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Abstract. The object of the present paper is to study almost pseudo-conformally sym-
metric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric
Ricci-recurrent manifolds has been proved by an explicit example. Some geometric prop-
erties have been studied. Among others we prove that in such a manifold the vector field
̺ corresponding to the 1-form of recurrence is irrotational and the integral curves of the
vector field ̺ are geodesic. We also study some global properties of such a manifold. Finally,
we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the
Segre’ characteristic of such a spacetime.
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1. Introduction

As is well known, symmetric spaces play an important role in differential geometry.

The study of Riemannian symmetric spaces was initiated in the late twenties by

E. Cartan [4] who, in particular, obtained a classification of those spaces.

Let (M, g), n = dimM be a Riemannian manifold and let ∇ be the Levi-Civita

connection of (M, g). A Riemannian manifold is called locally symmetric [4] if

∇R = 0, where R is the Riemannian curvature tensor of (M, g). This condition

of local symmetry is equivalent to the fact that at every point P ∈ M , the local

geodesic symmetry F (P ) is an isometry [18]. The class of Riemannian symmetric
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manifolds is a very natural generalization of the class of manifolds of constant cur-

vature. The same can be extended to the class of semi-Riemannian manifolds, where

g is of arbitrary signature.

During the last five decades the notion of locally symmetric manifolds has been

weakened by many authors in several ways to a different extent such as semi-

symmetric manifolds by Szabo [29], Kowalski [2], conformally symmetric manifolds

by Chaki and Gupta [6], recurrent manifolds introduced by Walker [31], conformally

recurrent manifolds by Adati and Miyazawa [1], pseudo-symmetric manifolds intro-

duced by Chaki [5], weakly symmetric manifolds by Tamássy and Binh [30] etc.

In 1967, Sen and Chaki [27] studied certain curvature restrictions on a certain

kind of a conformally flat space of class one and obtained the following expression of

the covariant derivative of the curvature tensor:

(1.1) Rh
ijk,l = 2λlR

h
ijk + λiR

h
ljk + λjR

h
ilk + λkRh

ijl + λhRlijk ,

where Rh
ijk are the components of the curvature tensor R, Rlijk = ghlR

h
ijk , λi is

a non-zero covariant vector.

Later in 1987, Chaki [5] called a manifold whose curvature tensor satisfies (1.1)

a pseudo-symmetric manifold. In index-free notation this can be stated as follows:

A non-flat Riemannian or a semi-Riemannian manifold (M, g), n > 2 is said to be

a pseudo-symmetric manifold [5] if its curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = 2A(X)R(Y, Z)W + A(Y )R(X, Z)W(1.2)

+ A(Z)R(Y, X)W + A(W )R(Y, Z)X + g(R(Y, Z)W, X)P,

where A is a non-zero differential 1-form, P is a vector field defined by

(1.3) g(X, P ) = A(X) for all vector fields X

and ∇ denotes the operator of covariant differentiation with respect to the metric

tensor g. The 1-form A is called the associated 1-form of the manifold. If A = 0,

then the manifold reduces to a symmetric manifold in the sense of E. Cartan. An

n-dimensional pseudo-symmetric manifold is denoted by (PS)n.

It is to be noted that the notion of a pseudo-symmetric manifold studied in par-

ticular by Deszcz [16] is different from that of Chaki [5].

To generalize the notion of a pseudo-symmetric manifold, De and Gazi [8] in-

troduced the notion of an almost pseudo-symmetric manifold which is defined as

follows:
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A non-flat Riemannian manifold (M, g) (n > 2) is said to be almost pseudo-

symmetric if the curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = [A(X) + B(X)]R(Y, Z)W + A(Y )R(X, Z)W(1.4)

+ A(Z)R(Y, X)W + A(W )R(Y, Z)X + g(R(Y, Z)W, X)P,

where A and B are two non-zero 1-forms, defined by

(1.5) g(X, P ) = A(X) and g(X, Q) = B(X) for all X.

Here the vector fields P and Q will be called the basic vector fields of the manifold

corresponding to the 1-form A and B respectively. Such a manifold is denoted

by (APS)n. If B = A, then (APS)n reduces to (PS)n.

If we replace R by C in (1.2) where C is the conformal curvature tensor defined

by

C(X, Y )Z = R(X, Y )Z −
1

n − 2
[g(Y, Z)LX − g(X, Z)LY(1.6)

+ S(Y, Z)X − S(X, Z)Y ]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ],

where R is the curvature tensor of type (1, 3), S is the Ricci tensor, r is the scalar

curvature and L is the symmetric endomorphism corresponding to the Ricci tensor S,

that is,

(1.7) S(X, Y ) = g(LX, Y ),

then the manifold is called a pseudo-conformally symmetric manifold introduced by

De and Biswas [7]. Such an n-dimensional manifold was denoted by (PCS)n. If A = 0

on M , then the (PCS)n manifold reduces to a conformally symmetric manifold [6].

For recent results on conformally symmetric manifolds we refer to [11], [12], [13],

[14], [15], [28].

Conformally recurrent manifolds were introduced by Adati and Miyazawa [1]

in 1967. A Riemannian manifold (M, g), n > 3 is called conformally recurrent if

the conformal curvature tensor, defined by (1.6), satisfies the condition

(1.8) (∇XC)(Y, Z)W = E(X)C(Y, Z)W,

where E is a non-zero 1-form. If in particular E = 0, then the manifold reduces to

a conformally symmetric manifold [6].
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Prvanović called a non-flat Riemannian manifold (M, g), n > 3, a conformally

quasi-recurrent manifold [22] if its conformal curvature tensor satisfies the same

condition as pseudo-conformally symmetric manifolds. Conformally quasi-recurrent

manifolds have also been studied by Buchner and Roter [3].

In a recent paper [9], De and Gazi introduced the notion of almost pseudo-

conformally symmetric manifolds. If we replace R by C in (1.4), then the mani-

fold is called almost pseudo-conformally symmetric manifold which is defined by the

condition

(∇XC)(Y, Z)W(1.9)

= [A(X) + B(X)]C(Y, Z)W + A(Y )C(X, Z)W + A(Z)C(Y, X)W

+ A(W )C(Y, Z)X + g(C(Y, Z)W, X)P,

where A and B are two non-zero 1-forms, called the associated 1-forms, defined by

(1.10) g(X, P ) = A(X), g(X, Q) = B(X)

for all vector fields X , and ∇ has the meaning already mentioned. Here the vector

fields P and Q will be called the basic vector fields of the manifold corresponding to

the associated 1-forms A and B respectively. Such an n-dimensional manifold will be

denoted by (APCS)n. Clearly, every conformally recurrent manifold is a (APCS)n.

If in (1.9) A = B, then the manifold reduces to a pseudo-conformally symmetric

manifold. This justifies the name “almost pseudo-conformally symmetric manifold”

and the use of the symbol (APCS)n. In this connection it may be mentioned that

in 1989 Tamássy and Binh [30] introduced weakly symmetric and weakly projectively

symmetric Riemannian manifolds. A Riemannian manifold (M, g) is called weakly

symmetric and denoted by (WS)n if there exist 1-forms A, B, D, E and a vector

field P such that

(∇XR)(Y, Z)W = A(X)R(Y, Z)W + B(Y )R(X, Z)W + D(Z)R(Y, X)W

+ E(W )R(Y, Z)X + g(R(Y, Z)W, X)P,

where R is the curvature tensor of (M, g).

In a subsequent paper [10] the first author and Bandyopadhyay introduced the

weakly conformally symmetric manifold. It is to be noted that (APCS)n is not

a particular case of (WCS)n.

In the paper [9] De and Gazi proved the existence of an (APCS)n manifold by the

following theorem.
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Theorem A. A conformal deformation of every conformally recurrent metric is

an (APCS)n metric, provided that n > 3.

Also the authors [9] cited an example of an (APCS)n with a metric.

In 1952, Patterson [19] introduced the notion of Ricci-recurrent manifolds.

A non-flat Riemannian manifold (M , g), n > 2 is called a Ricci-recurrent manifold

[19] if its Ricci tensor S of type (0, 2), is non-zero and satisfies the condition

(1.11) (∇XS)(Y, Z) = T (X)S(Y, Z)

where T is a non-zero 1-form, called the 1-form of recurrence and defined by

(1.12) g(X, µ) = T (X).

If T = 0, then the manifold reduces to a Ricci symmetric manifold.

Conformally symmetric Ricci-recurrent manifolds have been studied by Roter [23]

and many others. Also conformally recurrent Ricci-recurrent spaces have been stud-

ied by Roter [24].

Motivated by these works, in the present paper we have studied (APCS)n Ricci-

recurrent manifolds, n > 3. Here we prove that in an (APCS)n Ricci-recurrent

manifold, if the scalar curvature r 6= 0, then ̺ is an eigenvector corresponding to the

eigenvalue 1
2r, where g(X, ̺) = E(X) = 2A(X) + B(X), A, B are defined by (1.10).

Next we prove that in an (APCS)n Ricci-recurrent manifold, n > 3, either the scalar

curvature r = 0 or the 1-form of recurrence T satisfies T (X) = 2A(X) + B(X) for

all vector fields X . Also we verify the result by an example. In this section we also

prove that the vector field ̺ is irrotational and the integral curves of the vector field ̺

are geodesic. Next, we study some global properties of a (APCS)n Ricci-recurrent

manifold, n > 3. Finally, we study (APCS)n Ricci-recurrent spacetime, n > 3.

Among others we obtain Segre’ characteristic of such a spacetime.

2. (APCS)n Ricci-recurrent manifolds, n > 3

In this section we first prove the following lemma:

Lemma 2.1. In an (APCS)n Ricci-recurrent manifold if r 6= 0, then 1
2r is an

eigenvalue corresponding to the eigenvector ̺.

P r o o f. Contracting (1.9) with respect to X we get

(2.1) (div C)(Y, Z)W = 2A(C(Y, Z)W ) + B(C(Y, Z)W ) = E(C(Y, Z)W ),
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where E is a non-zero 1-form and ̺ is its corresponding vector field such that

(2.2) E(X) = 2A(X) + B(X) and g(X, ̺) = E(X) for all vector fields X.

Now contracting (1.11) with respect to X and Z we have

(2.3) dr(Y ) = T (Y )r

and contraction of (1.11) with respect to Z gives

(2.4) (∇Y L)(X) = T (Y )LX,

where L is defined by (1.7). Again contracting Y in (2.4) we get

(div L)X = T (LX).

However, it is known [20] that (div L)X = 1
2 dr(X). So with help of (2.3) we have

(2.5) T (LX) =
1

2
dr(X) =

r

2
T (X).

Also it is known [25] that in a Ricci-recurrent manifold the following relations hold:

(2.6) S(R(X, Y )Z, W ) + S(R(X, Y )W, Z) = 0,

(2.7) S(X, LY ) =
r

2
S(X, Y ).

From the definition of the Weyl conformal curvature tensor we see that [17]

(div C)(Y, Z)W =
n − 3

n − 2

[{

(∇Y S)(Z, W ) −
1

2(n − 1)
dr(Y )g(Z, W )

}

−
{

(∇ZS)(Y, W ) −
1

2(n − 1)
dr(Z)g(Y, W )

}]

.

Now using (1.11), (2.1) and (2.3) we get from the above

E(C(Y, Z)W ) =
n − 3

n − 2

[{

T (Y )S(Z, W ) −
r

2(n − 1)
T (Y )g(Z, W )

}

(2.8)

−
{

T (Z)S(Y, W ) −
r

2(n − 1)
T (Z)g(Y, W )

}]

.
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W = ̺ in (2.8) implies

(2.9) T (Y )
[

S(Z, ̺) −
r

2(n − 1)
E(Z)

]

= T (Z)
[

S(Y, ̺) −
r

2(n − 1)
E(Y )

]

,

since

E(C(Y, Z)̺) = g(C(Y, Z)̺, ̺) = 0.

Putting Y = LY in (2.9) we get

(2.10) T (LY )
[

S(Z, ̺) −
r

2(n − 1)
E(Z)

]

= T (Z)
[

S(LY, ̺) −
r

2(n − 1)
E(LY )

]

.

Now using (2.5) and (2.7) we get from (2.10)

rT (Y )
[

S(Z, ̺) −
r

2(n − 1)
E(Z)

]

= rT (Z)
[

S(Y, ̺) −
1

(n − 1)
E(LY )

]

,

which implies either r = 0, or

(2.11) T (Y )
[

S(Z, ̺) −
r

2(n − 1)
E(Z)

]

= T (Z)
[

S(Y, ̺) −
1

(n − 1)
E(LY )

]

.

Since T 6= 0, (2.9) and (2.11) together with the condition r 6= 0 give E(LY ) =
1
2rE(Y ), that is,

(2.12) S(Y, ̺) =
r

2
g(Y, ̺).

This completes the proof. �

Now we prove the following propositions:

Proposition 2.1. At every point p of an (APCS)n Ricci-recurrent manifold,

n > 3, either the scalar curvature at that point is zero or T = 2A + B.

P r o o f. Let C̃ be the conformal curvature tensor of type (0, 4) such that

C̃(X, Y, Z, W ) = g(C(X, Y )Z, W ), where C is the Weyl conformal curvature ten-

sor of type (1, 3) defined by (1.6). Then

C̃(X, Y, Z, W )(2.13)

= R̃(X, Y, Z, W ) −
1

n − 2
[g(Y, Z)S(X, W )

− g(X, Z)S(Y, W ) + S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )]

+
r

(n − 1)(n − 2)
[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )],
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where R̃ is the curvature tensor of type (0, 4) defined by

R̃(X, Y, Z, W ) = g(R(X, Y )Z, W )

for the curvature tensor R of type (1, 3).

Putting W = ̺ in (2.13) and using (2.12) we get

E(C(X, Y )Z) = E(R(X, Y )Z) −
1

n − 2
[E(X)S(Y, Z) − E(Y )S(X, Z)]

+
(n − 3)r

2(n − 1)(n − 2)
[E(X)g(Y, Z) − E(Y )g(X, Z)].

With help of (2.8) this equation gives

E(R(X, Y )Z) = S(Y, Z)
[ 1

n − 2
E(X) +

n − 3

n − 2
T (X)

]

(2.14)

− S(X, Z)
[ 1

n − 2
E(Y ) +

n − 3

n − 2
T (Y )

]

+
(n − 3)r

2(n − 1)(n − 2)
[{E(X) − T (X)}g(Y, Z)

− {E(Y ) − T (Y )}g(X, Z)].

Now with help of the symmetric and skew-symmetric properties of the curvature

tensor, from (2.6) and (2.12) we can prove that

(2.15) E(R(X, Y )LZ) =
1

2
rE(R(X, Y )Z).

Putting Z = LZ in (2.14) and using (2.7), (2.15) we see that

rE(R(X, Y )Z) = rS(Y, Z)
[ 2

n − 1
E(X) +

n − 3

n − 1
T (X)

]

(2.16)

− rS(X, Z)
[ 2

n − 1
E(Y ) +

n − 3

n − 1
T (Y )

]

.

Contracting Y and Z in (2.16) and using (2.5), (2.12) we get after simple calculation

r2[E(X) − T (X)] = 0,

which implies that either r = 0 or E(X) = T (X), that is, T (X) = 2A(X) + B(X).

This completes the proof. �

Proposition 2.2. In an (APCS)n Ricci-recurrent manifold, n > 3, with non-zero

scalar curvature the vector field ̺ defined by g(X, ̺) = E(X) is irrotational and the

integral curves of the vector field ̺ are geodesics.
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P r o o f. From Proposition 2.1, we get in an (APCS)n Ricci-recurrent manifold,

n > 3 with non-zero scalar curvature that E = T where T is the 1-form of recurrence

of the Ricci-Recurrent manifold. Since in a Ricci-recurrent manifold with non-zero

scalar curvature the 1-form of recurrence T is closed, hence the 1-form E is also

closed, that is, dE(X, Y ) = 0, which implies

(2.17) (∇XE)Y = (∇Y E)X.

From (2.17) it follows that

(2.18) g(∇X̺, Y ) = g(∇Y ̺, X) for all vector fields X, Y,

which means that the vector field ̺ is irrotational.

Now putting Y = ̺ in (2.18) we get

(2.19) g(∇X̺, ̺) = g(∇̺̺, X).

Suppose ̺ is a unit vector field. Then g(∇X̺, ̺) = 0. Hence from (2.19) it follows

that g(∇̺̺, X) = 0 for all vector fields X , which implies ∇̺̺ = 0. This means that

the integral curves of the vector field ̺ are geodesics. �

Now we are in a position to establish by an example that r 6= 0 is necessary

condition for the conclusion of Proposition 2.1.

On the coordinate space R
n (with coordinates x1, x2, . . . , xn) we define a Rie-

mannian space Vn. We calculate the components of the curvature tensor, the Ricci

tensor, the covariant derivatives of the Ricci tensor, the conformal curvature tensor

and its covariant derivatives, and then we verify the relations (1.9) and (1.11).

Let each Latin index runs over 1, 2, . . . , n and each Greek index over 2, 3, . . . ,

(n − 1). We define a Riemannian metric on R
n (n > 4) by the formula

(2.20) ds2 = ϕ(dx1)2 + Kαβdxαdxβ + 2dx1dxn,

where [Kαβ] is a symmetric and non-singular matrix consisting of constants and ϕ is

a function of x1, x2, . . . , xn−1 and independent of xn. In the metric considered, the

only non-vanishing components of Christoffel symbols, the curvature tensor and the

Ricci tensor are, according to [23],

Γβ
11 = −

1

2
Kαβϕ.α, Γn

11 =
1

2
ϕ.1, Γn

1α =
1

2
ϕ.α,(2.21)

R1αβ1 =
1

2
ϕ.αβ , R11 =

1

2
Kαβϕ.αβ ,
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where ‘.’ denotes the partial differentiation with respect to the coordinates and

Kαβ are the elements of the matrix inverse to [Kαβ ].

Here we consider Kαβ as the Kronecker symbol δαβ and

ϕ = (Mαβ + δαβ)xαxβe(x1)2 ,

where Mαβ are constant and satisfy the relations

Mαβ = 0 for α 6= β,(2.22)

6= 0 for α = β,

n−1
∑

α=2

Mαα = 0.

Now according to our consideration we have the following relations:

ϕ.αβ = 2(Mαβ + δαβe(x1)2 ,

δαβδαβ = n − 2 and δαβMαβ =

n−1
∑

α=2

Mαα = 0.

Therefore,

δαβϕ.αβ = 2(δαβMαβ + δαβδαβ)e(x1)2 = 2(n − 2)e(x1)2 .

Since ϕ.αβ vanishes for α 6= β, the only non-zero components for Rhijk and Rij in

virtue of (2.21) are

R1αα1 =
1

2
ϕ.αα = (1 + Mαα)e(x1)2

and

R11 =
1

2
ϕ.αβδαβ = (n − 2)e(x1)2 .

Again from (2.20) we obtain gni = gin = 0 for i 6= 1, which implies g11 = 0. Hence

r = gijRij = g11R11 = 0. Therefore, Vn will be a space whose scalar curvature is

zero. Hence the only non-zero components of the conformal curvature tensor Chijk

are

C1αα1 = R1αα1 −
1

n − 2
(gααR11)(2.23)

= (1 + Mαα)e(x1)2 −
1

n − 2
(n − 2)e(x1)2

= Mααe(x1)2
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which never vanish. Now the only non-zero components of Chijk,m are

(2.24) C1αα1,1 = 2x1Mααe(x1)2 = 2x1C1αα1 6= 0.

Hence Vn is neither conformally flat nor conformally symmetric [6]. We shall now

show that Vn is an (APCS)n. Let us consider the associated 1-form as follows:

(2.25) Ai(x) =

{

x1 for i = 1,

0 otherwise,

(2.26) Bi(x) =

{

−x1 for i = 1,

0 otherwise,

at any point x ∈ Vn.

To verify the relation (1.9) it is sufficient to prove that

C1αα1,1 = (3A1 + B1)C1αα1,(2.27)

C11α1,α = A1Cα1α1 + A1C1αα1,(2.28)

C1α11,α = A1C1αα1 + A1C1α1α,(2.29)

as for the case other than (2.27), (2.28) and (2.29) the components of each term

of (1.9) vanish identically and the relation (1.9) holds trivially. Now from (2.23),

(2.24), (2.25) and (2.26) we get the following relation for the right-hand side (r.h.s.)

and the left-hand side (l.h.s.) of (2.27):

r.h.s. of (2.27) = (3A1 + B1)C1αα1 = (3x1 − x1)C1αα1

= 2x1C1αα1 = C1αα1,1 = l.h.s. of (2.27).

Now

r.h.s. of (2.28) = x1(Cα1α1 + C1αα1)

= 0 (by skew-symmetric properties of Chijk)

= l.h.s. of (2.28).

By an argument similar to (2.28) it can be shown that the relation (2.29) is also

true.

It is to be noted that (1.9) can be satisfied by a number of 1-forms A, B, namely,

by those which fulfil (2.27), (2.28), (2.29). Thus the manifold under consideration
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is an (APCS)n manifold. Now we show that this manifold is also a Ricci-recurrent

manifold. For this let us consider the 1-form of recurrence

(2.30) Ti(x) =

{

2x1 for i = 1,

0 otherwise.

Then we have

R11,1 = 2(n − 2)x1e(x1)2 = T1R11.

Hence the manifold is a Ricci-recurrent manifold.

From this example we see that the scalar curvature is r = 0 and 2A1 + B1 =

x1 6= T1. Thus we obtain an (APCS)n Ricci-recurrent manifold having r = 0 and

Tk 6= 2Ak + Bk.

3. Some global properties of an (APCS)n Ricci-recurrent

manifold n > 3

(a) Sufficient condition for a compact, orientable (APCS)n Ricci-recurrent mani-

fold, n > 3 to be conformal to a sphere in En+1.

We begin with the definition of conformality of one Riemannian manifold to an-

other.

Let (M, g) and (M̃, g̃) be two n-dimensional Riemannian manifolds. If there exists

a one-one differentiable mapping (M, g) → (M̃, g̃) such that the angle between any

two vectors at a point p ofM is always equal to that of the corresponding two vectors

at the corresponding point p̃ of M̃ , then (M, g) is said to be conformal to (M̃, g̃).

Y. Watanabe [32] has given a sufficient condition of conformality of an n-dimensional

Riemannian manifold to an n-dimensional sphere immersed in En+1. Its statement

is as follows:

If in an n-dimensional Riemannian manifold M there exists a non parallel vector

field X such that the condition

(3.1)

∫

M

S(X, X) dv =
1

2

∫

M

|dX |
2
dv +

n − 1

n

∫

M

(∂X)2 dv

holds, then M is conformal to a sphere in En+1, where dv is the volume element

of M and dX and ∂X are the curl and divergence of X respectively.

Here we consider a compact and orientable (APCS)n Ricci-recurrent manifold,

n > 3, without boundary and having the generator ̺ defined by g(X, ̺) = E(X),

̺ being a unit vector field. From (2.12) we see that if r 6= 0, then ̺ satisfies

(3.2) S(X, ̺) =
1

2
rE(X).
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Hence

(3.3) S(̺, ̺) =
1

2
r,

since E(̺) = 1. In virtue of this and by taking ̺ for X , the condition (3.1) takes on

the form

(3.4)
1

2

∫

M

r dv =
1

2

∫

M

|d̺|
2
dv +

n − 1

n

∫

M

(∂̺)
2
dv.

Suppose ̺ is a parallel vector field [26]. Then

∇X̺ = 0.

Hence by the Ricci identity we obtain

(3.5) R(X, Y )̺ = 0.

Contracting X we get from (3.5)

(3.6) S(Y, ̺) = 0.

Since r 6= 0 by assumption and Proposition 2.1 implies E(X) = T (X), T is the

1-form recurrence of a Ricci-recurrent manifold, therefore E 6= 0. Therefore in an

(APCS)n Ricci-recurrent manifold, n > 3, from (3.2) we get

S(Y, ̺) 6= 0.

Hence ̺ cannot be a parallel vector field. Thus in an n-dimensional compact, ori-

entable (APCS)n Ricci-recurrent manifold, n > 3 without boundary the vector field ̺

is a non-parallel vector field. If in such a case the condition (3.4) is satisfied, then by

Watanabe’s condition (3.1) M is conformal to a sphere in En+1. We can therefore

state the following result.

Theorem 3.1. If a compact, orientable (APCS)n Ricci-recurrent manifold, n > 3

without boundary, satisfies the condition (3.4), then the (APCS)n Ricci-recurrent

manifold, n > 3 is conformal to a sphere immersed in En+1, provided r 6= 0.

(b) Killing vector field in a compact, orientable (APCS)n Ricci-recurrent manifold,

n > 3 without boundary.
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Here we consider a compact, orientable (APCS)n Ricci-recurrent manifold, n > 3

without boundary. It is known ([32] or [34, p. 43]) that in such a manifold M the

following relation holds:

(3.7)

∫

M

[S(X, X)− |∇X |
2
− (div X)2] dv 6 0 for all vector field X.

If ̺ is a Killing vector field, then div ̺ = 0 ([34, p. 43]) and (3.7) takes the form

(3.8)

∫

M

[S(̺, ̺) − |∇̺|
2
] dv = 0.

Now in an (APCS)n Ricci-recurrent manifold, n > 3, if r 6= 0, then we see

from (2.12) that

S(X, ̺) =
1

2
rE(X).

Hence S(̺, ̺) = 1
2rg(̺, ̺). Therefore (3.8) becomes

(3.9)

∫

M

[1

2
r|̺|2 − |∇̺|2

]

dv = 0.

Suppose r < 0. Then from (3.9) it follows that ̺ = 0. This leads to the following

result.

Theorem 3.2. In a compact, orientable (APCS)n Ricci-recurrent manifold, n > 3

without boundary, the vector field ̺ cannot be a Killing vector field, provided r < 0.

4. (APCS)n Ricci-recurrent spacetime, n > 3

This section is concerned with the study of (APCS)n Ricci-recurrent manifold,

n > 3 in general relativity by the coordinate free method of differential geometry. In

this method of study the spacetime of general relativity is regarded as a connected

four-dimensional semi-Riemannian manifold (M4, g) with Lorentz metric g with sig-

nature (−, +, +, +). The geometry of the Lorentz manifold begins with the study

of causal character of vectors of the manifold. It is due to this causality that the

Lorentz manifold becomes a convenient choice for the study of general relativity.

Here we consider a perfect fluid (APCS)4 Ricci-recurrent spacetime of non-zero

scalar curvature and having the basic vector field ̺ as the timelike vector field of the

fluid, that is, g(̺, ̺) = −1.

1068



For the perfect fluid spacetime, we have the Einstein equation without cosmological

constant as

(4.1) S(X, Y ) −
1

2
rg(X, Y ) = kT (X, Y ),

where k is the gravitational constant, T is the energy momentum tensor of type (0, 2)

given by [18]

(4.2) T (X, Y ) = (σ + p)E(X)E(Y ) + pg(X, Y ),

with σ and p the energy density and the isotropic pressure of the fluid respectively,

E is a non-zero 1-form defined by g(X, ̺) = E(X) for all X , ̺ being the velocity

vector field of the fluid.

The equation (4.1) implies that “matter determines the geometry of spacetime

and conversely, the motion of matter is determined by the metric tensor of the space

which is not flat.”

It is to be noted that the basic geometric features of (APCS)n Ricci-recurrent man-

ifolds, n > 3 are also being maintained in the Lorentzian manifold which is necessarily

a semi-Riemannian manifold. Hence Lemma 2.1 is also true for an (APCS)n Ricci-

recurrent spacetime, n > 3. Using (4.2) in (4.1) we get

(4.3) S(X, Y ) −
1

2
rg(X, Y ) = k[(σ + p)E(X)E(Y ) + pg(X, Y )].

Putting Y = ̺ in (4.3) and using Lemma 2.1 yields

(4.4) −kσE(X) = 0, since g(̺, ̺) = E(̺) = −1.

Since k 6= 0 and E 6= 0 due to Proposition 2.1, it follows from (4.4) that σ = 0.

But this is inadmissible when pure matter exists, because in case of existence of

pure matter σ > 0. Hence the spacetime under consideration cannot contain pure

matter.

Next we consider an (APCS)n Ricci-recurrent perfect fluid spacetime, n > 3 of

non-zero scalar curvature with velocity vector fluid ̺ obeying Einstein’s equation

with cosmological constant. In this case, Einstein’s equation can be written as

S −
1

2
rg + λg = k[(σ + p)E ⊗ E + pg],

where λ is the cosmological constant.

This can be expressed in the form

(4.5) S(X, Y ) −
1

2
rg(X, Y ) + λg(X, Y ) = k[(σ + p)E(X)E(Y ) + pg(X, Y )].
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Putting Y = ̺ in (4.5) and using Lemma 2.1 and g(̺, ̺) = E(̺) = −1, we get

λE(X) = −kσE(X) which implies

(4.6) σ = −
λ

k
.

Again taking a frame field and contracting (4.5) overX and Y we get by using (4.6)

(4.7) p =
−r + 3λ

3k
.

From (4.6) it follows that σ is constant and from (4.7) it follows that p is constant

provided r is constant.

It is known [18] that the energy equation and the force equation for a perfect fluid

are respectively

(4.8) ̺.σ = −(σ + p) div ̺

and

(4.9) (σ + p)∇̺̺ = − gradp − (̺.p)̺.

Since ̺ is constant, it follows from (4.8) that div ̺ = 0, since σ + p 6= 0. Again

since p is constant provided r is constant, it follows from (4.9) that ∇̺̺ = 0. But

div ̺ = 0 represents the expansion scalar and ∇̺̺ represents the acceleration vector.

Hence we conclude that the perfect fluid has vanishing expansion scalar and vanishing

acceleration vector.

Therefore we can state the following result.

Theorem 4.1. If in an (APCS)4 Ricci-recurrent perfect fluid spacetime of non-

zero constant scalar curvature the matter content is a perfect fluid whose velocity

vector field is the vector field corresponding to the 1-form E, then the acceleration

vector of the fluid and the expansion scalar must vanish.

From Lemma 2.1 it follows that 1
2r is an eigenvalue of the Ricci tensor correspond-

ing to the eigenvector ̺.

Let ˜̺ be another eigenvector of S different from ̺. Then ˜̺ must be orthogonal

to ̺. Hence g(̺, ˜̺) = 0, that is,

(4.10) E(˜̺) = 0.

Putting Y = ˜̺ in (4.5) and using (4.10) we get

(4.11) S(X, ˜̺) =
[

kp +
r

2
− λ

]

g(X, ˜̺).
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Using (4.7) in (4.11) yields

(4.12) S(X, ˜̺) =
1

6
rg(X, ˜̺).

From (4.12) it follows that 1
6r is another eigenvalue of S and ˜̺ is an eigenvector

corresponding to this eigenvalue. Since for a given eigenvector there is only one

eigenvalue and 1
2r and 1

6r are different, it follows that the Ricci tensor has only two

distinct eigenvalues, namely 1
2r and 1

6r.

Let the multiplicity of 1
2r be m. Then the multiplicity of 1

6r must be 4 − m,

because the dimension of the space time is 4. Hence

m
(1

2
r
)

+ (4 − m)
1

6
r = r.

From this we get m = 1. Therefore the multiplicity of 1
2r is 1 and the multiplicity

of 1
6r is 3.

Hence Segre’ characteristic [21] of S is [(1, 1), 1]. This leads to the following result.

Theorem 4.2. An (APCS)4, Ricci-recurrent perfect fluid spacetime of non-zero

constant scalar curvature is of Segre’ characteristic [(1, 1), 1].
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