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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 4 , PAGES 7 1 4 – 7 4 9

GENERALIZED INFORMATION CRITERIA
FOR BAYES DECISIONS

Domingo Morales and Igor Vajda

This paper deals with Bayesian models given by statistical experiments and standard loss
functions. Bayes probability of error and Bayes risk are estimated by means of classical and
generalized information criteria applicable to the experiment. The accuracy of the estimation
is studied. Among the information criteria studied in the paper is the class of posterior power
entropies which include the Shannon entropy as special case for the power α = 1. It is shown
that the most accurate estimate is in this class achieved by the quadratic posterior entropy
of the power α = 2. The paper introduces and studies also a new class of alternative power
entropies which in general estimate the Bayes errors and risk more tightly than the classical
power entropies. Concrete examples, tables and figures illustrate the obtained results.

Keywords: Shannon entropy, alternative Shannon entropy, power entropies, alternative
power entropies, Bayes error, Bayes risk, sub-Bayes risk

Classification: 62C10, 62B10

1. INTRODUCTION

In Morales, Pardo and Vajda [13], we systematically studied the subclass of concave and,
more generally, Schur concave functions H(π) of probability distributions π on finite or
countable state spaces Θ which can serve as general measures of uncertainty of states of
stochastic systems (Θ, π). The corresponding functions H(πx) and their mean values

H(E) =
∫
X

H(πx) dP (x) (1)

characterized conditional and average conditional uncertainties of states in the stochastic
observation experiment

E = 〈(Θ, π), {πx : x ∈ X}, (X ,S, P )〉 (2)

where (X ,S, P ) is marginal probability space of an observation X and πx are conditional
probability distributions on Θ corresponding to the values X = x ∈ X . Particular
attention was paid to the separable measures of uncertainty of the form

H(π) =
∑
θ∈Θ

φ(π(θ)) (3)
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for concave functions φ(t), 0 ≤ t ≤ 1 and the related conditional and average conditional
uncertainties Hφ(πx) and Hφ(E).

The special separable measure of uncertainty

H1(π) =
∑
θ∈Θ

φ1(π(θ)) = −
∑
θ∈Θ

π(θ) ln π(θ) (4)

obtained for φ1(t) = −t log t is the classical Shannon entropy used by Shannon to charac-
terize the amount of information in the state from the stochastic state space (Θ, π). The
observation X in the experiment E reduces this information into the residual amount
given by the conditional entropy

H1(E) =
∫
X

H1(πx) dP (x) = −
∑
θ∈Θ

∫
X

πx(θ) ln πx(θ) dP (x).

The difference
I1(E) = H1(π)−H1(E)

is the information in observation X about the state in the experiment E .
In the light of these basic concepts of the Shannon information theory, we interpret

the above considered functions H(π) as generalized informations in stochastic states,
H(E) as residual informations in these states and the differences

I(E) = H(π)−H(E) (5)

as informations in the observations about the states.
By applying the concave function φ2(t) = t(1− t) in (3) one obtains an alternative

H2(π) =
∑
θ∈Θ

φ2(π(θ)) = 1−
∑
θ∈Θ

π2(θ) (6)

to the Shannon entropy (4) called quadratic entropy by Vajda [18]. It is a quadratic mea-
sure of information obtained by identifying the state from the source (Θ, π). Relations
(1) and (5) define the corresponding quadratic residual information

H2(E) =
∫
X

H2(πx) dP (x) = 1−
∑
θ∈Θ

∫
X

π2
x(θ)dP (x)

in this state left by the observation from experiment E and the quadratic information
I2(E) = H2(π)−H2(E) contained in the observation about this state. In fact, Cover and
Hart [4] and Vajda [18] used independently and in different sense the quadratic measures
of informativity H2(π) and H2(E) as parameters of quality of decisions concerning the
states θ ∈ Θ based on observations X from statistical experiments E .

The second of the mentioned papers was interested in the probabilities of error Pe(E)
of Bayes decisions δB : X 7−→ Θ in the experiments E and established the quadratic
information bounds

H2(E)
1 +

√
1− nH2(E)/ (n− 1)

≤ Pe(E) ≤ H2(E) (7)
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which can be rewritten as

Pe(E) ≤ H2(E) ≤ 1− (1− Pe(E))2 − Pe(E)2

n− 1
. (8)

The paper rigorously proved these bounds including their attainability (tightness) for
n = 2 and n = ∞ (when the term nH2(E)/ (n− 1) in (7) is replaced by the limit H2(E)
achieved for n →∞) and the proof was extended to 3 ≤ n < ∞ by Salikhov [15]. These
bounds allow to use the computationally simpler residual information H2(E) rather than
Pe(E) for characterization of the quality of achievable decisions, e. g. when investigating
the pattern recognition based of various selected features or the learning of machines
trained by various teachers or various sizes of empirical data.

The quadratic entropy (6) requires only n = |Θ| operations of multiplication and
summation. It is thus computationally simpler than the Shannon entropy (4) or any of
the entropies of Rényi [14]

H(α)(π) =
1

α− 1
ln
∑
θ∈Θ

πα(θ), α > 0, α 6= 1 (9)

containing the Shannon entropy as the special limit case H(1)(π) = limα→1 H(α)(π) =
H1(π). Rényi introduced the entropies (9) axiomatically by extending the additivity
rule in the axioms suggested earlier by Faddeev [7] to characterize the Shannon’s H1(π).
However, he emphasized also the alternative to the axiomatic introduction of entropies
and measures of information, called pragmatic approach by him. It proposes as measures
of information arbitrary functionals of stochastic decision models which characterize the
optimality of decisions achieved in these models. In this sense for example, Kovalevsky
[12] pragmatically supported the Shannon residual information H1(E) by establishing
attainable bounds for Pe(E) in terms of H1(E) similar to (7), (8) which will be given
below and which in some sense inspired the research leading to (7), (8). The Kovalevsky
bounds were reinvented and applied in different areas of machine learning or more general
information processing by a number of authors, e. g. Tebbe and Dwyer [16] or Feder and
Merhav [8]. The quadratic entropy bounds (7), (8) are not only computationally simpler
than the Kovalevsky bounds, but also tighter as it is proved in the present paper.

By appropriately modifying the extended additivity rule of Rényi [14], Havrda and
Charvát [10] axiomatically introduced the one-one modification

Hα(π) =
1

α− 1

(
1−

∑
θ∈Θ

πα(θ)

)
, α > 0, α 6= 1 (10)

of the Rényi entropies with the limit H1(π) = limα→1 Hα(π). Vajda [19] proposed the
generalized measures of information Hα(π) and Hα(E) obtained by employing the general
power informations Hα(π), α > 0 in (1) as feature extraction criteria for the systems
of automatic pattern recognition. He also formulated the problem of investigating for
which powers α > 0 one can find the bounds of the type (7) – (8) and for which of them
will be the most tight. These criteria were cited later by many authors, e. g. Kanal
[11], Devijver and Kittler [5] or Devroye et al. [6], and the bounds of the type (7), (8)
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were later found, tightened or applied by Toussaint [17], Ben Bassat [1], Ben Bassat and
Raviv [2] and Harremoës and Topsøe [9].

Vajda and Vašek [20] found a method for obtaining attainable bounds of the type (7),
(8) for arbitrary Schur concave entropies (1) and applied them to derive in a simple and
rigorous manner the attainable upper and lower bounds of the prior Bayes probability
of error Pe(π) for given prior power information Hα(π), α > 0 and similar bounds for
the average posterior Bayes probability error Pe(E) for given residual power information
Hα(E), α > 0. Their results were applied later in Morales, Pardo and Vajda [13] and
Vajda and Zvárová [21]. It is to be noted that the error probability Pe(E) is related to
the residual information Hα(E) rather than to the information Hα(π)−Hα(E) gained by
observing the experiment outcome because it is isotone with (i. e. proportionally related
to) the former and antitone with the latter.

In this paper we introduce a new class of adjoint power informations H̃α(π) and
H̃α(E) for the powers α > 0 where the adjoint Shannon informations H̃1(π) and H̃1(E)
differ from the classical Shannon informations H1(π) and H1(E). We use the results of
Vajda and Vašek [20] to obtain for these measures of information the attainable bounds
of the Bayes error Pe(E) and also the bounds of the prior Bayes loss LB and Bayes risk
RB(E) for a class of common loss functions. The main issue addressed in the paper is the
accuracy of specification of the Bayes error Pe(E) by the residual informations Hα(E)
and H̃α(E) of all powers α > 0. Perhaps the most interesting of the obtained results
is the fact that the quadratic residual information H2(E) specifies the Bayes error most
accurately in the class of all power residual informations Hα(E), α > 0. However, we
also show that the accuracies achieved by the alternative power residual informations
H̃α(E), α > 0 uniformly dominate those achieved by Hα(E), α > 0.

Basic concepts and results are in Sections 2 – 4. The main results are in Section 5
and 6.

2. GENERAL LOSS MODEL

Consider the classical model of Bayesian decision theory (cf. e. g. Berger [3]) with state
of nature θ from a finite set Θ, prior probability distributions of states π = (π(θ) > 0 :
θ ∈ Θ) and observations (random samples) X conditionally distributed by probability
measures Pθ on a measurable observation space (X ,S) depending on the states θ ∈
Θ. We restrict ourselves to the important situation where the purpose of decision is
identification of the unknown state θ. Thus our decisions (actions in the sense of Berger)
are states θ from the action space Θ, and the loss functions are of the form

L : Θ×Θ 7→ [0,∞) where max
θ∈Θ

L(θ, θ) = 0, min
θ̂∈Θ

max
θ∈Θ

L(θ, θ̂) > 0. (11)

Thus we deal with the Bayesian model given by a statistical experiment

E = 〈π,P = {Pθ : θ ∈ Θ}〉 (12)

and a nontrivial loss function (11).

This is the standard decision-theoretic model of many real situations, in particular
of the
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(1) pattern recognition where the states of nature θ represent various possible patterns
(images) and L(θ, θ̂) > 0 is the loss incurred by the wrong identifications θ̂ of these
patterns,
(2) classification where the states θ represent various classes of objects and L(θ, θ̂) > 0
is the loss of misclassification, and
(3) information transmission where the states θ represent various possible messages
transmitted via communication channel (Θ, {Pθ : θ ∈ Θ},X ) with input alphabet Θ,
output alphabet X and transition probability distributions Pθ describing distortion of
messages by the channel noise.

These concrete interpretations and their various combinations appear also in the detec-
tion theory and stochastic control theory.

Let us briefly review basic concepts of Bayesian decision theory applicable in the
present model. The expected loss of an individual identification action θ̂ ∈ Θ is

L(π, θ̂) =
∑
θ∈Θ

L(θ, θ̂) π(θ). (13)

Each individual action θπ ∈ Θ with the property

θπ = argminθ̂ L(π, θ̂) (14)

is said to be Bayes action (Bayes decision without data) and the minimal a priori
expected loss

LB(π) = L(π, θπ) (15)

is a prior Bayes loss. Observation data x ∈ X are assumed to be used for identification
by means of identification rules

δ = X 7→ Θ. (16)

Technically, they are assumed to be S-measurable and Pθ-integrable for all θ ∈ Θ. The
risk function of the identification rule (16) is

R(θ, δ) =
∫
X

L(θ, δ(x)) dPθ(x), θ ∈ Θ

and its expected value

R(π, δ) =
∑
θ∈Θ

R(θ, δ)π(θ) =
∑
θ∈Θ

∫
X

L(θ, δ(x))π(θ) dPθ(x) (17)

is simply denoted as risk. The minimizer

δB = argminδ R(π, δ) (18)

is the Bayes identification rule and

RB = RB(E , L) = R(π, δB) (19)
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the Bayes risk of identification in the model under consideration specified by the exper-
iment E and loss function L.

Under the above specified assumptions, the Bayes identification rule exists and is
given by a relatively simple explicit formula. To demonstrate this and to find the Bayes
identification rule formula, take first into account the marginal probability distribution

P =
∑
θ∈Θ

π(θ)Pθ (20)

on the observation space (X ,S) which dominates each conditional distribution Pθ in the
sense P (S) = 0 implies Pθ(S) = 0 for S ∈ S. Hence there exists the Radon–Nikodym
density

pθ(x) =
dPθ(x)
dP (x)

defined for all data x ∈ X , with values uniquely given except possibly for a set Sθ ∈ S
with P (Sθ) = 0 (i. e. for P -almost all in symbols P -a.e. on X ). Then

πx = (πx(θ) =
4

π(θ)pθ(x) : θ ∈ Θ) (21)

is the conditional (posterior) probability distribution on Θ given data x. Indeed, by the
definition of Radon–Nikodym densities, pθ(x)

min
θ

πx(θ) ≥ 0 and
∑

θ

πx(θ) =
dP (x)
dP (x)

= 1 P -a.e. on X .

Obviously, the statistical experiment (12) is equivalently described by the conditional
distributions (21) for x ∈ X and the marginal distribution (20),

E = 〈π,P = {Pθ : θ ∈ Θ}〉 ≡ 〈P,Π = {πx : x ∈ X}〉. (22)

Using the posterior distribution (21) and the concept of expected loss (13), we can
rewrite the risk formula (17) into the simple form

R(πx, δ) =
∫
X
L(πx, δ(x)) dP (x). (23)

From here and from (18) we see that an identification rule δ is Bayes (in symbols δ = δB)
if and only if for P -almost all data x ∈ X the data based action δB(x) is Bayes for the
posterior distribution, πx, i. e. coincides with some θπx defined in accordance with (14).
Thus the Bayes identification rule can equivalently be defined P -a.e. on X by the formula

δB(x) = θπx ≡ argminθ̂

∑
θ∈Θ

L(θ, θ̂)πx(θ). (24)

From here we deduce also that the Bayes risk RB is the expected posterior Bayes loss
given data x, denoted LB(πx) and defined by (15) with the prior distribution π replaced
by the posterior distribution πx. In other words, we deduce that

RB = R(π, δB) =
∫
X
L(πx, θπx) dP (x) (cf. (23), (24))

=
∫
X

LB(πx) dP (x). (25)
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3. RELATIONS TO ZERO-ONE LOSS MODEL

A prominent role in the applications of the model of previous section plays the error loss
function

Le : Θ×Θ 7→ {0, 1}, Le(θ, θ̂) =
{

1 if θ̂ 6= θ,

0 if θ̂ = θ.
(26)

Here the general expected loss L(π, θ̂) reduces to the prior probability of error of the
identification action θ̂ ∈ Θ,

Le(π, θ̂) =
∑
θ∈Θ

Le(θ, θ̂)π(θ) = 1− π(θ̂) (27)

The Bayes identification action θπ thus minimizes this probability of error over θ̂ ∈ Θ.
This means that the prior Bayes expected loss LB(π) given by (15) is the minimal prior
probability of error given by the formula

eB(π) = 1− π(θπ), (28)

and called simply prior Bayes error. Similarly the posterior Bayes expected loss LB(πx)
for data x ∈ X is in this case the minimal posterior probability of error

eB(πx) = 1− πx(θπx
) (29)

called simply posterior Bayes error, as the Bayes identification action θπx ∈ Θ minimizes
over θ̂ ∈ Θ the posterior error probability 1 − π(θ̂). Finally by (25) and the equality
LB(πx) = eB(πx), the Bayes risk RB = RB(E , L) of (19) achieved under the special loss
function L = Le coincides with the Bayes error (average minimal posterior probability
of error) depending only on the experiment E and given by the formula

eB = eB(E) =
∫
X

eB(πx) dP (x). (30)

As mentioned in the introduction, our intention is to evaluate or estimate perfor-
mances of Bayes identification rules in the general loss function models by means of
known performances of such rules in the simpler error loss function models. The rest
of this section is devoted to the research of this eventuality. The achieved results serve
in the next section to establish new bounds for the Bayes risk RB based partly on the
bounds for the Bayes error probability eB established in previous literature and partly
on new such bounds established in the next section.

In the general loss model (11) the proper losses are positive between

L− = min{L(θ, θ̂) : θ, θ̂ ∈ Θ, L(θ, θ̂) > 0},

and
L+ = max{L(θ, θ̂) : θ, θ̂ ∈ Θ} ≥ L−

We characterize them by two parameters called median loss and loss dispersion

Λ =
L+ + L−

2
and ∆ = (L+ − Λ). (31)
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Example 3.1. Let the state space Θ = {1, . . . , n} represents classification of satellite
ship images and let the loss function (11) be given as the matrix

(
L(θ, θ̂)

)n
θ,θ̂=1

=



0 4/5 4/5 . . . 4/5 1
4/5 0 4/5 . . . 4/5 1
4/5 4/5 0 . . . 4/5 1
...

...
...

. . .
...

...
4/5 4/5 4/5 . . . 0 1
6/5 6/5 6/5 . . . 6/5 0


where states 1 ≤ θ ≤ n− 1 represent merchant ships of n− 1 different nations and the
state θ = n represents a pirate ship. Here

L− = 4/5, L+ = 6/5 and (∆,Λ) = (1/5, 1) .

The following theorem helps to extend the information bounds obtained for the Bayes
probability of errors to the Bayes losses and risks.

Theorem 3.1. If the general loss model of Section 2 has median loss Λ and the loss
dispersion ∆ ≥ 0, then

(i) the prior Bayes loss LB and the prior Bayes error eB satisfy the relation

|LB(π)− eB(π) Λ| ≤ eB(π) ∆/2,

(ii) for P -almost all x ∈ X , the posterior Bayes loss LB(πx) and the posterior Bayes
error eB(πx) satisfy the relation

|LB(πx)− eB(πx) Λ| ≤ eB(πx) ∆/2, (32)

(iii) the Bayes risk RB and the Bayes error satisfy the relation

|RB − eB Λ| ≤ eB ∆/2.

P r o o f . (I) It follows from the minimax assumption in (11) that eB(π) = 0 if and only
if LB(π) = 0. Thus for eB(π) = 0 (i) holds and we can restrict ourselves to π with
eB(π) > 0. By (31), L(θ, θ̂) > 0 implies L(θ, θ̂) ∈ [L−, L+] where either L(θ, θ̂) ∈ [Λ, L+]
in which case

L(θ, θ̂)− Λ ≤ L+ − Λ = ∆/2

or L(θ, θ̂) ∈ [L−,Λ] in which case

Λ− L(θ, θ̂) ≤ Λ− L− = ∆/2.

Hence
|L(θ, θ̂)− Λ| ≤ ∆/2 for all θ, θ̂ ∈ Θ with L(θ, θ̂) > 0. (33)
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Further, by (13) and (15),

L(π, θ̂) =
∑
θ 6=θ̂

L(θ, θ̂)π(θ) and LB(π) =
∑
θ 6=θπ

L(θ, θπ)π(θ). (34)

Therefore multiplying the left side of (33) by π(θ)/eB(π), summing over all θ 6= θπ and
using the Jensen inequality, we get∣∣∣∣∣∣ 1

eB(π)

∑
θ 6=θπ

L(θ, θ̂)π(θ)− Λ

∣∣∣∣∣∣ ≤ ∆
2

.

It remains to apply (34) to complete the proof of (i).

(II) Since πx given in Section 2 are probability distributions on Θ for P -almost all x ∈ X ,
(ii) follows from (i).

(III) Integrating both sides of (32) over X with respect to the measure P and using once
more the Jensen inequality, we get∣∣∣∣∫

X
LB(πx) dP (x)− Λ

∫
X

eB(πx) dP (x)
∣∣∣∣ ≤ ∆

2

∫
X

eB(πx) dP (x).

The desired result of (iii) follows from here and from the formulas (25) and (30). �

4. GENERALIZED INFORMATION CRITERIA

In this section and in the rest of the paper, n = |Θ| denotes the number of states in Θ.
We study estimates of Bayes errors eB(π), eB(πx) and eB = eB(E) (or more generally,
the Bayes losses LB(π), LB(πx) and Bayes risks RB = RB(E)) by means of measures of
information H(π) contained in states of nature θ from stochastic sources (Θ, π), and by
residual informations (average conditional informations)

H(E) =
∫
X

H(πx) dP (x)

in the states from the systems of conditional stochastic sources E = {(Θ, πx) : x ∈ X}
where x are observed data (realizations of random observation X) from the observation
probability space (X ,S, P ). For details about these concepts and notations see sections 2
and 3.

One of the most widely used information measures is the Shannon entropy (here
measured in nats instead of bits)

H1(π) =
∑
θ∈Θ

φ1(π(θ)), φ1(t) = −t ln t.

In Section 1 we mentioned their generalizations called power informations

Hα(π) =
∑
θ∈Θ

φα(π(θ)), α > 0 (35)
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where

φα(t) =


1

α−1

[
t(1− tα−1)

]
if α 6= 1

limα→1 φα(t) = −t ln t if α = 1.
(36)

Hence

Hα(π) =


1

α−1

[
1−

∑
θ∈Θ π(θ)α

]
if α 6= 1

limα→1 Hα(π) = −
∑

θ∈Θ π(θ) ln π(θ) if α = 1.
(37)

As argued in Morales, Pardo and Vajda [13], the desired information-theoretic prop-
erties of the power informations follow from the strict concavity of functions φα(t) on
[0, 1] and from their extremal values φα(0) = φα(1) = 0. A characteristic property is
the information preservation law :

0 = Hα(πD) ≤ Hα(πT−1) ≤ Hα(π) ≤ Hα(πU ) = (1− n1−α)/(α− 1)

where T : Θ 7→ T is a mapping of states θ ∈ Θ into strings of events τ = T (θ) ∈ T rep-
resenting a processing of information in the states θ and leading to the new distribution

πT−1(τ) =
∑

θ:T (θ)=τ

π(θ)

on the space of information processing outcomes T . The remaining symbols πD, πU

stand for the Dirac and uniform probability distributions on Θ. This law thus says that
the information processing cannot increase the information which is maximal when the
states are equiprobable and minimal equal zero when the state is a fixed constant, and
that the information is preserved if and only if the results of processing of different states
are different, i. e. the information processing preserves the identifiability of states.

The strict concavity and zero extremal values are preserved by passing to the adjoint
power functions φ̃α(t) = φα(1− t) so that the same information-theoretic properties are
shared by the corresponding adjoint power informations

H̃α(π) =
∑
θ∈Θ

φ̃α(π(θ)), α > 0 (38)

given explicitly by the formulas

H̃α(π) =


1

α−1

[
n− 1−

∑
θ∈Θ(1− π(θ))α

]
if α 6= 1

limα→1 H̃α(π) = −
∑

θ∈Θ(1− π(θ)) ln(1− π(θ)) if α = 1
(39)

where n denotes the number of states in Θ.

Since Hα(π) and H̃α(π) measures the information in the state from Θ distributed by
π, they must be closely related tot the minimal error probability eB(π) of identification
of the state on the basis of distribution π. Further, the Bayes error eB = eB(E) in the
general experiment E (cf. (22)) is the average minimal error probability

eB(E) =
∫
X

eB(πx) dP (x) (cf. (30)), (40)
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so that it must be similarly related to the residual informations Hα(E) and H̃α(E) defined
as the stochastic mixtures

Hα(E) =
∫
X

Hα(πx) dP (x) and H̃α(E) =
∫
X

H̃α(πx) dP (x). (41)

In what follows we investigate this relation.

In the next theorem we evaluate for all α > 0 and n = |Θ| the upper and lower power
information bounds

H+
α (eB) = max

eB(E)=eB

Hα(E) and H−α (eB) = min
eB(E)=eB

Hα(E) (42)

by means of the auxiliary function

h(t) = −t ln t− (1− t) ln(1− t), 0 ≤ t ≤ 1 where 0 ln 0 = 0 (43)

and the auxiliary constants

aα,k =


1−k1−α

α−1 if α 6= 1

limα→1 aα,k = ln k if α = 1
and ck =

k − 1
k

, 1 ≤ k ≤ n (44)

as well as
bα,k =

aα,k+1 − aα,k

ck+1 − ck
, 1 ≤ k ≤ n− 1. (45)

In (42) and in the rest of the paper we use the fact that the range of the Bayesian errors
e(π) and eB is the interval

0 ≤ e(π), eB ≤ cn. (46)

In the proof of the next theorem are used the formulas

H+
α (e) =

1− (n− 1)1−αeα − (1− e)α

α− 1
, 0 ≤ e ≤ cn (47)

H−
α (e) =

1− [1− k(1− e)]α − k(1− e)α

α− 1
, ck ≤ e ≤ ck+1, 1 ≤ k ≤ n− 1 (48)

and their limits
H+

1 (e) = h(e) + e ln(n− 1), 0 ≤ e ≤ cn (49)

H−
1 (e) = h(k(1− e)) + k(1− e) ln k, ck ≤ e ≤ ck+1, 1 ≤ k ≤ n− 1 (50)

for the attainable upper and lower power information bounds

H+
α (e) = max

e(π)=e
Hα(π) and H−

α (e) = min
e(π)=e

Hα(π) (51)

(for details about these bounds see Theorem 2 in Morales et al. [13]).
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Theorem 4.1. The power information bounds (42) are for every 0 ≤ eB ≤ cn explicitly
given by

H+
α (eB) =

 H+
α (eB) = 1

α−1

[
1− (n− 1)1−αeα

B − (1− eB)α
]

if α 6= 1

H+
1 (eB) = h(eB) + eB ln(n− 1) if α = 1

(52)

(cf. (47), (50)) and

H−α (eB) =

{
aα,k + bα,k(eB − ck) if ck ≤ eB ≤ ck+1, 1 ≤ k ≤ n− 1, α 6= 1

aα,neB/cn, if α = 1.
(53)

The bounds H+
α (eB) and H−α (eB) coincide only at the endpoints c1 = 0 and cn of the

domain of eB where

H+
α (0) = H−α (0) = 0 and H+

α (cn) = H−α (cn) = aα,n > 0. (54)

P r o o f . Consider an arbitrary α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and arbitrary
distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tHα(π) + (1− t)Hα(π̃) of variable 0 ≤ t ≤ 1

must be bounded from above by the function H+
α (tc+(1− t)c̃) and bounded from below

by the function H−α (tc+(1− t)c̃). This implies that H+
α must be concave and H−α convex

on the interval [c̃, c] ⊆ [0, 1]. At the same time it follows from (41), (42) and (51) that
H+

α must be minimal but above H+
α and H−α must be maximal but below H−

α . Since H+
α

is concave itself, this implies H+
α = H+

α so that (52) follow from (47) and (49). On the
other hand, H−

α given by (48) and (50) is piecewise concave in the intervals between the
cutpoints ck, 1 ≤ k ≤ n − 1. The piecewise linear function Φα(t) of variable t ∈ [0, cn]
connecting the points [ck,H−

α (ck)] ≡ [ck, aα,k] for 1 ≤ k ≤ n is

Φα(t) = aα,k + bα,k(t− ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n− 1. (55)

This function is convex (concave) if the sequence

Φα(ck)
ck

=
aα,k

ck
=


k(1−k1−α)
(α−1)(k−1) if α 6= 1

limα→1 aα,k = k
k−1 ln k if α = 1

is increasing (decreasing) for k = 2, 3, . . . Obviously, it is constant equal 1 if α = 2,
increasing if 0 < α < 2 and decreasing if α > 2. Therefore H−α (eB) = Φα(eB) if 0 < α ≤
2 and H−α (eB) is linear in the variable eB , equal [Φα(cn)− Φα(0)] eB/cn ≡ aα,neB/cn,
if α > 2. This proves (53). The last assertion including relations (54) is clear from what
has already been proved. �

Figures C.1 and C.2 of Appendix C present the curvesH±α (eB) as functions of variable
eB for α = 1/2, 3/4, 1 and α = 2, 3, 4. We see from these figures that the lower bounds
H−α (eB) for α ≥ 2 are linear in the variable eB .
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Remark 4.1. Relation (49) is the well known Fano bound of information theory and
(47) is its extension obtained previously in Vajda [18] for α = 2 and in Morales et al.
[13] and other references mentioned there for remaining α > 0.

Remark 4.2. It is easy to verify that all power information bounds (47) – (53) are
continuous functions strictly increasing (on their definition domain 0 ≤ e, eB ≤ cn)
from the minimum 0 to the maximum aα,n. Therefore the inverse functions

e∓α (H) = max
H±α (e)≤H

e and e∓B,α(H) = max
H±α (eB)≤H

eB (56)

(notice the reversed order of ± and ∓ here!) are for all α > 0 continuously increasing
(on their definition domain 0 ≤ H ≤ aα,n) from the common minimum 0 to the common
maximum cn at the endpoints of the domain, and with different values

e−α (H) < e+
α (H) and e−B,α(H) < e+

B,α(H) (57)

between the endpoints. The values e±α (Hα(π)), e±α (Hα(πx)) and e±B,α(Hα(E)) are at-
tainable upper and lower estimates of the prior, posterior and average Bayes errors
e(π), e(πx) and eB = eB(E) based on the prior, posterior and overall power information
measures Hα(π),Hα(πx) and Hα(E).

The next theorem evaluates the upper and lower adjoint power information bounds

H̃+
α (eB) = max

eB(E)=eB

H̃α(E) and H̃−α (eB) = min
eB(E)=eB

H̃α(E). (58)

It uses the same ck as Theorem 4.1 and for every α > 0 also the constants

ãα,k =


k−1
α−1

[
1−

(
k−1

k

)α−1
]

if α 6= 1

limα→1 ãα,k = (1− k) ln k−1
k if α = 1

for 1 ≤ k ≤ n (59)

and
b̃α,k =

ãα,k+1 − ãα,k

ck+1 − ck
, 1 ≤ k ≤ n− 1 (60)

where 0 ln 0 = 0 in (59).

Theorem 4.2. Let α > 0 be arbitrary fixed. The adjoint power information bounds
(58) are for every 0 ≤ eB ≤ cn explicitly given by

H̃+
α (eB) =


1

α−1

[
n− 1− eα

B − (n− 1)
(
1− eB

n−1

)α]
if α 6= 1

limα→1 H̃+
α (eB) = −eB ln eB − (n− 1− eB) ln

(
n−1−eB

n−1

)
if α = 1

(61)
and

H̃−α (eB) =

 ãα,k + b̃α,k(eB − ck) if ck < eB < ck+1, 1 ≤ k ≤ n− 1, α > 2

ãα,neB/cn if 0 < α ≤ 2.
(62)
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The bounds H̃+
α (eB) and H̃−α (eB) coincide only at the endpoints c1 = 0 and cn of the

domain of eB where

H̃+
α (0) = H̃−α (0) = 0 and H̃+

α (cn) = H̃−α (cn) = ãα,n > 0. (63)

P r o o f .
(I) By Theorem 1 in Vajda and Vašek [20], for every 0 ≤ e ≤ cn

e(π) = e implies H̃−
α (e) ≤ H̃α(π) ≤ H̃+

α (e) (64)

where the lower and upper bounds H±
α (e) are attained by the informations Hα(π±) for

the special distributions

π+ =
(

1− e,
e

n− 1
,

e

n− 1
, . . . ,

e

n− 1

)
and

π− = (1− e, 1− e, . . . , 1− e, 1− k(1− e), 0, 0, . . . , 0)

provided ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n− 1. Hence for α 6= 1

H̃+
α (e) = H̃α(π+) =

1
α− 1

[
n− 1− eα − (n− 1)

(
1− e

n− 1

)α]
(65)

and

H̃−
α (e) = H̃α(π−) =

k − keα − kα(1− e)α

α− 1
(66)

when ck ≤ e ≤ ck+1 and 1 ≤ k ≤ n− 1. For α = 1 we get

H̃+
1 (e) = H̃1(π+) = lim

α→1
H̃+

α (e) = −e ln e− (n− 1− e) ln
(

n− 1− e

n− 1

)
(67)

and
H̃−

1 (e) = H̃−
1 (π−) = lim

α→1
H̃−

α (e) = −ke− k(1− e) ln [k(1− e)] (68)

on the intervals ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n− 1.

(II) Consider now arbitrary parameter α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and
arbitrary distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tH̃α(π) + (1− t)H̃α(π̃) of variable 0 ≤ t ≤ 1

must be bounded above by the function H̃+
α (tc + (1 − t)c̃) and bounded below by the

function H̃−α ((tc + (1 − t)c̃). Similarly as in the previous proof, this implies that H̃+
α

must be concave and H̃−α convex on the interval [c̃, c] ⊆ [0, 1]. At the same time H̃+
α

must be minimal but above H̃+
α and H̃−α must be maximal but below H̃−

α . Since H̃+
α

is concave itself, this implies H̃+
α =H̃+

α so that (61) follows from (65) and (67). On the
other hand, H̃−

α given by (66) and (68) is piecewise concave in the intervals between the
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cutpoints ck, 1 ≤ k ≤ n − 1. The piecewise linear function Φ̃α(t) of variable t ∈ [0, cn]
connecting the points [ck, H̃−

α (ck)] ≡ [ck, ãk] for 1 ≤ k ≤ n is

Φ̃α(t) = ãα,k + b̃α,k(t− ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n− 1.

This function is convex (concave) if the sequence

Φ̃α(ck)
ck

=
ãα,k

ck
=


k

α−1

[
1−

(
k−1

k

)α−1
]

if α 6= 1

limα→1 ãα,k = −k ln k−1
k if α = 1

is increasing (decreasing) for k = 2, 3, . . . Obviously, it is constant equal 1 if α = 2,
decreasing if 0 < α < 2 and increasing if α > 2. Therefore H−α (eB) = Φα(eB) if α > 2
and H−α (eB) is linear in eB equal [Φα(cn)− Φα(0)] eB/cn ≡ aneB/cn if 0 < α ≤ 2.
This proves (62). The last assertion including the equations (63) follow from what was
already proved above. �

Remark 4.3. The information bounds of Theorem 4.2 seem to be a new result.

In Figures C.3 and C.4 of Appendix C we see the curves H̃±α (eB) as functions of
variable eB for α = 1/2, 1, 2 and α = 3, 5, 8.

Remark 4.4. It is deductible from Figures C.3, C.4, and easily verified also formally,
that all adjoint power information bounds (61) – (68) are for all α > 0 continuous func-
tions strictly increasing on their definition domain 0 ≤ e, eB ≤ cn from the minimum 0
to the maximum ãα,n. Therefore the inverse functions

ẽ∓α (H̃) = max
H̃±α (e)≤H̃

e and ẽ∓B,α(H̃) = max
H̃±α (eB)≤H̃

eB (69)

(notice the reversed order of ± and ∓ !) are continuously increasing on their definition
domain 0 ≤ H̃ ≤ ãα,n from 0 to cn at the endpoints but achieving different values

ẽ−α (H̃) < ẽ+
α (H̃) and ẽ−B,α(H̃) < ẽ+

B,α(H̃) (70)

between the endpoints. Similarly as in Remark 4.2, by plugging the prior, posterior and
overall alternative power information measures H̃α(π), H̃α(πx) and H̃α(E) in (70) we ob-
tain the attainable upper and lower estimates ẽ±α (H̃α(π)), ẽ±α (H̃α(πx)) and ẽ±B,α(H̃α(E))
of the prior, posterior and average Bayes errors e(π), e(πx) and eB = eB(E). These
estimates are compared with those of Remark 4.2 in the next section.

5. INACCURACIES OF INFORMATION CRITERIA

Section 4 shows that the Bayes decision errors

e ∈ {e(π), e(πx), eB(E)} (71)
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depend on the levels achieved by the respective information measures

Hα ∈ {Hα(π),Hα(πx),Hα(E)} and H̃α ∈ {H̃α(π), H̃α(πx), H̃α(E)} (72)

and vice versa. We remind that the range of the errors e is the interval [0, cn] and the
range of the power information Hα or the adjoint power information H̃α is the interval
[0, aα,n] or [0, ãα,n] respectively, where

cn =
n− 1

n
, aα,n =

{
(n1−α − 1)/(1− α) if α 6= 1

lnn if α = 1

and

ãα,n =


n−1
1−α

[(
n

n−1

)1−α

− 1
]

if α 6= 1

(n− 1) ln n
n−1 if α = 1.

This section studies the inaccuracies of estimation of the information measures (72)
by means of the errors (71) and vice versa. For simplicity, we restrict ourselves to the
Bayes errors and residual informations

eB = eB(E) and Hα = Hα(E), H̃α = H̃α(E)

and the corresponding bounds

H−α (eB) ≤ H+
α (eB), H̃−α (eB) ≤ H̃+

α (eB) (73)

and
e−B,α(Hα) < e+

B,α(Hα), ẽ−B,α(H̃α) < ẽ+
B,α(H̃α) (74)

established by Theorems 4.1, 4.2 and their remarks. Alternative results for the prior
Bayes errors and power informations

e = e(π) and Hα = Hα(π), H̃α = H̃α(π),

and for the corresponding bounds H±
α (e), H̃±

α (e) and e±α (Hα), ẽ±α (H̃α) mentioned or
established in previous section, are obtained in asimilar manner.

By (73), under a given Bayes decision error eB the corresponding residual informa-
tions Hα and H̃α are restricted to the intervals [H−α (eB),H+

α (eB)] and [H̃−α (eB), H̃+
α (eB)]

which are their tight estimates in the sense that all values of the intervals are achievable
by the informations. Therefore the interval lengths H+

α (eB)−H−α (eB) and H̃+
α (eB) −

H̃−α (eB) are realistic local measures of inaccuracy of these estimates and the average
inaccuracies

AIn(Hα|eB) =
1
cn

∫ cn

0

[H+
α (e)−H−α (e))] de (75)

and
AIn(H̃α|eB) =

1
cn

∫ cn

0

[H̃+
α (e)− H̃−α (e)] de (76)
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are natural and realistic global measures of accuracy of these estimates. They can be
used to select the versions of the conditional entropies Hα and H̃α most accurately
determined by the Bayes decision error eB .

Similarly, under given conditional entropies Hα and H̃α the Bayes decision error
eB is restricted to the intervals [e−B,α(Hα), e+

B,α(Hα)] and [ẽ−B,α(H̃α), ẽ+
B,α(H̃α)] where

all values are achievable. Hence these intervals represent the most tight estimates of
these entropies by means of the error eB . The interval lengths e+

B,α(Hα)−e−B,α(Hα) and
ẽ+
B,α(H̃α)−ẽ−B,α(H̃α) are suitable local measures of inaccuracy of these estimates and

the average inaccuracies

AIn,α(eB |Hα) =
1

aα,n

∫ aα,n

0

[e+
B,α(H)−e−B,α(H)] dH (77)

and

AIn,α(eB |H̃α) =
1

ãα,n

∫ ãα,n

0

[ẽ+
B,α(H̃)−ẽ−B,α(H̃)] dH̃ (78)

are natural global measures of accuracy of these estimation procedures. They can be
used to select the versions of the conditional entropies Hα and H̃α most suitable for
estimation the Bayes decision error eB .

Lemma 5.1. The power information bounds H±α (eB) satisfy the integral formulas

∫ cn

0

H+
α (e) de =


1

α−1

[
n−1

n − nα+n−2
(α+1)nα

]
if α 6= 1

1
2n [n− 1 + (n− 2) ln n] if α = 1

(79)

and

∫ cn

0

H−α (e) de =



1
2(α−1)

∑n−1
k=1

2−k1−α−(k+1)1−α

k(k+1) if 0 < α < 2, α 6= 1

1
2

∑n−1
k=1

ln[k(k+1)]
k(k+1) if α = 1

(n−1)(1−n1−α)
2(α−1)n if α ≥ 2.

(80)

P r o o f . For α 6= 1 the result of (79) follows by a routine integration of the power
functions of e = eB appearing in the formula (52) for the upper bound H+

α (e) = H+
α (eB).

For α = 1 this result can be obtained by taking the limit for α → 1 in the already proved
version of the formula (79) for α 6= 1 since the integrand is bounded and continuous in the
parameter α from the neighborhood of α = 1. An alternative possibility is to integrate
the function H+

1 (e) with the use of the formula∫
x lnxdx =

x2

2

(
lnx− 1

2

)
(81)

obtained by differentiating the function x2 lnx. The upper and lower formulas of (80)
follow by a routine integration of the linear or piecewise linear functions of e = eB
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appearing in the formulas (53) for the lower bound H−α (e) = H−α (eB). The middle
formula of (80) can be obtained similarly as above, by taking the limit for α → 1 in
the already proved upper formula of (80). Alternatively, we can integrate the piecewise
linear function H−1 (e) = H−1 (eB) of (50). Details can be found in Appendix A. �

Formula (79) was obtained previously by Vajda and Zvárová [21]. Formula (80) is
new as well as both formulas of the next lemma.

Lemma 5.2. The alternative power entropy bounds H̃±α (eB) satisfy the integral formu-
las ∫ cn

0

H̃+
α (eB) deB =


1

α−1

[
(n−1)2

n − (n−1)2

α+1 + n(n−2)
α+1

(
n−1

n

)α+1
]

if α 6= 1

(n−1)2

2n

[
1 + (n− 2) ln n−1

n

]
if α = 1

(82)

and

∫ cn

0

H̃−α (eB) deB =


(n−1)2

2n(α−1)

[
1−

(
n−1

n

)α−1
]

if 0 < α ≤ 2, α 6= 1
(n−1)2

2n ln n
n−1 if α = 1

1
2(α−1)

∑n−1
k=1

2k−1−(k−1)( k−1
k )α−1−k( k

k+1 )
α−1

k(k+1) if α > 2.

(83)

P r o o f . Similarly as in the previous proof, for α 6= 1 the result of (82) follows by a
routine integration of the power functions of e = eB appearing in the formula (61) for
the upper bound H̃+

α (eB). For α = 1 this result can be obtained by taking the limit for
α → 1 in the already proved version of the formula (82) for α 6= 1 since the integrand
H̃+

α (e) = H̃+
α (eB) is bounded and continuous in the parameter α from the neighborhood

of α = 1. Again, an alternative is to integrate H̃+
1 (e) using (81). The upper and lower

formulas of (83) follow by a routine integration of the linear or piecewise linear functions
of e = eB appearing in the formulas (62) for the lower bound H̃−α (e) = H̃−α (eB). The
middle formula of (83) can be obtained by taking the limit for α → 1 in the already
proved upper formula of (83) since the integrand H̃−α (e) is bounded and continuous in
the parameter α from the neighborhood of α = 1. Details can be found in Appendix A.

�

Theorem 5.1. The average inaccuracies AIn(Hα|eB) and AIn(H̃α|eB) of the estima-
tion of the power informations Hα = Hα(E) and H̃α = H̃α(E) by means of the Bayes
error eB = eB(E) are given by the formulas

AIn(Hα|eB) =
1
cn

(∫ cn

0

H+
α (e) de −

∫ cn

0

H−α (e) de

)
(84)

and

AIn(H̃α|eB) =
1
cn

(∫ cn

0

H̃+
α (e) de−

∫ cn

0

H̃−α (e) de

)
(85)

where the integrals are given by lemmas 5.1 and 5.2.

P r o o f . Clear from (75), (76) and lemmas 5.1 and 5.2. �
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Theorem 5.2. The average inaccuracies AIn(eB |Hα) and AIn(eB |H̃α) of estimation
of the Bayes error eB = eB(E) by means of the power informations Hα = Hα(E) and
H̃α = H̃α(E) are given by the formulas

AIn,α(eB |Hα) =
1

aα,n

(∫ cn

0

H+
α (e) de −

∫ cn

0

H−α (e) de

)
(86)

and

AIn,α(eB |H̃α) =
1

ãα,n

(∫ cn

0

H̃+
α (e) de−

∫ cn

0

H̃−α (e) de

)
(87)

where the integrals are given by lemmas 5.1 and 5.2.

P r o o f . By the definitions of functions (77) and (78), the area cn.aα,n of the rectangle
(0, cn)⊗(0, aα,n) representing the domain of eB (range of e−B,α(Hα)) and range ofH+

α (eB)
(domain of Hα) must be the sum of integrals∫ cn

0

H+
α (e) de +

∫ aα,n

0

e−B,α(H) dH.

Similarly we get

cn.aα,n =
∫ cn

0

H−α (e) de +
∫ aα,n

0

e+
B,α(H) dH,

cn.ãα,n =
∫ cn

0

H̃+
α (e) de +

∫ ãα,n

0

ẽ−B,α(H̃) dH̃

and

cn.ãα,n =
∫ cn

0

H̃−α (e) de +
∫ ãα,n

0

Ẽ+
α (H̃) dH̃.

The desired relations are clear from here and from definitions (77), (78). �

Functions AIn(Hα|eB), AIn(H̃α|eB), AIn,α(eB |Hα) and AIn,α(eB |H̃α) of variable 0 <
α < 8 for the selected values of n = 2, 4, 8 and 20 are shown in Figures D.1 – D.4
of Appendix D and the numerical values for 2 ≤ n ≤ 1000 are in Tables B.1 –B.4
of Appendix B. We see from these results that AIn,α(eB |Hα) and AIn,α(eB |H̃α) are
minimized at α = 2 for all n ≥ 2. The minima of AIn(H̃α|eB) are achieved at α = 2 only
for n > 4. The remaining minima of AIn(H̃α|eB), as well as all minima of AIn(Hα|eB),
are achieved at infinite α.

Conclusion 5.1 The fact that the average inaccuracy AIn,α(eB |Hα) is minimized at
α = 2 indicates that among the various information criteria Hα including the Shannon’s
H1 used in the literature to estimate the Bayes error eB , the most accurate is the
quadratic entropy H2 suggested in Vajda [18]. This result answers the problem posed
in Vajda [19].
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Conclusion 5.2 By comparing Figures D.3 and D.4 or Tables B.3 and B.4 one can see
that the inaccuracies AIn,α(eB |H̃α) are slightly lower than AIn,α(eB |Hα) for almost all
powers α and state space sizes n. The only exception is the optimal power α = 2 where
AIn,α(eB |H̃α) coincides with AIn,α(eB |Hα). Therefore the alternative power entropies
H̃α are in general slightly better than the classical power entropies Hα for estimating
the Bayes decision errors and the Bayes risks, but the optimal versions for α = 2 are
equivalent to H2.

6. INFORMATION CRITERIA IN GENERAL MODEL

In this section are proposed new estimates of Bayes risk obtained by plugging into the
estimates of Section 5 the bounds obtained in Section 3. These estimates together
with the results on optimality of the information criteria appearing in these estimates
obtained in Section 4 represent the main results of this paper.

Throughout this section we consider the general decision situation of Section 2 with
losses (11) on a space Θ of size

n = |Θ|

and with an experiment E (cf. (11)). The losses are characterized by the median loss
and the loss range

Λ > 0, ∆ ≥ 0 cf. (31) (88)

and the whole decision situation is characterized by the prior Bayes loss, posterior Bayes
loss and Bayes risk

LB(π), LB(πx) and RB = RB(E) (cf. (15) and (19)) (89)

respectively.

In the next theorem the knowledge about experiment E is represented by the power
information measures

Hα(π), Hα(πx) and Hα(E) for some α > 0 (cf. (37) and (39)) (90)

respectively. We study the tight upper bounds

H+
α (LB |Λ,∆) = max

LB(π)=LB

Hα(π) ≡ max
LB(πx)=LB

Hα(πx) (91)

H+
α (RB |Λ,∆) = max

RB(E)=RB

Hα(E) (92)

and the tight lower bounds

H−
α (LB |Λ,∆) = min

LB(π)=LB

Hα(π) ≡ min
LB(πx)=LB

Hα(πx), (93)

H−α (RB |Λ,∆) = min
RB(E)=RB

Hα(E) (94)

for these entropies at given values of the prior and posterior Bayes losses and the Bayes
risk appearing in (89), respectively.
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Theorem 6.1. The bounds (91) – (94) are given in the whole definition domains

0 ≤ LB ≤ cn(Λ + ∆/2) and 0 ≤ RB ≤ cn(Λ + ∆/2) (95)

by the formulas

H±
α (LB |Λ,∆) = H±

α

(
LB

1∓∆/2

)
and H±α (RB |Λ,∆) = H±α

(
RB

1∓∆/2

)
(96)

for H±
α (·), H±α (·) defined in the domain [0, cn] by (47) – (50) and extended to t > cn by

H+
α (t) = H+

α (cn) ≡ aα,n, H+
α (t) = H+

α (cn) ≡ aα,n (97)

where

cn =
n

n− 1
and aα,n =

{
n1−α−1

1−α if α 6= 1
lnn if α = 1

(cf. (44)). (98)

P r o o f . By Theorem 3.1, The Bayes errors eB(π), eB(πx) and eB = eB(E) are restricted
by the bounds

LB(π)
Λ + ∆/2

≤ eB(π) ≤ max
{

LB(π)
1−∆/2

, cn

}
(99)

LB(πx)
Λ + ∆/2

≤ eB(πx) ≤ max
{

LB(πx)
1−∆/2

, cn

}
(100)

RB(E)
Λ + ∆/2

≤ eB(E) ≤ max
{

RB(E)
1 + ∆/2

, cn

}
(101)

for cn given by (98) and these bounds are tight. Applying these bounds in the definitions
(91) – (94) of H±

α (LB |Λ,∆) and H±α (RB |Λ,∆) and using the definitions (47) – (50) of
H±

α (e) and H±α (eB) we get the desired formulas (96). The new bounds (91) – (94) are
attained because the initial bounds (47) – (50) were proved to be attained. �

From the bounds of Theorem 6.1 we obtain the tight upper bounds

L+
B,α(H|Λ,∆) = max

Hα(π)=H
LB(π) = max

Hα(πx)=H
LB(πx) (102)

R+
B,α(H|Λ,∆) = max

Hα(E)=H
RB(E) (103)

and the tight lower bounds

L−B,α(H|Λ,∆) = min
Hα(π)=H

LB(π) = min
Hα(πx)=H

LB(πx) (104)

R−B,α(H|Λ,∆) = min
Hα(E)=H

RB(E) (105)

of the Bayes losses and risks (89) in the models with loss parameters Λ, ∆ and given
values of the power informations (90).
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Corollary 6.1. The tight upper and lower bounds (102) – (105) are given in the cor-
responding definition domains

0 ≤ H ≤ aα,n, α > 0 (106)

of the power informations (90) by the formulas

L±B,α(H|Λ,∆) = e±α (H)(Λ±∆/2), R±B,α(H|Λ,∆) = e±B,α(H)(Λ±∆/2) (107)

for e±α (H), e±B,α(H) defined by (56).

Now we deal with the situation where the knowledge about experiment E is repre-
sented by adjoint power information measures

H̃α(π), H̃α(πx) and H̃α(E) for some α > 0 (cf. (39)) (108)

respectively. We study the tight upper bounds

H̃+
α (LB |Λ,∆) = max

LB(π)=LB

H̃α(π) ≡ max
LB(πx)=LB

H̃α(πx) (109)

H̃+
α (RB |Λ,∆) = max

RB(E)=RB

H̃α(E) (110)

and the tight lower bounds

H̃−
α (LB |Λ,∆) = min

LB(π)=LB

H̃α(π) ≡ min
LB(πx)=LB

H̃α(πx), (111)

H̃−α (RB |Λ,∆) = min
RB(E)=RB

H̃α(E) (112)

of these information measures for given values of the prior and posterior Bayes losses
and the Bayes risk appearing in (89).

Theorem 6.2. The bounds (91) – (94) are given in the whole definition domains

0 ≤ LB ≤ cn(Λ + ∆/2) and 0 ≤ RB ≤ cn(Λ + ∆/2) (113)

by the formulas

H̃±
α (LB |Λ,∆) = H̃±

α

(
LB

1∓∆/2

)
and H̃±α (RB |Λ,∆) = H̃±α

(
RB

1∓∆/2

)
(114)

for H̃±
α (·), H±α (·) defined in the domain [0, cn] by (61), (62) and for H̃+

α (·), H+
α (·) ex-

tended to t > cn by

H̃+
α (t) = H̃+

α (cn) ≡ ãα,n, H̃+
α (t) = H̃+

α (cn) ≡ ãα,n (115)

where

cn =
n

n− 1
and ãα,n =

 n−1
1−α

[(
n

n−1

)1−α

− 1
]

if α 6= 1

(n− 1) ln n
n−1 if α = 1

(cf. (44)). (116)
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P r o o f . By Theorem 3.1, the Bayes errors eB(π), eB(πx) and eB = eB(E) are restricted
by the bounds (99) – (101) for cn given by (98) and these bounds are tight. Applying
these bounds in the definitions (109) – (112) of H̃±

α (LB |Λ,∆) and H̃±α (RB |Λ,∆) and
using the definitions (61), (62) of H̃±

α (e) and H̃±α (eB) we get the desired formulas (114).
The new bounds (114) are attained because the initial bounds (61), (62) were proved to
be attained. �

From the bounds of Theorem 6.2 we obtain the tight upper bounds

L+
B,α(H̃|Λ,∆) = max

H̃α(π)=H̃
LB(π) ≡ max

H̃α(πx)=H̃
LB(πx) (117)

R+
B,α(H̃|Λ,∆) = max

H̃α(E)=H̃
RB(E) (118)

and the tight lower bounds

L−B,α(H̃|Λ,∆) = min
H̃α(π)=H̃

LB(π) ≡ min
H̃α(πx)=H̃

LB(πx) (119)

R−B,α(H̃|Λ,∆) = min
H̃α(E)=H̃

RB(E) (120)

of the Bayes losses and risks (89) in models with parameters Λ, ∆ and given values of
the power entropies (108).

Corollary 6.2. The attainable upper bounds (117) – (120) are given in the definitions
domains

0 ≤ H̃ ≤ ãα,n, α > 0 (121)

of the adjoint power informations (108) by the formulas

L±B,α(H̃|Λ,∆) = e±α (H̃)(Λ±∆/2), R±B,α(H̃|Λ,∆) = e±B,α(H̃)(Λ±∆/2) (122)

for e±α (H̃), e±B,α(H̃) defined by (69).

Conclusion 6.1 Conclusion 5.1 indicates that the average inaccuracy of the interval
estimates

[
R−B,α(Hα|Λ,∆), R+

B,α(Hα|Λ,∆)
]

of the Bayes risk RB = RB(E) by means of
the power informations Hα = Hα(E) is minimized at the power α = 2.

Conclusion 6.2 Conclusion 5.2 indicates that the average inaccuracy of the interval
estimates

[
R−B,α(H̃α|Λ,∆), R+

B,α(H̃α|Λ,∆)
]

of the Bayes risk RB = RB(E) by means of

the adjoint power informations H̃α = H̃α(E) is minimized at the power α = 2. Moreover,
the alternative power entropies H̃α give in general better estimates than the classical
power entropies Hα, except the optimal power α = 2 where both estimates coincide.

Figures E.1 and E.2 in Appendix E illustrate the power information bounds
H±

α (LB |Λ,∆) for the power parameters α = 1 and α = 2 and the loss function pa-
rameters (Λ,∆) = (1, 0) and (Λ,∆) = (1, 2/5) taken from the concrete situation of
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Example 3.1. Similar illustrations of the bounds H±α (RB |Λ,∆) for the same power pa-
rameters and loss function parameters are in Figures E.3 and E.4. Inverse functions to
the bounds of Figures E.1 – E.4, readable in this figure too, illustrate the corresponding
prior and Bayes risk bounds L±B,α(H|Λ,∆) and R±B,α(H|Λ,∆).

APPENDIX A.

In this appendix we prove formulas of (79) and of (80) from Lemma 5.1 and formulas of
(82) and of (83) from Lemma 5.2.

Lemma 5.1, formulas of (79).

(i) If α > 0, α 6= 1 then using the upper formula of (52) we obtain

∫ cn

0

H+
α (e) de =

∫ cn

0

1− (n− 1)1−αeα − (1− e)α

α− 1
de

=
1

α− 1

[
e− (n− 1)1−α eα+1

α + 1
+

(1− e)α+1

α + 1

]n−1
n

0

=
1

α− 1

[
n− 1

n
− nα + n− 2

(α + 1)nα

]
.

(ii) If α = 1 then we apply in the lower formula of (52) the relations

∫
x lnxdx =

x2

2

[
lnx− 1

2

]
,

∫
(1− x) ln(1− x) dx = − (1− x)2

2

[
ln(1− x)− 1

2

]
and obtain∫ cn

0

H+
1 (e) de =

∫ cn

0

[e ln(n− 1)− e ln e− (1− e) ln(1− e)] de

=
[
e2

2
ln(n− 1)− e2

2
(
ln e− 1

2
)

+
(1− e)2

2
(
ln(1− e)− 1

2
)] n

n−1

0

=
1
2
(n− 1

n

)2 ln(n− 1)− 1
2
(n− 1

n

)2( ln
n− 1

n
− 1

2
)

+
1
2

1
n2

(
ln

1
n
− 1

2
)

+
1
4

=
1
2
(n− 1

n

)2 lnn +
1
4
(n− 1

n

)2 − 1
2n2

lnn− 1
4n2

+
1
4

=
n− 2
2n

lnn +
n− 2
4n

+
1
4

=
1
2n

{n− 1 + (n− 2) ln n} .

Lemma 5.1, formulas of (80).
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(i) If 0 < α < 2 then using the upper formula of (53) we obtain

∫ cn

0

H−α (e) de =
n−1∑
k=1

∫ ck+1

ck

[aα,k+bα,k(e−ck)] de =
n−1∑
k=1

[
aα,ke+bα,k

e2

2
−bα,kcke

]ck+1

ck

=
n−1∑
k=1

{
aα,k(ck+1 − ck) + bα,k

c2
k+1 − c2

k

2
− bα,kck(ck+1 − ck)

}

=
n−1∑
k=1

{
1− k1−α

(α− 1)k(k + 1)
+

aα,k+1 − aα,k

2
(ck+1 − ck)

}

=
n−1∑
k=1

{
1− k1−α

(α− 1)k(k + 1)
+

k1−α − (k + 1)1−α

(α− 1)2k(k + 1)

}

=
1

2(α− 1)

n−1∑
k=1

2− k1−α − (k + 1)1−α

k(k + 1)
.

(ii) If α ≥ 2, then using the lower formula of (53) we obtain

∫ cn

0

H−α (e) de =
aα,n

cn

∫ cn

0

ede =
aα,n

cn

c2
n

2
=

aα,ncn

2
=

(n− 1)(1− n1−α)
2(α− 1)n

.

Lemma 5.2, formulas (82).

(i) If α > 0, α 6= 1, then by the upper formula of (61)

∫ cn

0

H̃+
α (e) de =

∫ cn

0

(n− 1)− eα − (n− 1)1−α(n− 1− e)α

α− 1
de (x = n− 1− e)

=
1

α− 1

{
(n− 1)2

n
− 1

α + 1
(n− 1

n

)α+1 − (n− 1)1−α

∫ n−1

n−1−cn

xα dx

}
=

1
α− 1

{
(n− 1)2

n
− 1

α + 1
(n− 1

n

)α+1

− (n− 1)1−α

α + 1

[
(n− 1)α+1 − (n− 1)2(α+1)

nα+1

]}
=

1
α− 1

[
(n− 1)2

n
− (n− 1)2

α + 1
+

n(n− 2)
α + 1

(
n− 1

n

)α+1
]

.
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(ii) If α = 1, then by the lower formula of (61)∫ cn

0

H̃+
1 (e) de =

∫ cn

0

(−e ln e− (n− 1− e) ln(n− 1− e) + (n− 1− e) ln(n− 1)) de

=
1
2

[
−e2(ln e− 1

2
) + (n− 1− e)2(ln(n− 1− e)− 1

2
)− (n− 1− e)2 ln(n− 1)

]n−1
n

0

= −1
2
(n− 1

n

)2[ ln n− 1
n

− 1
2
]
+

1
2

(n− 1)4

n2

[
ln

(n− 1)2

n
− 1

2
]
− 1

2
(n− 1)4

n2
ln(n− 1)

+0 − (n− 1)2

2
[
ln(n− 1)− 1

2
]
+

(n− 1)2

2
ln(n− 1)

= −1
2
(n− 1

n

)2 ln(n− 1) +
1
2
(n− 1

n

)2 lnn +
1
4
(n− 1

n

)2 +
(n− 1)4

n2
ln(n− 1)

− 1
2

(n− 1)4

n2
lnn− 1

4
(n− 1)4

n2
− 1

2
(n− 1)4

n2
ln(n− 1) +

(n− 1)2

4

=
1
2
(n− 1

n

)2
n(n− 2) ln(n− 1)− 1

2
(n− 1

n

)2
n(n− 2) ln n +

1
4
(n− 1

n

)22n

=
(n− 1)2

2n

[
1 + (n− 2) ln

n− 1
n

]
.

Lemma 5.2, formulas (83).
(i) If 0 < α < 2, α 6= 1 then by the lower formula of (62) and by the definition of ãα,n

in (59) we have that∫ cn

0

H̃−α (e) de =
∫ cn

0

1
cn

ãα,nede =
(n− 1)2

2n(α− 1)

[
1−

(
n− 1

n

)α−1
]

.

(ii) If α = 1 then by the lower formula of (62) and by the definition of ãα,n in (59) we
have that ∫ cn

0

H̃−α (e) de =
∫ cn

0

1
cn

ãα,nede =
(n− 1)2

2n
ln

n

n− 1
.

(iii) If α > 2 then by the upper formula of (62)∫ cn

0

H̃−α (e) de =
n−1∑
k=1

∫ ck−1

ck

[ãα,k + b̃α,k(e− ck)] de =
n−1∑
k=1

ãα,k + ãα,k+1

2k(k + 1)
.

By (59)

ãα,k =
k − 1
α− 1

[
1−

(k − 1
k

)α−1]
so that

ãα,k + ãα,k+1 =
1

α− 1

[
2k − 1− (k − 1)α

kα−1
− kα

(k + 1)α−1

]
and, consequently,∫ cn

0

H̃−α (e) de =
1

2(α− 1)

n−1∑
k=1

2k − 1− (k − 1)
(

k−1
k

)α−1 − k
(

k
k+1

)α−1

k(k + 1)
.
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APPENDIX B.

In this appendix we present tables with average and alternative average inaccuracies for
selected α and n.

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.428 0.370 0.252 0.153 0.107 0.083 0.063 0.049 0.040
3 1.046 0.884 0.557 0.291 0.171 0.111 0.083 0.064 0.048
4 1.687 1.398 0.832 0.394 0.210 0.125 0.094 0.070 0.050
5 2.339 1.908 1.085 0.477 0.238 0.133 0.100 0.073 0.052
6 2.997 2.413 1.320 0.547 0.259 0.139 0.104 0.075 0.052
7 3.657 2.911 1.542 0.608 0.275 0.143 0.107 0.076 0.053
8 4.318 3.403 1.751 0.662 0.289 0.146 0.109 0.077 0.053
9 4.979 3.888 1.951 0.710 0.301 0.148 0.111 0.078 0.054
10 5.639 4.368 2.142 0.754 0.310 0.150 0.113 0.079 0.054
20 12.147 8.907 3.737 1.052 0.366 0.158 0.119 0.081 0.055
30 18.482 13.105 5.002 1.235 0.393 0.161 0.121 0.082 0.055
40 24.673 17.073 6.085 1.368 0.409 0.163 0.122 0.082 0.055
50 30.746 20.871 7.047 1.472 0.420 0.163 0.123 0.082 0.055
100 59.898 38.240 10.865 1.802 0.449 0.165 0.124 0.083 0.055
200 114.685 68.720 16.321 2.139 0.470 0.166 0.124 0.083 0.055
300 166.832 96.250 20.529 2.338 0.479 0.166 0.125 0.083 0.056
400 217.298 122.004 24.083 2.480 0.485 0.166 0.125 0.083 0.056
500 266.539 146.506 27.218 2.590 0.489 0.166 0.125 0.083 0.056
1000 501.137 257.689 39.535 2.934 0.499 0.167 0.125 0.083 0.056

Table B.1. Average inaccuracies AIn(Hα|eB) for selected α and n.

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.428 0.370 0.252 0.153 0.107 0.083 0.063 0.049 0.040
3 0.439 0.389 0.285 0.189 0.139 0.111 0.104 0.099 0.088
4 0.444 0.397 0.298 0.205 0.155 0.125 0.126 0.130 0.122
5 0.446 0.402 0.306 0.215 0.164 0.133 0.140 0.150 0.148
6 0.448 0.404 0.311 0.221 0.170 0.139 0.149 0.164 0.167
7 0.449 0.406 0.314 0.225 0.175 0.143 0.156 0.175 0.182
8 0.450 0.408 0.317 0.228 0.178 0.146 0.161 0.184 0.194
9 0.450 0.409 0.319 0.231 0.180 0.148 0.165 0.190 0.204
10 0.451 0.410 0.320 0.233 0.182 0.150 0.168 0.196 0.212
20 0.453 0.413 0.327 0.242 0.191 0.158 0.183 0.222 0.253
30 0.453 0.414 0.329 0.244 0.194 0.161 0.187 0.231 0.268
40 0.454 0.415 0.330 0.246 0.196 0.162 0.190 0.236 0.276
50 0.454 0.415 0.331 0.247 0.196 0.163 0.191 0.238 0.281
100 0.454 0.416 0.332 0.248 0.198 0.165 0.194 0.244 0.291
200 0.454 0.416 0.333 0.249 0.199 0.166 0.196 0.247 0.296
300 0.454 0.416 0.333 0.249 0.199 0.166 0.196 0.248 0.297
400 0.454 0.416 0.333 0.250 0.200 0.166 0.197 0.248 0.298
500 0.454 0.417 0.333 0.250 0.200 0.166 0.197 0.249 0.299
1000 0.455 0.417 0.333 0.250 0.200 0.167 0.197 0.249 0.300

Table B.2. Alternative average inaccuracies AIn(H̃α|eB) for selected α and n.



Information criteria for Bayes decisions 741

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.222 0.200 0.152 0.111 0.091 0.083 0.083 0.106 0.142
3 0.372 0.335 0.254 0.176 0.134 0.111 0.125 0.172 0.222
4 0.459 0.413 0.312 0.213 0.157 0.125 0.150 0.210 0.264
5 0.517 0.465 0.351 0.237 0.172 0.133 0.167 0.234 0.289
6 0.560 0.504 0.380 0.255 0.182 0.139 0.179 0.250 0.306
7 0.592 0.533 0.401 0.268 0.190 0.143 0.188 0.262 0.317
8 0.619 0.557 0.419 0.279 0.196 0.146 0.194 0.271 0.326
9 0.640 0.576 0.433 0.287 0.200 0.148 0.200 0.278 0.333
10 0.658 0.592 0.446 0.295 0.204 0.150 0.205 0.283 0.339
20 0.751 0.678 0.511 0.334 0.224 0.158 0.226 0.308 0.364
30 0.790 0.714 0.540 0.351 0.232 0.161 0.234 0.317 0.372
40 0.812 0.735 0.557 0.362 0.237 0.163 0.238 0.321 0.376
50 0.826 0.748 0.569 0.369 0.240 0.163 0.240 0.323 0.379
100 0.859 0.780 0.598 0.387 0.247 0.165 0.245 0.328 0.384
200 0.880 0.801 0.618 0.402 0.252 0.166 0.248 0.331 0.386
300 0.888 0.809 0.627 0.409 0.254 0.166 0.248 0.332 0.387
400 0.892 0.813 0.632 0.413 0.255 0.166 0.249 0.332 0.388
500 0.895 0.816 0.636 0.416 0.256 0.166 0.249 0.332 0.388
1000 0.901 0.823 0.645 0.424 0.257 0.167 0.250 0.333 0.388

Table B.3. Average inaccuracies AIn,α(eB |Hα) for selected α and n.

n 0.1 0.2 0.5 1 1.5 2 3 5 8
2 0.222 0.200 0.152 0.111 0.091 0.083 0.083 0.106 0.142
3 0.299 0.271 0.211 0.155 0.127 0.111 0.125 0.165 0.218
4 0.338 0.307 0.241 0.179 0.145 0.125 0.144 0.190 0.247
5 0.361 0.329 0.259 0.193 0.156 0.133 0.155 0.203 0.262
6 0.377 0.343 0.271 0.202 0.163 0.139 0.163 0.212 0.270
7 0.388 0.354 0.280 0.209 0.168 0.143 0.168 0.218 0.276
8 0.396 0.362 0.287 0.214 0.172 0.146 0.171 0.222 0.280
9 0.403 0.368 0.292 0.218 0.175 0.148 0.174 0.225 0.283
10 0.408 0.373 0.296 0.221 0.178 0.150 0.177 0.228 0.285
20 0.431 0.395 0.315 0.235 0.189 0.158 0.187 0.239 0.294
30 0.439 0.402 0.321 0.240 0.193 0.161 0.191 0.243 0.296
40 0.443 0.406 0.324 0.243 0.194 0.162 0.192 0.245 0.297
50 0.445 0.408 0.326 0.244 0.196 0.163 0.193 0.246 0.298
100 0.450 0.412 0.330 0.247 0.198 0.165 0.195 0.248 0.299
200 0.452 0.414 0.331 0.249 0.199 0.166 0.196 0.249 0.300
300 0.453 0.415 0.332 0.249 0.199 0.166 0.197 0.249 0.300
400 0.453 0.416 0.332 0.249 0.199 0.166 0.197 0.249 0.300
500 0.454 0.416 0.333 0.249 0.200 0.166 0.197 0.249 0.301
1000 0.454 0.416 0.333 0.250 0.200 0.167 0.197 0.250 0.301

Table B.4. Alternative average inaccuracies AIn,α(eB |H̃α) for selected α and n.
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APPENDIX C.

In this appendix we present figures of power and adjoint power information bounds.
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Fig. C.1. Power information bounds H±α (eB) as functions of Bayes error 0 ≤ eB ≤ (n− 1)/n

for n = 5 and powers α ≤ 1.
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Fig. C.2. The same as in Figure C.1 for powers α > 1.
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Fig. C.3. Adjoint power information bounds H̃±α (eB) as functions of Bayes error

0 ≤ eB ≤ (n− 1)/n for n = 5 and powers α ≤ 2.
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Fig. C.4. The same as in Figure C.3 for powers α > 2.
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APPENDIX D.

In this appendix we present figures of average and alternative average inaccuracies.
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Fig. D.1. Average inaccuracies AIn(Hα|eB) for selected n as functions of α.
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Fig. D.2. Alternative average inaccuracies AIn(H̃α|eB) for selected n as functions of α.
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Fig. D.3. Average inaccuracies AIn,α(eB |Hα) for selected n as functions of α.
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Fig. D.4. Alternative average inaccuracies AIn,α(eB |H̃α) for selected n as functions of α.
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APPENDIX E.

In this appendix we present figures of Shannon and quadratic information bounds.
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Fig. E.1. Shannon information bounds H±

1 (LB |Λ, ∆) for the prior Bayes loss LB under the

loss function parameters Λ = 1 and ∆ = 0 (full line) or ∆ = 2/5 (interrupted line).
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Fig. E.2. Quadratic information bounds H±

2 (RB |Λ, ∆) for the prior Bayes loss LB under the

same conditions function as in Figure E.1.
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Fig. E.3. Shannon information bounds H±1 (RB |Λ, ∆) for the Bayes risk RB under the loss

function parameters Λ = 1 and ∆ = 0 (full line) or ∆ = 2/5 (interrupted line).
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Fig. E.4. Quadratic information bounds H±2 (RB |Λ, ∆) for the Bayes risk RB under the same

conditions as in Figure E.2.
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