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Abstract. In this paper, we limit our analysis to the difference of the weighted composition
operators acting from the Hardy space to weighted-type space in the unit ball of CN , and
give some necessary and sufficient conditions for their boundedness or compactness. The
results generalize the corresponding results on the single weighted composition operators
and on the differences of composition operators, for example, M. Lindström and E. Wolf:
Essential norm of the difference of weighted composition operators. Monatsh. Math. 153
(2008), 133–143.
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1. Introduction

Let N be a fixed positive integer and BN be the open unit ball of the complex

vector space CN . Denote by H(BN ) the space of all holomorphic functions on BN

and S(BN) the collection of all the holomorphic self-maps of BN . Let dσ be the

normalized Lebesgue measure on the boundary ∂BN of BN . For z = (z1, . . . , zN )

and w = (w1, . . . , wN ) in C
N , the inner product of z and w is denoted by

〈z, w〉 = z1w1 + . . .+ zNwN ,

and we write |z| =
√

〈z, z〉 =
√

|z1|2 + . . .+ |zN |2.

Supported in part by the National Natural Science Foundation of China (Grant Nos.
10971153, 10671141).
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For ϕ ∈ S(BN ), u ∈ H(BN ), we define the weighted composition operator Wϕ,u

by

Wϕ,u(f) = u · (f ◦ ϕ)

for f ∈ H(BN ). For u ≡ 1, the weighted composition operator Wϕ,1 is the usual

composition operator, denoted by Cϕ.When ϕ is the identity mapping I, the operator

WI,u is also called the multiplication operator.

Despite the simplicity of the definitions of Wϕ,u and Cϕ, there are uncommon

problems containing this type of operators, which require profound and interesting

analytical machinery; moreover, the study of composition operators has arguably be-

come a major driving force in the development of modern complex analysis. Readers

interested in the development of the theory of composition operators can refer to the

excellent books [5], [18], as well as some recent papers [1], [17], [24], [25], [23] and the

related references therein, which have been expended on characterizing those holo-

morphic maps which induce bounded or compact (weighted) composition operators

acting on different spaces of holomorphic functions.

Recently, there have been an increasing interest in studying the compact differ-

ence of composition operators acting on different spaces of holomorphic functions.

In 2005, Moorhouse [16] answered the question of compact difference for compo-

sition operators acting on the standard weighted Bergman spaces and necessary

conditions were given on a larger scale of weighted Dirichlet spaces. Most papers

in this area have focused on the classical reflexive spaces, however, some classical

non-reflexive spaces have also been discussed lately in the unit disc D in the complex

plane. Hosokawa and Ohno [11] in 2006, and [12] in 2007, discussed the topolog-

ical structures of the sets of composition operators and gave a characterization of

compact difference on Bloch space in the unit disc, see also Yang and Zhou’s paper

in [22]. In 2008, Fang and Zhou [8] also gave a characterization of compact differ-

ence between Bloch space and the set of all bounded analytic functions on the unit

polydisc. In 2001, MacCluer and co-workers [15] used the pseudo-hyperbolic met-

ric to discuss the topological components of the set of composition operators acting

on H∞(D). They provided a geometric condition when two composition operators

with non-compact difference lie in the same component. In 2005, Hosokawa and

co-workers [10] continued this investigation. They studied properties of the topo-

logical space of weighted composition operators on the space of bounded analytic

functions on the open unit disk in the uniform operator topology. These results were

extended to the setting of H∞(BN ) by Toews [20] in 2004, and independently by

Gorkin and co-workers [9] in 2003, and the setting of H∞(DN ) by Fang and Zhou

[7] in 2008, where BN is the unit ball, D
N is the unit polydisk. In 2008, Bonet

and co-workers [4] discussed the same problem for the composition operator on the
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weighted Banach spaces of holomorphic functions in the unit disk, which was also

extended to the unit polydisc by Wolf in [21] in 2008. The case of weighted compo-

sition operators on the above spaces was treated by Lindström and Wolf in [13] in

2008.

For the purpose of this paper, we limit our analysis to the difference of the weighted

composition operators from the Hardy space to weighted-type space in the unit ball.

The paper is organized as follows. Definitions, along with some necessary back-

ground material and lemmas, follow in Section 2. Sections 3 and 4 are devoted to

characterizing the boundedness and compactness of differences of weighted compo-

sition operators from Hardy space to weighted-type spaces on the unit ball of CN .

The results generalize the corresponding results on the single weighted composition

operators and on the differences of composition operators.

Throughout the remainder of this paper, C will denote a positive constant, the

exact value of which will vary from one appearance to the next. The notation A ≍ B

means that there is a positive constant C such that B/C 6 A 6 CB.

2. Background and some lemmas

Recall that the classical Hardy space, denoted Hp = Hp(BN ), 0 < p < ∞, is the

space of all f ∈ H(BN ), satisfying the norm condition (see, e.g. [26])

‖f‖pHp = sup
0<r<1

∫

∂BN

|f(rζ)|p dσ(ζ) <∞.

This space is the most well-known and widely studied space of holomorphic functions.

When 1 6 p < ∞, Hp is a Banach space with norm ‖ · ‖Hp . If 0 < p < 1, Hp is

a Fréchet space with the metric ‖ · ‖Hp .

For 0 < α <∞, let H∞
α be the weighted space, consisting of all f ∈ H(BN ) such

that

‖f‖H∞
α

= sup
z∈BN

(1 − |z|2)α|f(z)|

is finite. As we all know, H∞
α is a Banach space with the norm ‖ · ‖.

Let ϕ be a positive continuous function on BN (weight). The weighted-type space

H∞
ϕ (BN ) = H∞

ϕ consists of all f ∈ H(BN ) such that

‖f‖H∞
ϕ

= sup
z∈BN

ϕ(z)|f(z)| <∞.

It is known that H∞
ϕ is a Banach space. For some related results on weighted-type

spaces see [2], [3], [4], [14], [19], as well as the related references therein.
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For any point a ∈ BN \ {0}, we define

ϕa(z) =
a− Pa(z) − saQa(z)

1 − 〈z, a〉
, z ∈ BN ,

where sa =
√

1 − |a|2, Pa is the orthogonal projection from C
N onto the one-

dimensional subspace [a] generated by a, and Qa = I −Pa is the projection onto the

orthogonal complement of [a], that is

Pa(z) =
〈z, a〉

|a|2
a; Qa(z) = z − Pa(z), z ∈ BN .

When a = 0, we simply define ϕa(z) = −z. It is well known that each ϕa is a homeo-

morphism of the closed unit ball BN onto BN . The pseudohyperbolic metric on BN

defined by

̺(a, z) = |ϕa(z)|.

We know that ̺(a, z) is invariant under automorphisms (see, e.g. [26]).

For any two points z and w in BN , let γ(t) = (r1(t), . . . , γN (t)) : [0, 1] → BN be

a smooth curve to connect z and w. Define

l(γ) =

∫ 1

0

√

〈B(γ(t))γ′(t), γ′(t)〉 dt.

The infimum of the set consisting of all l(γ) is denoted by β(z, w), where γ is a smooth

curve in BN from z and w. We call β the Bergman metric (see, e.g. [26]) on BN . It

is known that

β(z, w) =
1

2
log

1 + ̺(z, w)

1 − ̺(z, w)
.

Now let us state a couple of lemmas, which are used in the proof of the main

results in the next sections.

Lemma 1. For z and w in BN ,

1 − ̺(z, w)

1 + ̺(z, w)
6

1 − |z|2

1 − |w|2
6

1 + ̺(z, w)

1 − ̺(z, w)
.

P r o o f. The proof of this Lemma can be found in Lemma 3.1 of [6]. �

Lemma 2 (Theorem 4.17, [26]). Suppose 0 < p <∞. If f ∈ Hp(BN ), then

|f(z)| 6
‖f‖Hp

(1 − |z|2)n/p

for all z ∈ BN .
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Lemma 3. For 1 < p <∞, if f ∈ Hp, then

|(1 − |z|2)n/pf(z) − (1 − |w|2)n/pf(w)| 6 C‖f‖Hp̺(z, w)

for all z, w ∈ BN .

P r o o f. By Lemma 2 it follows that if f ∈ Hp then f ∈ H∞
(1−|z|2)n/p , and

moreover ‖f‖H∞

(1−|z|2)n/p
6 ‖f‖Hp . By Lemma 3.2 in [6], there is a C > 0 such that

|(1 − |z|2)n/pf(z) − (1 − |w|2)n/pf(w)| 6 C‖f‖H∞

(1−|z|2)n/p
̺(z, w)

6 C‖f‖Hp̺(z, w)

for each f ∈ H∞
(1−|z|2)n/p and z, w ∈ BN . This completes the proof of this Lemma.

�

Remark 1. From the Remark 3.3 of [6], for any z, w ∈ rBN = {z ∈ BN : |z| <

r < 1},

|(1 − |z|2)n/pf(z) − (1 − |w|2)n/pf(w)| 6 C‖fr‖H∞

(1−|z|2)n/p
̺(z, w)

for any f ∈ H∞
(1−|z|2)n/p , where ‖fr‖H∞

(1−|z|2)n/p
= sup

z∈rBN

(1 − |z|2)n/p|f(z)|. Thus by

the above arguments and Lemma 2, one has

(1) |(1 − |z|2)n/pf(z) − (1 − |w|2)n/pf(w)| 6 C‖fr‖H∞

(1−|z|2)n/p
̺(z, w)

for any f ∈ Hp.

The following lemma is the crucial criterion for compactness, whose proof is an

easy modification of that of Proposition 3.11 of [5].

Lemma 4. Suppose that 1 6 p <∞. Let u, v ∈ H(BN ) and ϕ, ψ ∈ S(BN ), then

the operator Wϕ,u −Wψ,v : Hp → H∞
ϕ is compact if and only if whenever {fn} is

a bounded sequence in Hp with fn → 0, n → ∞ uniformly on compact subsets of

BN , then ‖(Wϕ,u −Wψ,v)fn‖H∞
ϕ

→ 0, n→ ∞.
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3. The boundedness of Wϕ,u −Wψ,v

In this section we will characterize the boundedness of Wϕ,u −Wψ,v : Hp → H∞
ϕ .

For that purpose, we consider the following three conditions:

sup
z∈BN

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞;(2)

sup
z∈BN

ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞;(3)

sup
z∈BN

∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣
<∞.(4)

Theorem 1. Suppose that 1 6 p < ∞. Let u, v ∈ H(BN ) and ϕ, ψ ∈ S(BN ),

then the following statements are equivalent.

(i) Wϕ,u −Wψ,v : Hp → H∞
ϕ is bounded.

(ii) The conditions (2) and (4) hold.

(iii) The conditions (3) and (4) hold.

P r o o f. First, we prove the implication (i) ⇒ (ii). Assume that Wϕ,u −Wψ,v :

Hp → H∞
ϕ is bounded. Fix w ∈ BN , we consider the function fw defined by

(5) fw(z) =
(1 − |ϕ(w)|2)α

(1 − 〈z, ϕ(w)〉)n/p+α
·
〈ϕψ(w)(z), ϕψ(w)(ϕ(w))〉

|ϕψ(w)(ϕ(w))|

for z ∈ BN and α > 0.

Then using Theorem 1.12 in [26], one gets fw ∈ Hp(BN ). In fact

(6) ‖fw‖Hp = sup
0<r<1

(
∫

∂BN

(1 − |ϕ(w)|2)pα

|1 − 〈rζ, ϕ(w)〉|n+pα

×
∣

∣

∣

〈ϕψ(w)(rζ), ϕψ(w)(ϕ(w))〉

ϕψ(w)(ϕ(w))

∣

∣

∣

p

dσ(ζ)

)1/p

6 sup
0<r<1

(
∫

∂BN

(1 − |ϕ(w)|2)pα

|1 − 〈rζ, ϕ(w)〉|n+pα
dσ(ζ)

)1/p

6 sup
0<r<1

(1 − |ϕ(w)|2)α

(1 − r|ϕ(w)|2)α
6 1.

Thus fw ∈ Hp and ‖fw‖Hp 6 1. Note that

(7) fw(ϕ(w)) =
̺(ϕ(w), ψ(w))

(1 − |ϕ(w)|2)n/p
, fw(ψ(w)) = 0.
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By the boundeness of Wϕ,u −Wψ,v : Hp → H∞
ϕ and using (7), it then follows that

(8) ∞ > ‖(Wϕ,u −Wψ,v)fw‖H∞
ϕ

= sup
z∈BN

ϕ(z)|fw(ϕ(z))u(z) − fw(ψ(z))v(z)|

> ϕ(w)|fw(ϕ(w))u(w) − fw(ψ(w))v(w)| =
ϕ(w)|u(w)|

(1 − |ϕ(w)|2)n/p
̺(ϕ(w), ψ(w))

for any w ∈ BN . Since w ∈ BN is an arbitrary element, then from (8) we can obtain

(2).

Next we prove (4). For given w ∈ BN , we consider the function

(9) gw(z) =
(1 − |ψ(w)|2)α

(1 − 〈z, ψ(w)〉)n/p+α

where α > 0. By a similar argument as for (6), one can obtain that gw ∈ Hp(BN )

with ‖gw‖Hp 6 1. Note that

(10) gw(ψ(w)) =
1

(1 − |ψ(w)|2)n/p
,

and by the boundeness of Wϕ,u −Wψ,v : Hp → H∞
ϕ , one sees that

(11) ∞ > ‖(Wϕ,u −Wψ,v)gw‖H∞
ϕ

> ϕ(w)|gw(ϕ(w))u(w) − gw(ψ(w))v(w)|

= |I(w) + J(w)|,

where

I(w) = (1 − |ψ(w)|2)n/pgw(ψ(w))
[ ϕ(w)u(w)

(1 − |ϕ(w)|2)n/p
−

ϕ(w)v(w)

(1 − |ψ(w)|2)n/p

]

=
ϕ(w)u(w)

(1 − |ϕ(w)|2)n/p
−

ϕ(w)v(w)

(1 − |ψ(w)|2)n/p
,

J(w) =
ϕ(w)u(w)

(1 − |ϕ(w)|2)n/p
[(1 − |ϕ(w)|2)n/pgw(ϕ(w)) − (1 − |ψ(w)|2)n/pgw(ψ(w))].

By (2) and Lemma 3, we conclude that

|J(w)| 6 C
ϕ(w)|u(w)|̺(ϕ(w), ψ(w))

(1 − |ϕ(w)|2)n/p
‖gw‖Hp

6 C
ϕ(w)|u(w)|

(1 − |ϕ(w)|2)n/p
̺(ϕ(w), ψ(w)) <∞

for all w ∈ BN , which by (11), shows that |I(w)| < ∞ for all w ∈ BN . Thus (4)

holds.

701



(ii) ⇒ (iii). Assume that (2) and (4) hold. We need only to show that (3) holds.

Note that the pseudohyperbolic metric ̺ is less than 1. Then we have that

(12)
ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) 6

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z))

+
∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣
̺(ϕ(z), ψ(z)).

From which, using (2) and (4), the desired condition (3) follows.

(iii) ⇒ (i). Assume that (3) and (4) hold. By Lemma 3 and Lemma 2, for any

f ∈ Hp, we have

ϕ(z)|(Wϕ,u −Wψ,v)f(z)| = ϕ(z)|f(ϕ(z))u(z) − f(ψ(z))v(z)|

=
∣

∣

∣
(1 − |ϕ(z)|2)n/pf(ϕ(z))

[ ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

]

+
ϕ(z)v(z)

(1 − |ψ(z)|2)n/p
[(1 − |ϕ(z)|2)n/pf(ϕ(z)) − (1 − |ψ(z)|2)n/pf(ψ(z))]

∣

∣

∣

6 ‖f‖Hp

∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣

+ C‖f‖Hp̺(ϕ(z), ψ(z))
ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p

6 C‖f‖Hp .

From which it follows that Wϕ,u −Wψ,v : Hp → H∞
ϕ is bounded. The whole proof

is completed. �

The following corollary follows easily from the simple case v = 0 of Theorem 1.

Corollary 1. Suppose that 1 6 p < ∞. Let ϕ ∈ S(BN ) and u ∈ H(BN ), then

Wϕ,u : Hp → H∞
ϕ is bounded if and only if

(13) sup
z∈BN

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
<∞.

Corollary 2. Suppose that 1 6 p <∞. Let ϕ, ψ ∈ S(BN ) and u ∈ H(BN), then

uCϕ − uCψ : Hp → H∞
ϕ is bounded if and only if the following two conditions hold:

(14) sup
z∈BN

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞
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and

(15) sup
z∈BN

ϕ(z)|u(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞.

P r o o f. The “if” direction is accomplished by letting v = u in Theorem 1.

For the converse direction, by Theorem 1, it suffices to show that if the conditions

(14) and (15) hold, then

(16)
∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)u(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣
<∞

for all z ∈ BN .

To prove our claim, we divide it into two cases as follows:

The first case, when ̺(ϕ(z), ψ(z)) > 1/2: by (14) and (15) we obtain that

(17)
∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)u(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣

6 2
ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) + 2

ϕ(z)|u(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞.

The second case, when ̺(ϕ(z), ψ(z)) 6 1/2: by Lemma 1 and (14) we have

(18)
∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)u(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣

=
ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p

∣

∣

∣
1 −

(1 − |ϕ(z)|2

1 − |ψ(z)|2

)n/p∣
∣

∣

6
ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p

∣

∣

∣
1 −

(1 + ̺(ϕ(z), ψ(z))

1 − ̺(ϕ(z), ψ(z))

)n/p∣
∣

∣

6 C
ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) <∞.

Combing (17) with (18), and using Theorem 1, we obtain the boundedness of uCϕ−

uCψ : Hp → H∞
ϕ . The proof of the Corollary is complete. �
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4. The compactness of Wϕ,u −Wψ,v

In this section, we turn our attention to the question of compact difference. Here

we consider the following conditions:

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) → 0 as |ϕ(z)| → 1;(19)

ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) → 0 as |ψ(z)| → 1;(20)

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p
→ 0 as |ϕ(z)| → 1, |ψ(z)| → 1.(21)

Theorem 2. Suppose that 1 6 p < ∞. Let u, v ∈ H(BN ) and ϕ, ψ ∈ S(BN ),

then Wϕ,u −Wψ,v : Hp → H∞
ϕ is compact if and only if Wϕ,u −Wψ,v : Hp → H∞

ϕ

is bounded and the conditions (19)–(21) hold.

P r o o f. First we suppose that Wϕ,u −Wψ,v : Hp → H∞
ϕ is bounded and the

conditions (19)–(21) hold. Then the conditions (2)–(4) hold by Theorem 1.

From (19)–(21), it follows that for any ε > 0, there exists 0 < r < 1 such that

ϕ(z)|u(z)|

(1 − |ϕ(z)|2)n/p
̺(ϕ(z), ψ(z)) 6 ε for |ϕ(z)| > r,(22)

ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) 6 ε for |ψ(z)| > r,(23)

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p
6 ε for |ϕ(z)| > r, |ψ(z)| > r.(24)

Now, let {fn} be a sequence in H
p such that ‖fn‖Hp 6 1 and fn → 0 uniformly

on compact subsets of BN . By using Lemma 4 we only need to show that ‖(Wϕ,u −

Wψ,v)fn‖H∞
ϕ

→ 0 as n→ ∞.

A direct calculation shows that

(25) ϕ(z)|(Wϕ,u −Wψ,v)fn(z)| = ϕ(z)|fn(ϕ(z))u(z) − fn(ψ(z))v(z)|

= |In(z) + Jn(z)|,

where

In(z) = (1 − |ϕ(z)|2)n/pfn(ϕ(z))
[ ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

]

and

Jn(z) =
ϕ(z)v(z)

(1 − |ψ(z)|2)n/p
[(1 − |ϕ(z)|2)n/pfn(ϕ(z)) − (1 − |ψ(z)|2)n/pfn(ψ(z))].
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We divide the argument into a few cases.

Case 1. |ϕ(z)| 6 r and |ψ(z)| 6 r.

By the assumption, note that {fn} converges to zero uniformly on E = {w : |w| 6

r} as n → ∞, and using (4), it is easy to check that In(z) → 0, n → ∞ uniformly

for all z with |ϕ(z)| 6 r.

On the other hand, it follows from (1) that

|(1 − |ϕ(z)|2)n/pfn(ϕ(z)) − (1 − |ψ(z)|2)n/pfn(ψ(z))|

6 C̺(ϕ(z), ψ(z)) sup
|ϕ(z)|6r

(1 − |ϕ(z)|2)n/p|fn(ϕ(z))|.

From which, together with the condition (3) and the fact that fn → 0, uniformly on

E = {w : |w| 6 r} as n→ ∞, we have

|Jn(z)| 6 C
ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) sup

|w|6r

(1 − |w|2)n/p|fn(w)| 6 Cε.

Case 2. |ψ(z)| > r and |ϕ(z)| 6 r.

As in the proof of Case 1, In(z) → 0 uniformly as n → ∞. On the other hand,

using Lemma 3 and (23) we obtain

|Jn(z)| 6 C‖fn‖Hp

ϕ(z)|v(z)|

(1 − |ψ(z)|2)n/p
̺(ϕ(z), ψ(z)) 6 Cε.

Case 3. |ψ(z)| > r and |ϕ(z)| > r.

By (24) we obtain that

|In(z)| 6 ‖fn‖Hp

∣

∣

∣

ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

∣

∣

∣
6 ε

for n sufficiently large. Meanwhile, Jn(z) → 0 uniformly as n→ ∞ uniformly by the

same proof as in Case 2.

Case 4. |ψ(z)| 6 r and |ϕ(z)| > r. We rewrite

ϕ(z)|fn(ϕ(z))u(z) − fn(ψ(z))v(z)| = |Pn(z) +Qn(z)|,

where

Pn(z) = (1 − |ψ(z)|2)n/pfn(ψ(z))
[ ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
−

ϕ(z)v(z)

(1 − |ψ(z)|2)n/p

]

,

and

Qn(z) =
ϕ(z)u(z)

(1 − |ϕ(z)|2)n/p
[(1 − |ϕ(z)|2)n/pfn(ϕ(z)) − (1 − |ψ(z)|2)n/pfn(ψ(z))].
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The desired result follows by an argument analogous to that in the proof of Case 2.

Thus, together with the above cases, we conclude that

(26) ‖(Wϕ,u −Wψ,v)fn‖H∞
ϕ

= sup
z∈BN

ϕ(z)|fn(ϕ(z))u(z) − fn(ψ(z))v(z)| 6 Cε

for sufficiently large n. Employing Lemma 4 we obtain the compactness of Wϕ,u −

Wψ,v : Hp → H∞
ϕ .

For the converse direction, we suppose that Wϕ,u−Wψ,v : Hp → H∞
ϕ is compact.

From that we can easily obtain the boundedness of Wϕ,u −Wψ,v : Hp → H∞
ϕ . Next

we only need to show that (19)–(21) hold. Let {zn} be a sequence of points in BN
such that |ϕ(zn)| → 1 as n→ ∞. Define the functions

(27) fn(z) =
(1 − |ϕ(zn)|

2)α

(1 − 〈z, ϕ(zn)〉)n/p+α
·
〈ϕψ(zn)(z), ϕψ(zn)(ϕ(zn))〉

|ϕψ(zn)(ϕ(zn))|

where α > 0. Clearly, fn converges to 0 uniformly on compact subsets of BN as

n→ ∞ and fn ∈ Hp with ‖fn‖Hp 6 1 for all n. Moreover,

(28) fn(ϕ(zn)) =
̺(ϕ(zn), ψ(zn))

(1 − |ϕ(zn)|2)n/p
, fn(ψ(zn)) = 0.

By the compactness of Wϕ,u − Wψ,v : Hp → H∞
ϕ and Lemma 4, it follows that

‖(Wϕ,u −Wψ,v)fn‖H∞
ϕ

→ 0, n→ ∞. On the other hand, using (28) we have

(29) ‖(Wϕ,u −Wψ,v)fn‖H∞
ϕ

= sup
z∈BN

ϕ(z)|fn(ϕ(z))u(z) − fn(ψ(z))v(z)|

> ϕ(zn)|fn(ϕ(zn))u(zn) − fn(ψ(zn))v(zn)|

=
ϕ(zn)|u(zn)|

(1 − |ϕ(zn)|2)n/p
̺(ϕ(zn), ψ(zn)).

Letting n→ ∞ in (29), it follows that (19) holds. The condition (20) holds by similar

arguments.

Now we need only to show that the condition (21) holds. Assume that {zn} is

a sequence of points in BN such that |ϕ(zn)| → 1 and |ψ(zn)| → 1 as n→ ∞. Define

the function

gn(z) =
(1 − |ψ(zn)|

2)α

(1 − 〈z, ψ(zn)〉)n/p+α

where α > 0. It is easy to check that gn converges to 0 uniformly on compact subsets

of BN as n→ ∞ and gn ∈ Hp with ‖gn‖Hp 6 1 for all n ∈ N. Note that

(30) gn(ψ(zn)) =
1

(1 − |ψ(zn)|2)n/p
.
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By Lemma 4 we obtain ‖(Wϕ,u −Wψ,v)gn‖H∞
ϕ

→ 0, n→ ∞. On the other hand we

obtain that

(31) ‖(Wϕ,u −Wψ,v)gn‖H∞
ϕ

> ϕ(zn)|gn(ϕ(zn))u(zn) − gn(ψ(zn))v(zn)|

= |I(zn) + J(zn)|

where

I(zn) = (1 − |ψ(zn)|
2)n/pgn(ψ(zn))

[ ϕ(zn)u(zn)

(1 − |ϕ(zn)|2)n/p
−

ϕ(zn)v(zn)

(1 − |ψ(zn)|2)n/p

]

=
ϕ(zn)u(zn)

(1 − |ϕ(zn)|2)n/p
−

ϕ(zn)v(zn)

(1 − |ψ(zn)|2)n/p

J(zn) =
ϕ(zn)u(zn)

(1 − |ϕ(zn)|2)n/p
[(1 − |ϕ(zn)|2)n/pgn(ϕ(zn)) − (1 − |ψ(zn)|

2)n/pgn(ψ(zn))].

By Lemma 3 and the condition (19) that has been proved, we get

(32) |J(zn)| 6 C‖gn‖Hp

ϕ(zn)|u(zn)|

(1 − |ϕ(zn)|2)n/p
̺(ϕ(zn), ψ(zn)) → 0, |ϕ(zn)| → 1.

Combing (31) and (32), we obtain that I(zn) → 0 as n → ∞. This shows that (21)

is true. The whole proof is complete. �
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