.1.

Corollary 3.1. Let the hypotheses (g0), (g1), (h0), and the following hypotheses

hold:

(g2) There exist g± ∈ L1
loc

([a, b), X), g− 6 g+ such that g− 6 g(·, u(·), u) 6 g+ for

every u ∈ L1
loc([a, b), X).

(h1) There exist h± ∈ L1
loc([a, b), X), h− 6 h+ such that h− 6 h(·, u) 6 h+ for all

u ∈ L1
loc

([a, b), X).

Then the integral equation (3.1) has the least and greatest solutions, and they are

increasing with respect to h and g.

P r o o f. Denoting

u±(t) = h±(t) + K

∫ t

a

g±(s) ds, t ∈ [a, b),

the hypotheses (g2) and (h1) imply that the hypothesis (lu) holds. Thus the equa-

tion (3.1) has by Theorem 3.1 the least and greatest solutions u∗ and u∗ in [u−, u+],

and they are increasing with respect to h and f . The hypotheses (g1), (g2), (h0),

and (h1), and Lemma 2.3 imply that if u ∈ L1
loc([a, b), X), then

u−(t) 6 h(t, u) + K

∫ t

a

g(s, u(s), u) ds 6 u+(t) for a.e. t ∈ [a, b).

Thus all the solutions of (3.1) belong to the order interval [u−, u+], whence u∗ and

u∗ are the least and greatest of all the solutions of (3.1). �

3.2. Cauchy problem

Consider now the functional impulsive Cauchy problem (ICP)

(3.6)







d

dt
u(t) = g(t, u(t), u) a.e. in [a, b),

u(a) = x0, ∆u(λ) = D(λ, u), λ ∈ W,
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where g : [a, b) × X × L1
loc

([a, b), X) → X , x0 ∈ X , ∆u(λ) = u(λ + 0) − u(λ),

D : W × L1
loc([a, b), X) → X , and W is a well-ordered (and hence countable) subset

of (a, b).

It follows from [1, Lemma 3.1] that if g(·, u(·), u) belongs to L1
loc

([a, b), X)whenever

u is in L1
loc([a, b), X), then problem (3.6) can be converted to the Volterra integral

equation

u(t) = x0 +
∑

λ∈W <t

D(λ, u) +

∫ t

a

g(s, u(s), u) ds,

where W<t = {λ ∈ W : λ < t}, t ∈ [a, b).

Definition 3.2. We say that u : [a, b) → X is a mild solution of the ICP (3.6)

if g(·, u(·), u) is locally HK integrable and satisfies the integral equation

(3.7) u(t) = x0 +
∑

λ∈W <t

D(λ, u) + K

∫ t

a

g(s, u(s), u) ds

where W<t = {λ ∈ W : λ < t}, t ∈ [a, b).

To justify Definition 3.2 notice that [a, b) is a disjoint union of C = {a} ∪ W and

open intervals (λ, S(λ)), λ ∈ C, where S(λ) = min{α ∈ C : λ < α}. It follows

from (3.7) by [12, Theorem 7.4.20] and by the proof of [1, Lemma 3.1], that if

u : [a, b) → X is a mild solution of (3.6), then for every x∗ ∈ X∗ there is a null-set Z

in [a, b), which may depend on the choice of x∗, such that

(3.8)

{

(x∗(u))′(t) = x∗(g(t, u(t), u)) for all t ∈ [a, b) \ Z,

u(a) = x0, ∆u(λ) = D(λ, u), λ ∈ W.

As an application of Corollary 3.1 we prove an existence and comparison result

for the least and greatest mild solutions of problem (3.6).

Proposition 3.2. Given a well-ordered subsetW of (a, b), assume that g : [a, b)×

X×L1
loc([a, b), X) → X andD : W×L1

loc([a, b), X) → X satisfy the hypotheses (g0)–

(g2) and

(D0) D(λ, ·) is increasing for all λ ∈ W , and there exist c± : W → X such that

c−(λ) 6 D(λ, u) 6 c+(λ) for all λ ∈ W and u ∈ L1
loc

([a, b), X), and that
∑

λ∈W

‖c±(λ)‖ < ∞.

Then the impulsive Cauchy problem (3.6) has for every x0 ∈ X the least and greatest

mild solutions in V , and they are increasing with respect to g, D and x0.
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P r o o f. The hypotheses given for D ensure that for each x0 ∈ X the relation

(3.9) h(t, u) = x0 +
∑

λ∈W <t

D(λ, u), t ∈ [a, b), u ∈ L1
loc([a, b), X),

defines a mapping h : [a, b)×L1
loc

([a, b), X) → X which satisfies the hypotheses (h0),

and (h1) of Corollary 3.1. Then the integral equation (3.1), which by (3.9) can be

rewritten as a fixed point equation

(3.10) u(t) = Gu(t) := x0 +
∑

λ∈W <t

D(λ, u) + K

∫ t

a

g(s, u(s), u) ds,

has by Corollary 3.1 the least and greatest solutions u∗ and u∗, and they are increas-

ing with respect to h and g. Because by Definition 3.2 the solutions of the integral

equation (3.7) are mild solutions of the ICP (3.6), hence u∗ and u∗ are the least and

greatest solutions of the (ICP) (3.6) in V , and they are increasing with respect to x0,

D, and q. �

The next result is a consequence of Proposition 3.1.

Proposition 3.3. Assume that the hypotheses of Proposition 3.2 hold, and let

G be defined by (3.10).

(a) The sequence (un)∞n=0 = (Gnw−)∞n=0 is increasing and converges a.e. pointwise

to a function u∗ ∈ L1
loc

([a, b), X). Moreover, u∗ is the mild least solution of (3.6)

in V ifD(λ, un) → D(λ, u∗) for each λ ∈ W and g(s, un(s), un) → g(s, u∗(s), u∗)

for a.e. s ∈ [a, b).

(b) The sequence (vn)∞n=0 = (Gnw+)∞n=0 is decreasing and converges a.e. pointwise

to a function u∗ ∈ L1
loc

([a, b), X). Moreover, u∗ is the greatest mild solution

of (3.6) in V if D(λ, vn) → D(λ, u∗) for each λ ∈ W and g(s, vn(s), vn) →

g(s, u∗(s), u∗) for a.e. s ∈ [a, b).

E x am p l e 3.1. Let X be the Banach space l2 of the sequences (xn)∞n=1 of real

numbers for which
∞
∑

n=1

|xn|
2 < ∞, ordered componentwise and normed by ‖x‖ =

( ∞
∑

n=1

|xn|
2

)1/2

. The mappings g± : [0,∞) → l2, defined by g±(0) = (0, 0, . . .),

(3.11) g±(t) =

(

2t

n
cos

( 1

t2

)

+
2

nt
sin

( 1

t2

)

±
1

n

)∞

n=1

, t ∈ (0,∞),

are locally HK integrable. Thus these mappings are possible upper and lower bound-

aries for g in Corollary 3.1 and in Proposition 3.3 when X = l2. Choosing x± =
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(

±1/n
)∞

n=1
, and denoting

δn
k =

{

1 if k = n,

0 if k 6= n,

the solutions of the initial value problems

(3.12)







w′
±(t) = g±(t) for (a.e.) t ∈ (0,∞), u(0) = x±,

∆w±

(

1 −
1

2k

)

=
(

±δn
k

1

n

)∞

n=1
, k = 1, 2, . . . ,

are

(3.13) w±(t) =

(

1

nt

(

t2 cos
( 1

t2

)

±
(

t + H
(

t −
2n− 1

2n

)))

)∞

n=1

.

In particular, the infinite system of impulsive Cauchy problems

(3.14)















u′
n(t)) =

1

n

(

2t cos
( 1

t2

)

+
2

t
sin

( 1

t2

)

+ gn(u)
)

for (a.e.) t ∈ [0,∞),

un(0)) =
xn

n
, ∆un

(

1 −
1

2n

)

=
cn(u)

n
, n = 1, 2, . . . ,

where each cn, gn : HKloc((0,∞), l2) → R, are increasing, −1 6 xn, cn(u), gn(u) 6 1

for all u ∈ HKloc([0,∞), l2) and n = 1, 2, . . ., has the least and greatest solutions

u∗ = (u∗n)∞n=1 and u∗ = (u∗
n)∞n=1, and they belong to the order interval [w−, w+],

where w± are given by (3.13).

R em a r k s 3.1. No component of the mappings g± defined in (3.11) belongs

to L1([0, t),R) for any t > 0. Consequently, the mappings g± do not belong to

L1([0, t), l2) for any t > 0. Notice also that if g in Corollary 3.1 and in Proposition 3.3

is norm-bounded by a function of L1([a, t],R+) for every t ∈ (a, b), then the mapping

g(·, u(·), u) belongs to L1([a, t), X) for all t ∈ (a, b).

It follows from [9, Corollary 4.1] that the functions of an order interval [u−, u+]

of locally HK integrable functions are locally McShane integrable if one of the func-

tions u± is locally McShane integrable. Thus the fixed points u∗ and u∗ in Theo-

rem 2.1 and the solutions u∗ and u∗ of equations (3.1) and (3.6) considered in this

section are locally McShane integrable if u− or u+ is locally McShane integrable. In

particular, all the results of this section and Section 3 remain valid if local HK inte-

grability is replaced by local McShane integrability.

The space of locally HK integrable functions contains also those functions u :

[a, b] → X which are Bochner integrable on every closed subinterval [c, d] of (a, b),

and for which the limits of the Bochner integral
∫ d

c
u(s) ds when c → a+ and d → b−
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exist (cf. [12, Theorem 3.4.5] and Remark after it). In particular, the integral in (3.1)

can be replaced by the improper integral
∫ t

a+
.

The following spaces are examples of weakly sequentially complete Banach spaces

which have normal order cones (cf. [7]):

1. A reflexive (e.g., a uniformly convex) Banach space ordered by a normal order

cone.

2. A finite-dimensional normed space ordered by any closed cone.

3. A separable Hilbert space whose order cone is generated by an orthonormal

basis.

4. A Hilbert spaceH with such an order coneH+ that (x | y) > 0 for all x, y ∈ H+.

5. A Hilbert space H whose order cone is H+ = {x ∈ H : (x | e) > c‖x‖2}, where

e is a unit vector of H and c ∈ (0, 1).

6. A sequence space lp, 1 6 p < ∞, normed by the p-norm and ordered compo-

nentwise.

7. A function space Lp(Ω), 1 6 p < ∞, normed by the p-norm and ordered

a.e. pointwise, where Ω is a measure space.

8. A function space Lp([a, b], X), 1 6 p < ∞, ordered a.e. pointwise, where X is

any of the spaces listed above.

According to Lemma 2.1 the order cones of all the above mentioned spaces are

regular. In the sequence space (c0), normed by the sup-norm the componentwise

ordering is induced by the cone of all nonnegative sequences. This cone is also

regular.

As for other results on non-absolute integral equations and impulsive differential

equations in Banach spaces, see, e.g., [2], [3], [4], [11], [13], [14], [15], [16], [17]. Com-

pared with these papers a novelty of the results of Section 4 is that the existence

results for suprema and infima of chains in the space of locally Henstock-Kurzweil

integrable functions derived in Section 3 allow us to apply fixed point results in or-

dered spaces. Similar methods are used in [8] in the case when Volterra integral

equations and impulsive differential equations contain locally Henstock-Lebesgue in-

tegrable functions.
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