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Abstract. The paper is a contribution to the complex variable boundary element method,
shortly CVBEM. It is focused on Jordan regions having piecewise regular boundaries with-
out cusps. Dini continuous densities whose modulus of continuity ω(·) satisfies

lim sup
s↓0

ω(s) ln
1
s
= 0

are considered on these boundaries. Functions satisfying the Hölder condition of order α,
0 < α 6 1, belong to them. The statement that any Cauchy-type integral with such
a density can be uniformly approximated by a Cauchy-type integral whose density is a
piecewise linear interpolant of the original one is proved under the assumption that the mesh
of the interpolation nodes is sufficiently fine and uniform. This result ensures the existence
of approximate CVBEM solutions of some planar boundary value problems, especially of
the Dirichlet ones.
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1. Introduction

The exact solution of a planar boundary value problem can often be expressed by

means of a Cauchy-type integral along the problem region boundary. For example, let

Ω be a region in the complex plane C, [Γ] the boundary of Ω, h : [Γ] → R a continuous

function and u the exact solution of the Dirichlet boundary-value problem

(D) ∆u = 0 in Ω, u = h on [Γ].
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Since u is harmonic in Ω, it coincides with the real part of some holomorphic function

there. Since u is continuous on Ω ∪ [Γ], it is a continuous extension of the real part

of this holomorphic function over Ω∪ [Γ]. Any function that is holomorphic in some

region and whose real part has a continuous extension over the closure of that region

can be represented by a Cauchy-type integral along the boundary of that region ([7,

p. 255]). Thus the exact solution of the problem (D) can be expressed by the real

part of some Cauchy-type integral along [Γ] in Ω.

Because most of the Cauchy-type integrals cannot be evaluated exactly, they are

often replaced by suitable approximants (see [1] for summary) that can be evalu-

ated exactly as elementary functions. The approximant that is sufficiently close to

the approximated Cauchy-type integral determines an approximate solution of the

boundary value problem.

Within the CVBEM ([2], [3]), a Cauchy-type integral whose density is a piecewise

linear interpolant of the original one is the approximant. In [4] it was proved that any

function holomorphic in the closure of some region can be approximated by means

of this integral that is considered along the boundary of the region to any degree

of accuracy. However, the class of the functions that can be approximated in this

way appears to be much wider than it is observed in [4]. Actually, from [5, p. 450–

452] it follows that this class contains all Cauchy-type integrals along the region

boundary whose density satisfies the Hölder condition of order α, where 0 < α 6 1.

The purpose of the present work is to give some further generalization of the result

from [4] by weakening the assumptions on density.

Let us note that these results involve the existence of the so called approximate

CVBEM solution of the boundary value problem as close to the exact one as we

wish.

2. Preliminaries

Definition 1. Let M be a non-empty subset of the complex plane C and let

g : M → C be a function. The mapping ωg : 〈0, +∞) → 〈0, +∞〉 defined by

ωg(δ) = sup{|g(z)− g(w)| : |z − w| 6 δ; z, w ∈ M}, δ ∈ 〈0, +∞),

is called the modulus of continuity of the function g. The function g is called Dini

continuous if there exists τ > 0 such that
∫ τ

0

ωg(s)

s
ds < +∞.

R em a r k 1. We use the familiar facts that any modulus of continuity is a non-

decreasing function and that lim
δ↓0

ωg(δ) = 0 if and only if the function g is uniformly
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continuous. If we assume that g is Dini continuous, then it is clear that

(2.1) lim
τ↓0

∫ τ

0

ωg(s)

s
ds = 0

and it is also easy to show that

(2.2) lim inf
τ↓0

ωg(τ) ln
1

τ
= 0.

Actually, if lim inf
τ↓0

ωg(τ) ln 1
τ > 0, then ωg(τ)/τ > ε/(τ ln 1

τ ) for sufficiently

small positive numbers τ , ε and, consequently,
∫ τ

0
ε/(s ln 1

s ) ds = +∞ implies
∫ τ

0
1
sωg(s) ds = +∞, which contradicts the Dini continuity of g.

Definition 2. Let α ∈ R and T > 0. A continuous mapping Γ: 〈α, α + T 〉 → C

is called the piecewise regular Jordan path without cusps (briefly the path) if it has

the following properties:

(i) Γ(α) = Γ(α + T ),

(ii) for arbitrary t, t′ ∈ 〈α, α + T 〉

(2.3) 0 < |t − t′| < T =⇒ Γ(t) 6= Γ(t′),

(iii) there exists a sequence {τj}
n
j=0 such that

α = τ0 < τ1 < . . . < τn = α + T

and that the derivative Γ′ of Γ is continuous and nonzero in every interval

〈τj , τj+1〉, where j ∈ {0, . . . , n − 1},

(iv) for arbitrary t ∈ 〈α, α + T 〉

(2.4)
Γ′
+(t)

Γ′
−(t)

∈ C \ (−∞, 0〉,

where Γ′
+(t) and Γ′

−(t) are the derivatives on the right and left of Γ at the point t

and Γ′
−(α), Γ′

+(α + T ) are to be defined by Γ′
−(α + T ), Γ′

+(α), respectively.

In some cases, we denote by Γ the T -periodic extension of the path Γ to the set of

real numbers. We set

[Γ] = {Γ(t) : α 6 t 6 α + T }

and denote by Ω the bounded component of the open set C \ [Γ] in the sense of the

Jordan theorem. We extend the sequence {τj}
n−1
j=0 to a collection {τk : k ∈ Z} so that

for every k ∈ Z we put τk := τj + pT whenever j ∈ {0, . . . , n − 1} and the integer p

satisfies pn = k − j.
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Definition 3. Let a path Γ and m > 2 be given. We say that a sequence

P = {Γj}
m−1
j=0 is a partition of Γ when there exists a sequence {tj}

m
j=0 such that

t0 < t1 < . . . < tm = t0 + T

and Γj = Γ|〈tj,tj+1〉 for every j ∈ {0, . . . , m−1}. We extend the sequence {tj}
m−1
j=0 to

a collection {tk : k ∈ Z} so that for every k ∈ Z we put tk := tj + pT whenever j ∈

{0, . . . , m−1} and the integer p satisfies pm = k−j. We extend the sequence {Γj}
m−1
j=0

to a collection {Γk : k ∈ Z} so that for every k ∈ Z we put Γk := Γj whenever

j ∈ {0, . . . , m − 1} and k − j is divisible by m. For every k ∈ Z we introduce

zk = Γ(tk), [Γk] = {Γ(t) : tk 6 t 6 tk+1}.

Definition 4. We say that a function l : [Γ] → C is piecewise linear on [Γ] with

respect to a partition P = {Γj}
m−1
j=0 if l coincides with some linear function on [Γj ]

for every j ∈ {0, . . . , m − 1}. By the symbol gP we denote the piecewise linear

interpolant of a function g : [Γ] → C with respect to a partition P = {Γj}
m−1
j=0 , i.e., a

function gP : [Γ] → C that is piecewise linear on [Γ] with respect to P and satisfies

gP(zj) = g(zj).

R em a r k 2. The derivative Γ′ of Γ is continuous and nonzero in the interval

〈τk, τk+1〉 for every k ∈ Z and the conditions (2.3), (2.4) as well as

(2.5) |Γ(t) − Γ(t′)| =

∣

∣

∣

∣

∫ t′

t

Γ′(s) ds

∣

∣

∣

∣

6 V |t − t′|

are satisfied for arbitrary t, t′ ∈ R. Here

V = sup{|Γ′(t)| : t ∈ R \ {τk : k ∈ Z}}.

Lemma 1. Let l be a piecewise linear function on [Γ] with respect to a partition

P = {Γj}
m−1
j=0 and let

K = V max
06j6m−1

∣

∣

∣

l(zj+1) − l(zj)

zj+1 − zj

∣

∣

∣

(

= V max
k∈Z

∣

∣

∣

l(zk+1) − l(zk)

zk+1 − zk

∣

∣

∣

)

.

Then

|l(Γ(t)) − l(Γ(t′))| 6 K|t − t′|, t, t′ ∈ R.

P r o o f. Let t, t′ ∈ R. Without loss of generality we suppose that t 6 t′. Then

t ∈ 〈tj , tj+1〉, t′ ∈ 〈tk, tk+1〉
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for some j, k ∈ Z, where j 6 k. First, let j = k. Clearly

tk 6 t 6 t′ 6 tk+1.

As l coincides with some linear function on [Γk], we have

l(Γ(t)) − l(Γ(t′)) =
l(zk+1) − l(zk)

zk+1 − zk
(Γ(t) − Γ(t′)).

This identity and (2.5) imply

|l(Γ(t)) − l(Γ(t′))| 6 K(t′ − t).

Next, let j < k. Then

tj 6 t 6 tj+1 6 tk 6 t′ 6 tk+1

and, by virtue of the foregoing case (j = k), we obtain

|l(Γ(t)) − l(Γ(t′))| 6 |l(Γ(t)) − l(zj+1)| + |l(zj+1) − l(zj+2)| + . . .

+ |l(zk−1) − l(zk)| + |l(zk) − l(Γ(t′))|

6 K((tj+1 − t) + (tj+2 − tj+1) + . . . + (tk − tk−1) + (t′ − tk))

= K(t′ − t).

�

Definition 5. Let us assume that g : [Γ] → C is such a function that the integral

∫

Γ

g(ζ) − g(z)

ζ − z
dζ

absolutely converges for every z ∈ [Γ]. By means of Cauchy-type integrals, we define

the function C−(g) : Ω ∪ [Γ] → C by

C
−(g)(z) =

1

2πi

∫

Γ

g(ζ)

ζ − z
dζ, z ∈ Ω,

C
−(g)(z) = lim

w→z
w∈Ω

1

2πi

∫

Γ

g(ζ)

ζ − w
dζ, z ∈ [Γ].

R em a r k 3. The definition of C−(g) is correct because the limit exists under

the considered assumption (see [6, p. 191]). We use the familiar fact that the func-

tion C−(g) is holomorphic in Ω.
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Our aim is to generalize the following result obtained by R. J. Whitley and

T.V. Hromadka II in [4, Theorem 1].

Theorem 1. Let f be a function holomorphic in the closure of Ω and let g = f |[Γ].

Then for any ε > 0 there exists a partition P = {Γj}
m−1
j=0 such that

|C −(g)(z) − C
−(gP)(z)| < ε, z ∈ Ω ∪ [Γ].

(Note that f coincides with C −(g) on Ω ∪ [Γ] by virtue of the Cauchy integral

formula.)

R em a r k 4. Due to [5, p. 450–452], the assumptions of Theorem 1 can be re-

placed by “let g : [Γ] → C be a function satisfying the Hölder condition of order α,

where 0 < α 6 1”.

Another generalization of Theorem 1 is provided by our main statement, Theo-

rem 3.

3. Some estimates

In this section we deal with some properties of the path Γ in order to prove the

forthcoming Theorem 2 that states some important estimates for Γ.

Definition 6. We define the function r : 〈0, 1
2T 〉 → 〈0, +∞) by

r(s) = min |Γ(t) − Γ(t + s)| : 0 6 t 6 T }, s ∈ 〈0, 1
2T 〉.

Since for every s ∈ R the function t 7→ |Γ(t) − Γ(t + s)| is T -periodic, we have

(3.1) r(s) = min{|Γ(t) − Γ(t′)| : |t − t′| = s; t, t′ ∈ R}, s ∈ 〈0, 1
2T 〉.

Lemma 2. The function r is uniformly continuous on 〈0, 1
2T 〉 and positive in

(0, 1
2T 〉.

P r o o f. We set

M = {z ∈ C : 0 6 Re z 6 T, 0 6 Im z 6 1
2T }

and

f(z) = |Γ(Re z) − Γ(Re z + Im z)|

for all z ∈ M . The function f is uniformly continuous on the set M and

r(s) = min{f(t + is) : 0 6 t 6 T }, s ∈ 〈0, 1
2T 〉.
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Let s, s′ ∈ 〈0, 1
2T 〉. Then for t ∈ 〈0, T 〉 we have

r(s) − f(t + is′) 6 f(t + is) − f(t + is′) 6 ωf (|s − s′|),

r(s′) − f(t + is) 6 f(t + is′) − f(t + is) 6 ωf (|s − s′|),

whence

r(s) − r(s′) = max{r(s) − f(t + is′) : 0 6 t 6 T } 6 ωf(|s − s′|),

r(s′) − r(s) = max{r(s′) − f(t + is) : 0 6 t 6 T } 6 ωf(|s − s′|).

Thus, it is proved that

|r(s) − r(s′)| 6 ωf (|s − s′|), s, s′ ∈ 〈0, 1
2T 〉.

This inequality and Remark 1 say that r is uniformly continuous on 〈0, 1
2T 〉.

The function r is nonnegative. If r(s) = 0, then, according to (3.1), there exist

t, t′ ∈ R such that Γ(t) = Γ(t′) and |t − t′| = s. It follows s = 0 due to (2.3), so that

r is positive in (0, 1
2T 〉. �

Definition 7. Let t ∈ R and let st be an arbitrary solution of the problem

|(1 − s)Γ′
−(t) + sΓ′

+(t)| → min, s ∈ 〈0, 1〉.

We define

Γ◦(t) = (1 − st)Γ
′
−(t) + stΓ

′
+(t).

The geometrical meaning of |Γ◦(t)| is the distance of the line segment, which has

the endpoints Γ′
−(t), Γ′

+(t), from the origin. Since (2.4) ensures that the origin does

not belong to this line segment, |Γ◦(t)| is positive. Moreover,

(3.2) |Γ◦(t)| 6 |(1 − s)Γ′
−(t) + sΓ′

+(t)|, s ∈
〈

0, 1
〉

,

whence especially

(3.3) |Γ◦(t)| 6 min{|Γ′
−(t)|, |Γ′

+(t)|}.

The mapping

R ∋ t 7→ Γ◦(t)

is T -periodic and obviously

(3.4) |Γ◦(t)| = |Γ′
−(t)| = |Γ′

+(t)|, t ∈ R \ {τk : k ∈ Z}.
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Let us consider k ∈ Z and t ∈ (τk, τk+1). Since Γ′
−(t) = Γ′

+(t) = Γ′(t), we have

|Γ◦(t)| = |Γ′(t)|. Moreover, |Γ◦(τk)| 6 Γ′
+(τk)| and |Γ◦(τk+1)| 6 |Γ′

−(τk+1)| if we take

into account (3.3). We see that the number

vk = min{|Γ◦(t)| : τk 6 t 6 τk+1}

exists. It is clear that vk is positive.

Definition 8. We define the number

v∗ = min{vk : k ∈ Z} (= min{vj : 0 6 j 6 n − 1})

and the set Q of all positive numbers q for which there exists δ ∈ (0, 1
2T 〉 such that

(3.5) 0 6 s 6 δ =⇒ r(s) > qs,

i.e.,

Q = {q > 0: ∃ δ ∈ (0, 1
2T 〉 satisfying (3.5)}.

Lemma 3. We have (0, v∗) ⊆ Q ⊆ (0, v∗〉.

P r o o f. For every k ∈ Z the function

Γ′
k = Γ′|〈τk,τk+1〉

is uniformly continuous on 〈τk, τk+1〉. Thus, if we take into account Remark 1, the

function ω : 〈0, +∞) → 〈0, +∞) defined by

ω(s) = max
k∈Z

ωΓ′

k
(s) (= max

06j6n−1
ωΓ′

j
(s)), s ∈ 〈0, +∞),

is nondecreasing and

(3.6) lim
s↓0

ω(s) = 0.

Now we prove the inclusion (0, v∗) ⊆ Q. Let q ∈ (0, v∗). According to (3.6), there

exists δ0 ∈ (0, 1
2T 〉 such that

ω(δ0) 6 v∗ − q.

We put

δ := min{δ0, min{τk+1 − τk : k ∈ Z}}
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and consider t, t′ ∈ R satisfying 0 < t′ − t 6 δ. There exists a unique k ∈ Z such

that t′ ∈ (τk, τk+1〉. If t > τk, then τk 6 t < t′ 6 τk+1 and

(3.7) Γ(t′) − Γ(t) =

∫ t′

t

Γ′(s) ds = Γ′
+(t)(t′ − t) +

∫ t′

t

(Γ′
k(s) − Γ′

k(t)) ds,

which, by virtue of (3.3), yields

|Γ(t) − Γ(t′)| > |Γ◦(t)|(t′ − t) − ω(t′ − t)

∫ t′

t

ds > (v∗ − ω(δ0))(t
′ − t) > q(t′ − t).

If t < τk, then τk−1 < t < τk < t′ < τk+1 and consequently

Γ(t′) − Γ(t) =

∫ τk

t

Γ′(s) ds +

∫ t′

τk

Γ′(s) ds(3.8)

= Γ′
−(τk)(τk − t) +

∫ τk

t

(Γ′
k−1(s) − Γ′

k−1(τk)) ds

+ Γ′
+(τk)(t′ − τk) +

∫ t′

τk

(Γ′
k(s) − Γ′

k(τk)) ds

=
{(

1 −
t′ − τk

t′ − t

)

Γ′
−(τk) +

t′ − τk

t′ − t
Γ′
+(τk)

}

(t′ − t)

+

∫ τk

t

(Γ′
k−1(s) − Γ′

k−1(τk)) ds +

∫ t′

τk

(Γ′
k(s) − Γ′

k(τk)) ds,

which, by virtue of (3.2), implies

|Γ(t) − Γ(t′)| > |Γ◦(τk)|(t′ − t) − ω(τk − t)

∫ τk

t

ds − ω(t′ − τk)

∫ t′

τk

ds

> (v∗ − ω(δ0))(t
′ − t) > q(t′ − t).

Analogously, the same result can be established in the case 0 < t − t′ 6 δ and it is

evidently valid for t = t′. Hence,

|t − t′| 6 δ =⇒ |Γ(t) − Γ(t′)| > q|t − t′|.

This is equivalent to (3.5) if we take into account (3.1). We see that q ∈ Q.

In order to prove the inclusion Q ⊆ (0, v∗〉, we prove the following equivalent

statement:

q 6∈ (0, v∗〉 =⇒ q 6∈ Q.

If q 6 0, then q 6∈ Q holds trivially. Let q > v∗. We show that

(3.9) (∀ δ ∈ (0, 1
2T 〉) (∃ t, t′ ∈ R) : |t − t′| 6 δ ∧ |Γ(t) − Γ(t′)| < q|t − t′|,
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because it is equivalent to q 6∈ Q due to (3.1). There exists ε > 0 such that v∗+ε < q

and, according to (3.6), there exists δ1 > 0 such that ω(δ1) < ε. We denote by t∗

an arbitrary real number satisfying |Γ◦(t∗)| = v∗. Then there exists a unique k ∈ Z

such that t∗ ∈ 〈τk, τk+1). Now let δ ∈ (0, 1
2T 〉. If t∗ > τk, we put

c := min{δ, δ1, τk+1 − t∗}, t := t∗, t′ := t∗ + c.

Then τk < t < t′ 6 τk+1. Consequently, (3.7) and (3.4) imply

|Γ(t) − Γ(t′)| 6 |Γ◦(t)|(t′ − t) + ω(t′ − t)

∫ t′

t

ds

6 (v∗ + ω(δ1))(t
′ − t) < (v∗ + ε)(t′ − t) < q(t′ − t).

If t∗ = τk, we put

c := min{δ, δ1, τk+1 − τk, τk − τk−1}, t := τk − c(1 − sτk
), t′ := τk + csτk

.

Then τk−1 6 t 6 τk 6 t′ 6 τk+1 and

(

1 −
t′ − τk

t′ − t

)

Γ′
−(τk) +

t′ − τk

t′ − t
Γ′
+(τk) = (1 − sτk

)Γ′
−(τk) + sτk

Γ′
+(τk) = Γ◦(τk).

This identity and (3.8) imply

|Γ(t) − Γ(t′)| 6 |Γ◦(τk)|(t′ − t) + ω(τk − t)

∫ τk

t

ds + ω(t′ − τk)

∫ t′

τk

ds

6 (v∗ + ω(δ1))(t
′ − t) < (v∗ + ε)(t′ − t) < q(t′ − t).

The proof of (3.9) and thus the whole proof is complete. �

The main result of this section is presented by the following theorem that contains

two important estimates.

Theorem 2. There exist q ∈ Q and ∆̂ ∈ (0, 1
2T 〉 such that for every ∆ ∈ (0, ∆̂〉

and t, t′ ∈ R we have

|t − t′| 6 ∆ =⇒ |Γ(t) − Γ(t′)| > q|t − t′|,(3.10)

∆ 6 |t − t′| 6 1
2T =⇒ |Γ(t) − Γ(t′)| > q∆.(3.11)

P r o o f. The set Q is non-empty by Lemma 3. Let us consider an arbitrary

q ∈ Q. Then there exists δ ∈ (0, 1
2T 〉 satisfying (3.5) and, according to Lemma 2,

the number

c = min{r(s) : δ 6 s 6 1
2T }
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exists and is positive. We set

∆̂ = min{δ, c
q}.

Now let ∆ ∈ (0, ∆̂〉 and t, t′ ∈ R. Then (3.10) as well as

∆ 6 |t − t′| 6 δ =⇒ |Γ(t) − Γ(t′)| > q|t − t′| > q∆,

δ 6 |t − t′| 6 1
2T =⇒ |Γ(t) − Γ(t′)| > c > q∆̂ > q∆

follow from (3.5) and (3.1). The last two implications yield (3.11). �

R em a r k 5. A function l that is piecewise linear on [Γ] with respect to a parti-

tion P = {Γj}
m−1
j=0 is Dini continuous, because

ωl(s) 6 K sup{|t − t′| : |Γ(t) − Γ(t′)| 6 s} 6
K

q
s, s ∈ (0, ∆̂〉,

due to Lemma 1 and (3.10).

4. Convergence

In this section we consider a Dini continuous function g : [Γ] → C, the quantity V

from Remark 2 and numbers q, ∆̂ from Theorem 2. Further, we consider a fixed

µ ∈ (0, 1〉 and denote by P the set of all partitions P = {Γj}
m−1
j=0 such that

tj+1 − tj > µν(P), j = 0, . . . , m − 1,

with

ν(P) = max{tj+1 − tj : 0 6 j 6 m − 1}.

For any τ ∈ (0, +∞) we set

A(τ) = ωg◦Γ

(1

2
τ
)

+
V

2qµ
ωg◦Γ(τ),

B(τ) =
2V

q

(
∫ τ

0

ωg◦Γ(s)

s
ds +

V

qµ
ωg◦Γ(τ) + 2A(τ)

(

ln
∆̂

τ
+

T

2∆̂
− 1

)

)

.

Lemma 4. Let P ∈ P and ν(P) 6 ∆̂. Then for every z ∈ [Γ] we have

|(g − gP)(z)| 6 A(ν(P)),(4.1)
∣

∣

∣

∣

∫

Γ

(g − gP)(ζ) − (g − gP)(z)

ζ − z
dζ

∣

∣

∣

∣

6 B(ν(P)).(4.2)
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P r o o f. According to (3.10), for every j ∈ {0, . . . , m − 1} we have

∣

∣

∣

gP(zj+1) − gP(zj)

zj+1 − zj

∣

∣

∣
=

∣

∣

∣

g(Γ(tj+1)) − g(Γ(tj))

Γ(tj+1) − Γ(tj)

∣

∣

∣
6

ωg◦Γ(tj+1 − tj)

q(tj+1 − tj)
6

ωg◦Γ(ν(P))

qµν(P)
.

Then

V max
06j6m−1

∣

∣

∣

gP(zj+1) − gP(zj)

zj+1 − zj

∣

∣

∣
6

V ωg◦Γ(ν(P))

qµν(P)

and from Lemma 1 it follows that

(4.3) |gP(Γ(t)) − gP(Γ(t′))| 6
V ωg◦Γ(ν(P))

qµν(P)
|t − t′|, t, t′ ∈ R.

Now let z ∈ [Γ]. There exists a unique t ∈ 〈t0, tm) such that z = Γ(t) and there

exists a unique j ∈ {0, . . . , m−1} such that t ∈ 〈tj , tj+1). Without loss of generality,

let us suppose that t− tj 6 1
2 (tj+1 − tj) (otherwise, we consider tj+1 instead of tj in

the following computation). If we make use of (4.3), we obtain

|(g − gP)(z)| = |g(Γ(t)) − g(Γ(tj)) + gP(Γ(tj)) − gP(Γ(t))|

6 |g(Γ(t)) − g(Γ(tj))| + |gP(Γ(tj)) − gP(Γ(t))|

6 ωg◦Γ(t − tj) +
V ωg◦Γ(ν(P))

qµν(P)
(t − tj)

6 ωg◦Γ

(1

2
ν(P)

)

+
V ωg◦Γ(ν(P))

2qµ
= A(ν(P)),

so that (4.1) holds. We set

L(s) =
|(g − gP)(Γ(s)) − (g − gP)(Γ(t))|

|Γ(s) − Γ(t)|
|Γ′(s)|.

It is clear that

(4.4)

∣

∣

∣

∣

∫

Γ

(g − gP)(ζ) − (g − gP)(z)

ζ − z
dζ

∣

∣

∣

∣

6

∫ t+T/2

t−T/2

L(s) ds.

Consequently,

∫ t+ν(P)

t

L(s) ds 6
V

q

∫ t+ν(P)

t

|g(Γ(s)) − g(Γ(t))| + |gP(Γ(s)) − gP(Γ(t))|

s − t
ds

6
V

q

(
∫ t+ν(P)

t

ωg◦Γ(s − t)

s − t
ds +

V ωg◦Γ(ν(P))

qµν(P)

∫ t+ν(P)

t

ds

)

=
V

q

(
∫ ν(P)

0

ωg◦Γ(s)

s
ds +

V

qµ
ωg◦Γ(ν(P))

)
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by (3.10) and (4.3),

∫ t+∆̂

t+ν(P)

L(s) ds 6
V

q

∫ t+∆̂

t+ν(P)

|(g − gP)(Γ(s))| + |(g − gP)(Γ(t))|

s − t
ds

6
2V

q
A(ν(P)) ln

∆̂

ν(P)

by (3.10) and (4.1),

∫ t+T/2

t+∆̂

L(s) ds 6
V

q∆̂

∫ t+T/2

t+∆̂

(|(g − gP)(Γ(s))| + |(g − gP)(Γ(t))|) ds

6
2V

q
A(ν(P))

( T

2∆̂
− 1

)

by (3.11) and(4.1), so that
∫ t+T/2

t
L(s) ds 6 1

2B(ν(P)). Similarly, we can ob-

tain
∫ t

t−T/2
L(s) ds 6 1

2B(ν(P)). Then the inequalities (4.4) and
∫ t+T/2

t−T/2
L(s) ds 6

B(ν(P)) imply (4.2). �

The main statement of this article follows. It provides a generalization of Theo-

rem 1 and Remark 4.

Theorem 3. Let g : [Γ] → C be a Dini continuous function satisfying

(4.5) lim sup
τ↓0

ωg(τ) ln
1

τ
= 0.

Then lim
ν(P)↓0
P∈P

C−(gP) = C−(g) uniformly on Ω ∪ [Γ].

P r o o f. Since g is Dini continuous, the integral

∫

Γ

g(ζ) − g(z)

ζ − z
dζ

absolutely converges for every z ∈ [Γ]. Then from [6, p. 191] it follows that

(4.6) C
−(g)(z) = g(z) +

1

2πi

∫

Γ

g(ζ) − g(z)

ζ − z
dζ, z ∈ [Γ].

Let P ∈ P be given. The function gP is Dini continuous by Remark 5 and thus

(4.6) remains valid if we replace g by gP . Then

C
−(g)(z) − C

−(gP)(z)

= (g − gP)(z) +
1

2πi

∫

Γ

(g − gP)(ζ) − (g − gP)(z)

ζ − z
dζ, z ∈ [Γ].
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Let us assume that ν(P) 6 ∆̂. Lemma 4 says that

|C−(g)(z) − C
−(gP)(z)| 6 A(ν(P)) +

1

2π

B(ν(P))

for any z ∈ [Γ]. According to the maximum modulus principle for holomorphic

functions, the same holds for any z ∈ Ω ∪ [Γ]. Now it is sufficient to prove that

lim
τ↓0

(A(τ) + 1
2π
B(τ)) = 0. It is clear that lim

τ↓0
A(τ) = 0. Since ωg◦Γ(τ) 6 ωg(V τ) for

every τ ∈ 〈0, +∞), we obtain

lim
τ↓0

∫ τ

0

ωg◦Γ(s)

s
ds 6 lim

τ↓0

∫ τ

0

ωg(V s)

s
ds = lim

τ↓0

∫ τ

0

ωg(s)

s
ds = 0,

lim
τ↓0

ωg◦Γ(τ) ln
1

τ
6 lim

τ↓0
ωg(V τ) ln

1

τ
= lim

τ↓0
ωg(V τ)

(

lnV + ln
1

V τ

)

= lim
τ↓0

ωg(V τ) ln
1

V τ
= 0

by virtue of (2.1), (2.2), and (4.5). Obviously, both limits on the left-hand side are

equal to zero, so that lim
τ↓0

1
2π
B(τ) = 0. �
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