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Abstract

Let A := (A,→, 1) be a Hilbert algebra. The monoid of all unary
operations on A generated by operations αp : x �→ (p → x), which is
actually an upper semilattice w.r.t. the pointwise ordering, is called the
adjoint semilattice of A. This semilattice is isomorphic to the semilattice
of finitely generated filters of A, it is subtractive (i.e., dually implicative),
and its ideal lattice is isomorphic to the filter lattice of A. Moreover, the
order dual of the adjoint semilattice is a minimal Brouwerian extension of
A, and the embedding of A into this extension preserves all existing joins
and certain “compatible” meets.

Key words: adjoint semilattice, Brouwerian extension, closure en-
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semilattice, subtraction

2000 Mathematics Subject Classification: 03G25, 06A12, 06A15,
08A35

1 Introduction

Let A := (A,→, 1) be a Hilbert algebra. A mapping ϕ : A→ A is called a closure
endomorphism if it is simultaneously a closure operator and an endomorphism.
This notion goes back to [15], where Glivenko operators on implicative, or

Brouwerian, semilattices were discussed. In [16], it was shown that the Glivenko
operators are precisely the closure endomorphisms and that all such endomor-
phisms form a distributive lattice. Connections of this lattice with the filter
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lattice and with a certain sublattice of subalgebras of an implicative semilattice
were discovered in [17].
Closure endomorphisms on Hilbert algebras were introduced by the present

author in [1] and further studied in [2]. The identity mapping ε, the unit
mapping ι : x �→ 1 and, for any p ∈ A, the mappings αp and βp defined by

αpx := p→ x, βpx := (x→ p) → x,

respectively are examples of closure endomorphisms. The set CE of all closure
endomorphisms on A is closed under composition ◦ and pointwise defined meets.
The algebra (CE, ◦,∧, ε, ι) also is a bounded distributive lattice [2], in which ◦
acts as join and the natural ordering may be defined pointwise. Furthermore,
an endomorphism ϕ is a closure operator if and only if

ϕ(x→ y) = x→ ϕy. (1)

In this paper, we pay attention to closure endomorphisms αp and their
compositions. For every finite subset P := {p1, p2, . . . , pn} of A (in symbols,
P ⊆fin A), we set αP := αpn

◦ · · · ◦ αp2
◦ αp1

(we shall usually drop the symbol
‘◦’ in notation). In the case when P is empty, this means that αP = ε. Of
course, each mapping αP also is a closure endomorphism; we shall call them
finitely generated (cf. Proposition 2 below). The set CEf of all such mappings
is closed under composition, and the algebra (CEf , ◦, ε) is a lower bounded join
semilattice. In the dual context of BCI/BCK-algebras, the counterpart of CEf

is usually called the adjoint semigroup (or monoid) of an algebra under con-
sideration (see, for example, [8, 9, 13]). We adopt this term and call CEf the
adjoint semilattice of the initial Hilbert algebra A. It is shown in Section 3
to be isomorphic to the semilattice of finitely generated filters of A and sub-
tractive, i.e., dually implicative, while its generating set turns out to be closed
under subtraction and is an order dual of A (Section 4). The lattice of ide-
als of CEf is isomorphic to the lattice of filters of A (Section 3). A minimal
Brouwerian extension of A is a minimal implicative semilattice of which A is
a subreduct; in Section 4 such an extension is shown to be dually isomorphic
to the adjoint semilattice of A. Embedding of A into its minimal Brouwerian
extension preserves all existing joins; we characterize also the preserved meets
(Section 5).

2 Preliminaries

We assume that the reader is acquainted with the notion of Hilbert algebra and
with elementary arithmetics in such algebras. This information can be found,
e.g., in [2, 3, 5, 6, 14]. Recall that Hilbert algebras were introduced in [5] as
the order duals of L. Henkin’s implicational models [6]. In [2, 3] also the notion
of compatible meet (suggested by [14]) in a Hilbert algebra was introduced and
discussed. We now list some basic facts concerning it.
Let A := (A,→, 1) be a Hilbert algebra. Elements a, b ∈ A are said to be

compatible (in symbols, a C b) if there is a lower bound c of {a, b} such that
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a ≤ b→ c. If this is the case, then c is the g.l.b. of a and b; we call this element
the compatible meet of a and b and denote it by a∧∧ b. In this way, we come to
a partial operation ∧∧ on A. It is total if and only if A is actually an implicative
semilattice. For example, if ϕ, ψ ∈ CE, then always ϕx C ψx. A relative
subsemilattice of A is any subset of A closed under existing compatible meets.
Thus, the subset CE(a) := {ϕa : ϕ ∈ CE} is a relative subsemilattice for every
a ∈ A: all meets in it exist and are compatible. (In [2, 3], we used the notation
xy for the meet of x and y, and wrote x ∧ y for it if it was compatible.)
Examples of relative subsemilattices are provided also by filters. A filter

(an implicative filter, a deductive system) of A is a subset J containing 1 and
such that y ∈ J whenever x, x → y ∈ J . According to [3, Lemma 3.2], J is an
implicative filter if and only if it is a semilattice filter, i.e., an upwards closed
relative subsemilattice of A.
The above definition of compatibility is equivalent to the original one pre-

sented in [14]. It was also observed there that elements x and y are compatible
if and only if the filter generated by {x, y} is principal, and then x ∧∧ y is the
least element of the filter. We now consider an arbitrary finite subset P ⊆ A
as compatible if P has a lower bound c (necessary unique) in [P ), and say that
then c is the compatible meet of P (denoted by

∧∧
P ). This is the case if and

only if [P ) = [c). Equivalently, a subset P is compatible if αP = αp for some
p ∈ A. In particular, the empty set is compatible; of course,

∧∧
∅ = 1.

Where X ⊆ A, we denote by αP (X) the set {αPx : x ∈ X}. A one-element
subset of A is identified with its single element. The following notation will be
convenient (cf. Definition 6.4 in [7]): given two finite subsets, P and Q, of A,
we shall write Q → p for the element αQ(p), and Q → P , for the set αQ(P ),
i.e., {Q → p : p ∈ P}. If Q is empty, then Q → p = p, and if P is empty, then
Q → P also is the empty set. At last, {q} → {p} = {q → p} = q → p. Observe
that, if P = {p1, p2, . . . , pm}, then

α(Q→P ) = α(Q→pm) · · ·α(Q→p2)α(Q→p1). (2)

For example, P → P = 1, and if P = {p1, p2} and Q := {q1, q2}, then
α(Q→P )x = α(Q→p1)α(Q→p2)x = (Q→ p1) → ((Q→ p2) → x)

= (q1 → (q2 → p1)) → ((q1 → (q2 → p2)) → x).

For further reference, we list some properties of the operations αP , where ≤
is the natural ordering of the semilattice CEf (recall that it is defined pointwise).

Lemma 1 In A,

(a) αPαQ = αQαP ,

(b) αQ ≤ αPαQ,

(c) αP ≤ αQ if and only if αPαQ = αQ.

(d) αPαQ = α(P∪Q),

(e) if P ⊆ Q, then αP ≤ αQ,
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(f) αQα(Q→P ) = αPαQ,

(g) αP ≤ αQ iff Q→ P = 1.

Proof Items (a), (b) and (c) are obvious, and (e) follows from (c) and (d).
In virtue of (a), items (d) and (f) generalize the Hilbert algebra identities x →
(y → z) = y → (x→ z) and x → (x→ y) = x → y, respectively. For the “only
if” part of (g), observe that αP (p) = 1 whenever p ∈ P . At last, if Q→ P = 1,
then (f) and (c) lead us to left-side inequality of (g). �

3 The adjoint semilattice of A

We first extend to Hilbert algebras a result stated for implicative semilattices
in [16, Proposition 3.6].

Proposition 2 The subset CEf is join-dense in the poset CE, i.e., every clo-
sure endomorphism is a join of a subset of CEf . More exactly, if ϕ ∈ CE, then
ϕ =

∨
(αp : p ∈ Kϕ), where Kϕ is the kernel of ϕ.

Proof At first, αp ≤ ϕ for every p ∈ Kϕ: if ϕp = 1, then, for every x,
(p→ x) → ϕx = ϕ((p→ x) → x) = (ϕp→ ϕx) → ϕx = 1 (see (1)). At second,
if ψ is another upper bound of {αp : p ∈ Kϕ} and p = ϕa → a for some a ∈ A,
then ψa ≥ αpa = p→ a ≥ ϕa. Thus, ϕ is the least upper bound of the set. �

A well-known description of the filter [X) generated by some subset X of A,
which goes back to [5, 14], may be formulated in terms of closure endomorphisms
as follows: a ∈ [X) if and only if a belongs to the kernel of some αP with
P ⊆fin X. If X is finite, one may put P = X. Therefore, the kernel of αP

is the filter [P ) generated by P ; this correspondence between endomorphisms
from CEf and finitely generated filters is bijective. By Lemma 1(g), it is even
order-preserving: Q → P = 1 iff P ⊆ KαQ

iff [P ) ⊆ [Q). Moreover, the kernel
of αPαQ is the standard join of filters [P ) and [Q), i.e, the least filter including
both [P ) and [Q). Indeed, KαP

,KαQ
⊆ KαPαQ

(Lemma 1(b)). Suppose that,
on the other hand, KαP

,KαQ
⊆ KαR

for some R ⊆fin A. If now x ∈ KαPαQ
,

then αQx ∈ KαP
and, further, αQx ∈ KαR

. Then αRx ∈ KαQ
by Lemma 1(a),

and, further αRx ∈ KαR
, i.e., x ∈ KαR

(Lemma 1(d)). Therefore, KαPαQ
is the

least upper bound of KαP
and KαQ

.
These considerations are summed up in the next proposition.

Proposition 3 The transformation αP �→ [P ) is an isomorphism of CEf onto
the semilattice of finitely generated filters.

A subtractive semilattice [4] is the order dual of an implicative semilattice.
We are going to show that the adjoint semilattice of a Hilbert algebra A is
subtractive, i.e., that there is a binary operation − (subtraction) on CEf such
that, for all P,Q,R ⊆fin A,

αP − αQ ≤ αR if and only if αP ≤ αQ ◦ αR. (3)
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Taking into account Proposition 3, this fact could be derived from Theorem 2.3
of [3], where the set of finitely generated filters of a Hilbert algebra was shown to
be a subtractive semilattice. The theorem itself was proved referring to several
constructions from Section 6 in [7]. We shall give for the adjoint semilattice a
concise direct proof.

Theorem 4 The operation − defined on CEf by

αP − αQ := α(Q→P )

is a subtraction.

Proof We have to prove that

α(Q→P )x ≤ αRx for all x if and only if αPx ≤ αQαRx for all x.

The “only if” part holds by virtue of Lemma 1(f):

αP ≤ αQαP = αQα(Q→P ) ≤ αQαR.

Conversely, from the right-side inequality, 1 = αP p ≤ αQαRp for any p ∈ P .
Now observe that αQp ≤ (αQp→ x) → x = α(Q→p)x→ x. Hence, for every x,

1 = αRαQp ≤ αR(α(Q→p)x→ x) = α(Q→p)x→ αRx

(see (1)) and, further, α(Q→p)x ≤ αRx. By (2), then α(Q→P )x ≤ αRx for all x.
�

We next show that the transfer from Hilbert algebras to their adjoint (sub-
tractive) semilattices is functorial. Suppose that A and A′ are Hilbert algebras
and that CEf and CE′f are the respective adjoint semilattices. Given a ho-
momorphism f : A → A′, let f∗ : CEf → CE′f be the mapping defined by
f∗(αP ) := αf(P ).

Theorem 5 Suppose that A, A′ and A′′ are Hilbert algebras, ε is the identity
endomorphism of A, and f : A→ A′, g : A′ → A′′ are homomorphisms. Then

(a) f∗ and g∗ are subtractive homomorphisms.

(b) ε∗ is the identity morphism of CEf ,

(c) (gf)∗ = g∗f∗.

Proof (a) f∗ is a semilattice homomorphism:

f∗(αPαQ) = f∗(αP∪Q) = αf(P∪Q) = αf(P )∪f(Q) = αf(P )αf(Q) = f∗(αP )f
∗(αQ),

and preserves subtraction: for P = {p1, p2, . . . , pn},
f∗(αP − αQ) = f∗(α(Q→P )) = αf(Q→P )

= α(f(Q)→f(P )) = αf(P ) − αf(Q) = f∗(αP )− f∗(αQ).

(b) is evident, as ε = α1.
(c) (gf)∗(αP ) = αg(f(P )) = g∗(αf(P )) = g∗(f∗(αP )). �

Finally, we characterise the lattice of ideals of CEf . The subsequent theorem
is partly suggested by various general results in [13] on ideals of a BCI-algebra.
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Theorem 6 The filter lattice of a Hilbert algebra is isomorphic to the ideal
lattice of its adjoint semilattice.

Proof It consists of several steps. Suppose that A is a Hilbert algebra, and
CEf , its adjoint semilattice. Let I stand for the ideal lattice of the semilattice
CEf , and F , for the filter lattice of A.
(a) For every filter J of A, the subset i(J) := {αP : P ⊆fin J} is an ideal of

CEf :
(a1) the identity closure endomorphism belongs to i(J), for ε = α1;
(a2) if αP , αQ ∈ i(J) with P,Q ⊆fin J , then also P ∪Q ⊆fin J and, further,

αP∪Q ∈ i(J), i.e., αPαQ ∈ i(J);
(a3) if αQ ∈ i(J) with Q ⊆fin J , and if αP ≤ αQ for some finite P , then

αQx ≥ αPx = 1 and x ∈ J for every x ∈ P . Therefore, P ⊆fin J and αP ∈ i(J).

(b) The transformation i : F → I is order-preserving: if J ⊆ J ′, then every
finite subset of J is also a subset of J ′, and then i(J) ⊆ i(J ′).

(c) For every ideal N ∈ I, the subset j(N) := {p : αp ∈ N} is a filter of A:
(c1) 1 ∈ j(N), for α1 = ε ∈ N ;
(c2) if p and q are compatible elements of j(N) and r := p∧∧ q, then αp, αq ∈

N , αr = αp ◦ αq ∈ N and, further, r ∈ j(N);
(c3) if p ∈ j(N) and q ≥ p, then αp ∈ N , αq ≤ αp and, furthermore, αq ∈ N ,

i.e., q ∈ J .

(d) The transformation j : I → F is order-preserving: if N ⊆ N ′, i.e., αp ∈
N ′ whenever αp ∈ N , then p ∈ j(N ′) for all p ∈ j(N), and j(N) ⊆ j(N ′).

(e) The transformations i and j are mutually inverse:
(e1) j(i(J)) = J : if q ∈ J , then αq ∈ i(J) and q ∈ j(i(J)), and if q ∈ j(i(J)),

then αq ∈ i(J), i.e., αq = αP for some P ⊆fin J . Hence, q ∈ P and q ∈ J ;
(e2) i(j(N)) = N : if αP ∈ i(j(N)) with P ⊆fin j(N), then αp ∈ N for all

p ∈ P , and αP , being the join of all these αp, also belongs to N . Conversely, if
αP ∈ N , then αp ≤ αP , αp ∈ N and p ∈ j(N) for all p ∈ P , i.e., P ⊆ j(N) and,
further, αP ∈ i(j(N)).
Eventually, i and j are order isomorphisms from F to I and from I to F ,

respectively. Therefore, the lattices F and I are isomorphic. �

4 Principal closure endomorphisms

Each principal filter [p) is the kernel of αp and conversely; for this reason we
call closure endomorphisms αp principal. Let CEα stand for the set of all such
endomorphisms. We now can say more about the transformation p �→ αp.

Theorem 7 In A,

(a) p ≤ q if and only if αq ≤ αp,

(b) αp→q = αq − αp,

(c) αp∨q = αp ∧ αq whenever p ∨ q exists,
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(d) p C q if and only αp ◦ αq is a principal closure endomorphism, and then
αp∧∧q = αp ◦ αq.

(e) a finite subset P of A is compatible if and only if the closure endomorphism
αP is principal, and then α(

∧∧
P ) = αP .

Proof (a) Clearly, if p ≤ q, then αq ≤ αp. If, conversely, q → x ≤ p → x for
all x, then substitution of q for x shows that p ≤ q.
(b) By the definition of subtraction.
(c) is an easy consequence of (a). Suppose that p ∨ q exists in A, then

αp∨q ≤ αp, αq. On the other hand, if αr ≤ αp, αq for some r, then p, q ≤ r and
p ∨ q ≤ r. Hence, αr ≤ αp∨q , i.e., αp∨q is indeed the least upper bound of αp

and αq.
(d) If p∧∧q exists in A, then similarly, αp∧∧q = αpαq. Conversely, if αpαq = αr

for some r, then r → x = p→ (q → x) for all x, whence r ≤ p, q and p ≤ q → r
(put x := p, q, r). Thus, r = p ∧∧ q, and p C q.
(e) If

∧∧
P exists in A, then [P ) = [

∧∧
P ) and, further αP = α(

∧∧
P ). If

αP = αr for some r, then [P ) = [r) and r is the compatible meet of P . �

The item (d) of the theorem is, in fact, contained in Theorem 3 of [14]. In
virtue of items (b) and (a), the set of principal closure endomorphisms of A
turns out to be closed under subtraction and is actually an order-dual copy of
A; we shall call it the dual algebra of A. Therefore, CEα is an implicative model
or, as we prefer to say, a Henkin algebra. (It is now known well that the class
of Henkin algebras coincides with that of positive implicative BCK-algebras
described in [10].)

Corollary 8 The set of principal closure endomorphisms of a Hilbert algebra
A is a Henkin algebra dual to A.

If every pair of elements of A is compatible, then, according to item (e) of
the above theorem, all finitely generated closure endomorphisms are principal.
We thus come to the following conclusion.

Corollary 9 The adjoint semilattice of an implicative semilattice A is dually
isomorphic to A.

It follows that every subtractive semilattice is isomorphic to the adjoint
semilattice of a Hilbert algebra. Also, non-isomorphic Hilbert algebras may
have isomorphic adjoint semilattices. We obtain one more conclusion by help of
Theorem 7(c).

Corollary 10 If a Hilbert algebra A is an upper semilattice, then its adjoint
semilattice is a sublattice of CE.

Proof It suffices to prove that CEf is closed under meets whenever all joins
p∨ q exist in A. As the lattice CE is distributive (see [2, Corollary 3.5]), for all
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finite P and Q,

αP ∧ αQ =
∨

(αp : p ∈ P ) ∧
∨

(αq : q ∈ Q)

=
∨

(αp ∧ αq : p ∈ P, q ∈ Q) =
∨

(αp∨q : p ∈ P, q ∈ Q) = α(P∨Q),

where P ∨Q := {p ∨ q : p ∈ P, q ∈ Q}. �

The items (c) and (e) of Theorem 7 can be extended to joins and certain
meets of arbitrary subsets of A. We call a subset Y ⊆ A K-compatible if it has
a lower bound which belongs to [P ) for every finite P such that Y ⊆ [P ). Let z
be such a lower bound. If u is any other lower bound of Y , then Y ⊆ [u) and,
further, z ∈ [u), i.e., u ≤ z. Thus, z is the greatest lower bound; we say that
it is a K-compatible meet of Y and denote it by

∧∧
Y . Evidently, if Y is finite,

then this version of compatibility agrees with that discussed in Section 2: Y is
K-compatible if and only if the filter generated by Y is principal, and p =

∧∧
Y

if and only if [p) = [Y ). Observe that even infinite subset Y is K-compatible, if
it generates a principal filter; the converse need not hold.

Theorem 11 Let Y be an arbitrary subset of A. Then

(a) α(
∨

Y ) =
∧{αy : y ∈ Y } whenever ∨Y exists,

(b) Y is K-compatible if and only if the set {αy : y ∈ Y } has a join in CEf

that is a principal closure endomorphism, say, αr, and then α(
∧∧

Y ) = αr.

Proof (a) Similarly to item (c) of the previous theorem.
(b) By Lemma 1(g), αq ≤ αP iff P → q = 1 iff q ∈ KαP

= [P ). Now suppose
that r is a K-compatible meet of Y . Then r ≤ y for all y ∈ Y and, for every
finite P with Y ⊆ [P ), also r ∈ [P ). Consequently, αy ≤ αr for these y, i.e.,
αr is an upper bound of {αy : y ∈ Y }. It is actually a least upper bound: if
αy ≤ αP for all y ∈ Y and some finite P , then y ∈ [P ); so Y ⊆ [P ) and, by the
choice of r, r ∈ [P ), i.e., [r) ⊆ [P ). Now Proposition 3 implies that αr ≤ αP .
Conversely, suppose that αr is the join of {αy : y ∈ Y }. Then, in particular,

αy ≤ αr and, by Theorem 7(a), r ≤ y for all y ∈ Y . Thus r is a lower bound
of Y . On the other hand, if Y ⊂ [P ) for some finite P , then, for every y ∈ Y ,
[y) ⊆ [P ) and αy ≤ αP (Proposition 3). By choice of r, also αr ≤ αP and
further r ∈ P . Hence, Y is K-compatible. �

A significant consequence of this theorem will be obtained in Section 5
(Corollary 15).

5 Minimal Brouwerian extensions of A

Corollary 8 and the observations preceding it motivate a transfer from the ad-
joint semilattice of a Hilbert algebra to certain extensions of the latter.
We say that an implicative semilattice B is a Brouwerian extension of a

Hilbert algebra A if A is a subreduct of B. If this is the case, then, for all
x, y, z ∈ A, z = x ∧∧ y if and only if z = x ∧ y in B [3, Lemma 3.3]. Such an
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extension of A is said to be minimal, if it is generated by A. Equivalently, B
is a minimal Brouwerian extension if every its element can be presented as a
join of a finite number of elements of A. Indeed, the set of those elements of
B which can be so presented is closed under →, as the following identity (with
P = {p1, p2, . . . , pm}) shows:

∧
Q→

∧
P = (Q→ p1) ∧ (Q→ p2) ∧ · · · ∧ (Q→ pm).

Theorem 12 A Brouwerian extension of a Hilbert algebra A is minimal if and
only it is dually isomorphic to CEf .

Proof The condition is sufficient by the definition of CEf (and Corollary 8).
Now suppose that B is a minimal extension of A. Then every closure endo-
morphism in the adjoint semilattice of B can be presented in the form αP with
P ⊆fin A. Indeed, all closure endomorphisms of an implicative semilattice are
principal. As any element p ∈ B is a meet of a finite subset P of A, it follows
that αp = αP . Now, the restriction αP |A coincides with the closure endomor-
phism αP of A; thus, there is a bijection between adjoint semilattices of B and
A. Furthermore, restriction to A preserves composition and subtraction and
respects the identity endomorphism of B. Therefore, the adjoint semilattices
are isomorphic. Hence, B is dually isomorphic to the adjoint semilattice of A.

�

Corollary 13 Every Hilbert algebra has a unique (up to isomorphism) minimal
Brouwerian extension.

Remark 14 A construction of a minimal Brouwerian extension is implicit in
A. Horn’s paper [7]; see Theorem 8.5 therein (his C-algebras are just Hilbert
algebras). Starting from a Hilbert algebra A, the author builds up an algebra
B of non-empty subsets of A with operations ∪ and → and a constant 1 (cf.
Section 2 above). The relation eq on B defined by

P eq Q iff P → Q = Q→ P = 1.

is shown to be a congruence, and the quotient algebra B/eq is an implicative
semilattice. Moreover, {p} eq {q} iff p = q. In this way, A is embedded into an
implicative semilattice. The author does not prove that the obtained extension
of A is minimal; this follows from our Lemma 1(g).

Observe that P eq Q iff αP (Q) = αQ(P ) = 1 iff [P ) = [Q) iff αP = αQ.
Due to the above theorem, we may infer several properties of minimal Brouw-

erian extensions from the results of previous sections. Thus, any minimal Brouw-
erian extension of a Hilbert algebra is an example of the implicative semilattice
mentioned in the next corollary.

Corollary 15 Every Hilbert algebra can be embedded into an implicative semi-
lattice with preservation of arbitrary existing joins and exactly K-compatible
meets.
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Remark 16 Up to order duality, this corollary is a concise version of the ex-
tension theorem for L. Henkin’s implicative models which was announced by
Carol R. Karp in 1954 [11] (see also the first chapter in her Ph.D. thesis [12]).
The above condition of K-compatibility is just a conjunction of her conditions
(i) (borrowed from [6]) and (ii), while the subcondition (2) of (i) is actually a
particular case of (ii). She also observed that every implicative model is isomor-
phic to a subspace of closed sets of a topological space, thus anticipating the
topological representation theorem of Hilbert algebras stated by A. Diego in [5].

The subsequent counterpart of [7, Theorem 8.4] is the dual of Corollary 8.

Corollary 17 A minimal Brouwerian extension of an upper Hilbert semilattice
is an implicative lattice.

It follows from Corollary 2.4 in [3] that the filter lattice of a Hilbert algebra
is isomorphic to the filter lattice of some implicative semilattice. Theorem 6
above allows us to improve this observation.

Corollary 18 The filter lattices of a Hilbert algebra and its minimal Brouwe-
rian extension are isomorphic.

Namely, if A is a Hilbert algebra and B is its minimal Brouwerian exten-
sion, then, as analysis of the transformations i and j in the proof of Theorem
6 shows, the filter J∗ of B which corresponds to a filter J of A is given by
J∗ := {∧P : P ⊆fin J}, and then J = J∗ ∩ A.
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