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Abstract

It is an open question whether the variety generated by the left divisi-
ble left distributive groupoids coincides with the variety generated by the
left distributive left quasigroups. In this paper we prove that every left
divisible left distributive groupoid with the mapping a �→ a2 surjective
lies in the variety generated by the left distributive left quasigroups.
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Many groupoids that satisfy the left distributivity

x · (y · z) = (x · y) · (x · z) (LD)

satisfy the idempotency
x · x = x (I)

too. An example of such a left distributive idempotent (LDI) groupoid is a group
G with the conjugacy, i.e. the operation xˆy = xyx−1. It was an open question
for a long time whether the groupoids of the group conjugacy (GC) generate
all the variety LDI or if there exists an equation that holds in GC and not in
LDI. This question was solved independently by D. Larue [7] and A. Drápal,
T. Kepka and R. Musílek [3]. Moreover, we have the following characterization:
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Theorem 1 (Joyce [5], Kepka [6], Larue [7]) The following varieties coincide:

• the variety generated by GC;
• the variety generated by the left cancellative LDI groupoids;
• the variety generated by the left divisible LDI groupoids;
• the variety generated by the LDI left quasigroups (i.e. left cancellative left
divisible LDI groupoids).

Does an analogous characterization hold without the idempotency? All left
divisible left distributive (LDLD) groupoids satisfy the following identity:

(x · x) · y = x · y (LI)

called the left idempotency: indeed, for all x, y, there exists z such that xz = y
and now x · y = x · (x · z) = (x · x) · (x · z) = (x · x) · y. It would be therefore
tempting to replace the idempotency in Larue’s theorem by the left idempotency.
Actually, T. Kepka [6] and P. Dehornoy [2] proved the following:

Theorem 2 (Dehornoy, Kepka) The following varieties coincide:

• the variety generated by the left cancellative left distributive left idempotent
(LCLDLI) groupoids;

• the variety generated by the left distributive left quasigroups (LDLQ);
• the variety generated by the groupoids of the half-conjugacy—given a group G
and a subset X of G, the half-conjugacy is the operation (a, x)ˆ(b, y) =
(axa−1b, y), where a, b ∈ G and x, y ∈ X.

In order to have a complete analogy the theorem Joyce–Kepka–Larue, it
remains to prove that the variety LDLD is the same as LDLQ=LCLDLI. One
inclusion is trivial and the second one remains an open question. In this paper,
we tackle the problem, showing a partial result.
If LDLD \CLDLI happens to be nonempty, there must exist an identity that

is satisfied in every LCLDLI groupoid but not in every LDLD one. The first
choice is to look at some identities that hold in LDLQ and not in LD. Some
of them were found by Larue [7] in the idempotent case. The shortest pair of
terms that are equivalent in GC and not in LDI is

((a · b) · b)) · (a · c) and (a · b) · ((b · a) · c). (1)

It was however proved in [8] that these terms are equivalent in LDLD.
In [7], Larue actually presented an infinite family of identities that hold in

GC and not in LDI. However, as the identities are constructed in a similar
manner as (1), there is little hope that some of them is a counterexample to
LDLD=LDLQ.
There is, actually, a new family of identities that hold in GC and do not

hold in LDI: they were discovered by J. Barborikov [1] and, in fact, they form
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a broader family of identities that includes all Larue’s ones. So far, we do
not know, whether these identities bring anything new to our study of LDLI
groupoids.
The aim of our article is different: to prove the hypothesis, not to reject

it. We have a partial result only—we study the class of LDLD groupoids that
satisfy a certain natural property, namely that the mapping a �→ a2 is surjective.
In Section 1 we present the mapping and we show some of its properties. In
Section 2 we prove that all LDLD groupoids with a �→ a2 surjective lie in the
variety LDLQ.

Acknowledgement The author wishes to thank the unknown referee who
helped to better point out the relevant features of the article.

1 Squaring mapping

As we work with non-associative algebras, many parentheses are formally needed.
Nevertheless, when working with LD groupoids, it is common to spare them.
We write xy · z instead of (x · y) · z and omitted parentheses mean branching to
the right, i.e. xyz = x · yz.
In this section we introduce a mapping called SG (meaning squaring or

successor) that plays a central rôle in our investigation. We start by recalling a
structural property of LDLI groupoids.

Proposition 1 ([4]) Let G be an LDLI groupoid. We define ipG to be the
smallest equivalence on G containing the pairs (a, a2). Then

• For all a, b, c in G, if (a, b) ∈ ipG then ac = bc.

• ipG is a congruence of G with its classes being subgroupoids of G.

Every class of ipG is thus a subgroupoid of G satisfying the identity yx = zx;
such a groupoid is essentially a unary algebra. It is natural to denote by S
(successor) the derived unary operation on each of the class. Or more precisely,
we define SG(x) = x · x as a unary operation on G. Moreover, it is easy to see
that SG is an endomorphism of G, for any LDLI groupoid G.

Proposition 2 Let G be an LDLI groupoid.

(i) If G is left cancellative then the endomorphism SG is injective;

(ii) If G is a left quasigroup then the endomorphism SG is bijective.

Proof (i) If a2 = b2 then (a, b) ∈ ipG and a2 = b2 = ab results in a = b due to
the left cancellativity.
(ii) Take a ∈ G. The left divisibility guarantees the existence of an x ∈ G

satisfying ax = a. Now a2 = (ax)2 = a · x2. And the left cancellativity gives
a = x2. �

Under the impression of the previous proposition, it is natural to expect that
the squaring is surjective in the case of LDLD groupoids. In fact, there exists
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neither a known counterexample nor a proof of the fact. Hence it is worth to
take a closer look at SG and try to find some equivalent translations.

Proposition 3 Let G be an LDLI groupoid. The following conditions are
equivalent:

(i) The endomorphism a �→ a2 is onto.

(ii) For each a in G, there exists an element x in G, satisfying a · x = a and
(a, x) ∈ ipG.

(iii) Every class of ipG is a left divisible groupoid.

Proof (i)⇒(ii): Given a ∈ G, there exists x satisfying x2 = a. Now a = x2 =
x2 · x = a · x.
(ii)⇒(i): Let x be an element satisfying ax = a and (a, x) ∈ ipG. According to
Proposition 1, we have xx = ax.
(ii)⇒(iii): Let b and c be ipG-equivalent elements in G. We want to find an
element x within the same congruence class, satisfying bx = c. But there exists
x, satisfying cx = c and (c, x) ∈ ipG. And, according to Proposition 1, we have
cx = bx.
(iii)⇒(ii): Evident. �

The proposition tells us that the behavior of SG in LDLD differs from the
behavior of SG in LCLDLI, although it looks similar on the first sight—we
want a property to carry over to some subgroupoids. And subgroupoids of left
divisible groupoids need not be left divisible in general.

2 Equality of varieties

In this section we prove that every LDLD groupoid with epimorphic SG lies in
the variety generated by LCLDLI. We will try to follow the same argumentation
as Larue used when proving the similar theorem for LDI; we just replace every
occurrence of the idempotency in his proof by the left idempotency. The proof
however implicitly needs the fact that SG is surjective—a fact that holds trivially
in the idempotent case.
First we measure how far is an LD groupoid from being left cancellative.

Lemma 1 (Kepka [6]) Let G be an LD groupoid. The relation ∼ defined by
a ∼ b ⇔ x1x2 · · ·xna = x1x2 · · ·xnb, for some x1, . . . , xn in G, is the smallest
congruence on G such that G/∼ is left cancellative.

The following lemma is the key lemma. We prove that LDLD groupoids
with surjective SG satisfy all LCLDLI identities of a special form.

Lemma 2 Let G be an LDLD groupoid with surjective SG. For any variables
g1, . . . , gm and terms u, v in n variables, the equality gm · · · g1u LDLI

= gm · · · g1v
implies that u and v have the same evaluation in G.
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Proof Suppose that we have

gm · · · g1u LDLI
= gm · · · g1v

for some variables g1, . . . , gm and terms u, v. The terms u and v are terms
in variables x1, . . . , xn, which can be written as u(x1, . . . , xn), respectively
v(x1, . . . , xn). Let us take a1, . . . , an in G arbitrary. We want to show

u(a1, . . . , an) = v(a1, . . . , an).

Each gi can be written as some xj . Denote gi = xσ(i). We claim by induction
that, for each 0 ≤ i ≤ m, there exist b1, . . . , bn from G such that

u(a1, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)u(b1, . . . , bn),
v(a1, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)v(b1, . . . , bn).

For i = 0 we put bi = ai and the result is vacuously true. Suppose now that all
such bk exist for some i and let us prove the result for i+1. For each 1 ≤ k ≤ n
we put b′k to be an element satisfying bσ(i+1)b

′
k = bk, such elements exist due

to the left divisibility. Moreover, we want (bσ(i+1), b
′
σ(i+1)) ∈ ipG, which is

guaranteed by Proposition 3. Now

u(a1, a2, . . . , an) = bσ(i)bσ(i−1) · · · bσ(1)u(b1, . . . , bn)
= (bσ(i+1)b

′
σ(i)) · (bσ(i+1)b

′
σ(i−1)) · · · (bσ(i+1)b

′
σ(1))

· u(bσ(i+1)b
′
1, . . . , bσ(i+1)b

′
n)

= bσ(i+1) · b′σ(i)b′σ(i−1) · · · b′σ(1) · u(b′1, . . . , b′n)
= b′σ(i+1)b

′
σ(i)b

′
σ(i−1) · · · b′σ(1) · u(b′1, . . . , b′n)

and similarly for v, which finishes the induction.
Now,

u(a1, . . . , an) = bσ(m)bσ(m−1) · · · bσ(1) · u(b1, . . . , bn)
= (xσ(m)xσ(m−1) · · ·xσ(1) · u)(b1, . . . , bn) = gmgm−1 · · · g1u(b1, . . . , bn)

and similarly for v. Since

gmgm−1 · · · g1u LDLI
= gmgm−1 · · · g1v,

we get u(a1, . . . , an) = v(a1, . . . , an) as desired. �

Proposition 4 (D. Larue [7]) For any terms w1, . . . , wk there exist integers
m, l, variables g1, . . . , gm and terms p1, . . . , pl such that

gm · · · g2g1u LD
= pl · · · p1wk · · ·w1u

for any term u.
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Proposition 5 Let G be an LDLD groupoid with SG surjective. Then G lies
in the variety generated by LCLDLI.

Proof We prove alternatively that G satisfies any identity from the equational
theory of LCLDLI. Consider arbitrary two terms u, v with u

LCLDLI
= v. According

to Lemma 1, there exist terms w1, . . . , wk such that wk · · ·w1u
LDLI
= wk · · ·w1v.

According to Proposition 4, there exist variables g1, . . . , gm and terms p1, . . . , pl
such that gm · · · g1z LD

= pl · · · p1wk · · ·w1z for all z. Now

gm · · · g1u LD
= pl · · · p1wk · · ·w1u

LDLI
= pl · · · p1wk · · ·w1v

LD
= gm · · · g1v

and we apply Lemma 2.
Since G satisfies any identity from the equational theory of LCLDLI, it has

to lie in the variety. �

References
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