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Witt algebra and the curvature of the Heisenberg
group

Zoltán Muzsnay, Péter T. Nagy

Abstract. The aim of this paper is to determine explicitly the algebraic
structure of the curvature algebra of the 3-dimensional Heisenberg group
with left invariant cubic metric. We show, that this curvature algebra is an
infinite dimensional graded Lie subalgebra of the generalized Witt algebra
of homogeneous vector fields generated by three elements.

1 Introduction
The notion of curvature algebra of a Finsler manifold is introduced in a previous
paper [4] of the authors and it is proved that this algebra is tangent to the holon-
omy group. This property used for the proof that the holonomy group of Finsler
manifolds of constant non-zero curvature cannot be a compact Lie group, if the
dimension of the manifold is greater than 2. The 3-dimensional Heisenberg group
with left invariant cubic metric was given as an example of Finsler manifolds having
infinite dimensional curvature algebra and holonomy group. The aim of this paper
is to describe explicitly the algebraic structure of this curvature algebra. We show,
that it is a filtered subalgebra of the generalized Witt algebra of Laurent polyno-
mial vector fields defined on a 3-dimensional vector space, which is generated by
three elements. We determine the generators of the curvature algebra in this Witt
algebra.

2 Preliminaries
Generalized Witt algebras

Let A be an abelian group, F be a field with char(F) = 0 and T a vector space
over F. The group algebra FA of A over F generated by the basis elements tJ ,
J ∈ A, and the multiplication of FA is defined by tJ tK = tJ+K . The unit of FA is
the element 1 = t0.
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Let us consider the tensor product

W = FA⊗F T = SpanF
{
tJ ⊗ ∂

∣∣ J ∈ A, ∂ ∈ T}.
The element of W is also denoted as tJ∂ := tJ ⊗ ∂. Now, if a given map (∂, J) 7→
∂(J) : T⊗A→ F is F-linear in the first variable and additive in the second variable,
then the bracket

[tJ∂1, t
K∂2] := tJ+K(∂1(K)∂2 − ∂2(J)∂1), J,K ∈ A, ∂1, ∂2 ∈ T, (1)

defines an infinite dimensional Lie algebra on the tensor product W . The Lie
algebra W with the Lie multiplication (1) is called a generalized Witt algebra over
the vector space T graded by the abelian group A.

Witt algebra Wn(F) over the vector space Fn

If A is the additive group of Zn with n > 0, then the group algebra FA is isomorphic
to the Laurent polynomial algebra F[t±1

1 , . . . , t±1
n ] over F. For an n-tuple J =

(j1, . . . , jn)∈Zn we write tJ = tj11 · · · tjnn . Let T be the linear span T = ⊕n
i=1F∂i of

the operators ∂i = ti
∂
∂ti

. If the map (∂, J) 7→ ∂(J) : T ⊗A→ F satisfies ∂i(J) = ji
then the corresponding generalized Witt algebra W =: Wn(F) can be identified
with the Lie algebra DerF(F[t±1

1 , . . . , t±1
n ]) of derivations of the Laurent polynomial

algebra F[t±1
1 , . . . , t±1

n ] over F, consisting of the Laurent polynomial vector fields

w(J ; i) = w(j1, . . . , jn; i) = tj11 · · · tjnn ti
∂

∂ti
,

where (t1, . . . , tn) ∈ Fn are the canonical coordinates in Fn (c. f. [2], [1]). A Lie
algebra isomorphic to the Lie algebra Wn(F) of Laurent polynomial vector fields is
called Witt algebra over the vector space Fn.

Lie subalgebras of Wn(F)
Let ω : Zn−1 → Z be an additive map. We consider the linear subspace Wω of the
Witt algebra Wn(F) generated by the basis consisting of the elements

w̄(κ; i) := w
(
κ, ω(κ); i

)
with κ = (k1, . . . , kn−1) ∈ Zn and i ∈ {1, . . . , n}. The Lie multiplication of Wn(F)
induces a Lie multiplication[

w̄(κ; i), w̄(λ; j)
]

=
[
w
(
κ, ω(κ); i

)
, w
(
λ, ω(λ); j

)]
on Wω which makes it a Lie subalgebra of Wn(F).

Definition 1. If F = R and ω(κ) = −(k1 + · · ·+ kn−1), then we denote the corres-
ponding Lie algebra by W 0

n(R), and W 0
n(R)⊆Wn(R) will be called the Lie algebra

of homogeneous vector fields on the vector space Rn.
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3 Curvature algebra of Finsler manifolds
A Finsler manifold (M,F) is a pair of an n-dimensional manifold M and of a
continuous function F : TM → R is (called Finsler functional) defined on the
tangent bundle of M , smooth on T̂M := TM \{0} and for any x ∈M the restriction
Fx = F|

TxM
of F to the tangent space TxM is a 1-homogeneous continuous function

such that for all y ∈ T̂xM = TMx \{0} the symmetric bilinear form gy : TxM ×
TxM → R defined by

gy : (u, v) 7→ gij(y)uivj =
1

2

∂2F2(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

(2)

is non-degenerate. (M,F) is called a singular Finsler manifold if the condition (2)
is assumed to be satisfied on an open dense cone in TxM . In the following we will
use the name Finsler manifold also for singular Finsler manifolds.

Geodesics of Finsler manifolds are determined by a system of 2nd order ordinary
differential equation ẍi + 2Gi(x, ẋ) = 0, i = 1, . . . , n in a local coordinate system.
The functions Gi(x, y) are called the spray coefficients belonging to the coordinate
system, which are given by

Gi(x, y) :=
1

4
gij(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk.

A vector field X(t) is parallel along a curve c(t) if and only if it is a solution of the
differential equation

∇ċX(t) :=
(dXi(t)

dt
+ Γi

j(c(t), X(t))ċj(t)
) ∂

∂xi
= 0, (3)

where Γi
j = ∂Gi

∂yj are the parameters of the associated non-linear connection. The
curvature tensor field

R(x,y) =

(
∂Γk

i

∂xj
−
∂Γk

j

∂xi
+ Γm

i

∂Γk
j

∂ym
− Γm

j

∂Γk
i

∂ym

)
dxi ⊗ dxj ⊗ ∂

∂yk
.

characterizes the integrability of the horizontal distributionHTM⊂TTM , which is
locally generated by the vector fields ∂

∂xi +Γk
i (x, y) ∂

∂yk , i = 1, . . . , n. The indicatrix

IxM (M,F) at x ∈M is defined by the hypersurface of TxM :

IxM := {y ∈ TxM ; F(y) = ±1}.

Since the parallel translation τc : Tc(0)M → Tc(1)M is a differentiable map between

T̂c(0)M and T̂c(1)M preserving the value of the Finsler functional, it induces a map

τIc : Ic(0)M −→ Ic(1)M (4)

between the indicatrices. The holonomy group Holx(M) of (M,F) at x ∈ M is
the subgroup of the group of diffeomorphisms Diff(IxM) of the indicatrix IxM
determined by parallel translation of IxM along piece-wise differentiable closed
curves initiated at the point x ∈M .
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Definition 2. A vector field ξ ∈ X(IxM) on the indicatrix IxM is called a curvature
vector field of the Finsler manifold (M,F) at x ∈ M , if there exists X,Y ∈ TxM
such that ξ = rx(X,Y ), where

rx(X,Y )(y) := R(x,y)(X,Y ). (5)

The Lie subalgebra Rx := 〈rx(X,Y ); X,Y ∈ TxM〉 of X(IxM) generated by the
curvature vector fields is called the curvature algebra of the Finsler manifold (M,F)
at the point x ∈M .

The following assertion is proved in [4]:
Theorem The curvature algebra Rx of a Finsler manifold (M,F) is tangent to
the holonomy group Holx(M) for any x ∈M .

4 Heisenberg group with left invariant cubic metric
The Finsler functional F of a Finsler manifold (M,F) is called cubic metric if it has
the form F(x, y)3 = apqr(x)ypyqyr, where apqr(x) are components of a symmet-
ric covariant tensor field. The tensor field aij(x, y) defined by F(x, y)aij(x, y) =
aijr(x)yr is called the basic tensor of (M,F). Let us denote

{ijk, r} =
1

4

(
∂aijr
∂xk

+
∂ajkr
∂xi

+
∂akir
∂xj

− ∂aijk
∂xr

)
.

According to equation (1.6.2.6) in [3], p. 595, the spray coefficients Gi(x, y) satisfy
the system of linear equations

3F(x, y)air(x, y)Gr(x, y) = {jkl, i}yjykyl. (6)

Let us consider the Heisenberg group H3 consisting of 3× 3-matrices

x =

 1 x1 x3

0 1 x2

0 0 1

 , (x1, x2, x3) ∈ R3.

The vector (x1, x2, x3) ∈ R3 is the coordinate representation of the element x ∈ H3.
The unit element of H3 in this coordinate representation is 0 = (0, 0, 0) ∈ R3 and
the group multiplication has the form

(x1, x2, x3) · (x′1, x′2, x′3) = (x1+x′1, x2+x′2, x3+x′3+x1x′2, ).

The Lie algebra h3 = T0H3 of H3 has the matrix representation

y1 ∂

∂x1
+ y2 ∂

∂x2
+ y3 ∂

∂x3
−→

 0 y1 y3

0 0 y2

0 0 0

 .

The left-invariant Berwald-Moór cubic Finsler functional F (c. f. [5], Example 1.1.5,
p. 8) on the Heisenberg group H3 is determined by the function F

0
: h3 → R sat-

isfying F
0
(y)3 := y1y2y3. If y = (y1, y2, y3) is a tangent vector at x ∈ H3, then

F(x, y) := F
0
(x−1y), and hence its coordinate expression is of the form

F(x, y)3 = y1y2
(
y3−x1y2

)
.
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Since F is left-invariant, the associated geometric structures (connection, geodesics,
curvature) are also left-invariant and the curvature algebras at different points are
isomorphic. The coefficients apqr(x) are the following:

a122 = a212 = a221 = −x1

3
, a123 = a231 = a312 = a321 = a213 = a132 =

1

6
,

aijj = ajij = ajji = 0 with i, j ∈ {1, 2, 3} and (i, j) 6= (1, 2).

Hence the right hand side of (6) gives {jkl, 1}yjykyl = {jkl, 3}yjykyl = 0 and

{jkl, 2}yjykyl =
3

4

∂ajk2(x)

∂x1
yjyky1 =

3

2

∂a122(x)

∂x1
y12

y2 = −1

2
y12

y2.

The matrix of the basic tensor field aij(x, y) is

(aij(x, y)) =
1

F(x, y)

 0 −x1

3 y
2 + 1

6y
3 1

6y
2

−x1

3 y
2 + 1

6y
3 −x1

3 y
1 1

6y
1

1
6y

2 1
6y

1 0

 .

This matrix is non-singular on the open dense cone determined by y1y2
(
y3−x1y2

)
6=

0 in TxM . In the following we will investigate on this domain. We obtain from
equations (6)

1

6
y2G1(x, y) +

1

6
y1G2(x, y) = 0.(

−x
1

3
y2 +

1

6
y3

)
G2(x, y) +

1

6
y2G3(x, y) = 0,(

−x
1

3
y2 +

1

6
y3

)
G1(x, y)− x1

3
y1G2(x, y) +

1

6
y1G3(x, y) = −1

6
y12

y2,

The solution yields

G1(x, y) = − y12
y2

2(y3−x1y2)
, G2(x, y) =

y1y22

2(y3−x1y2)
, G3(x, y) =

y1y2y3

2(y3−x1y2)
−y1y2.

The matrix of the parameters Γi
j of the associated non-linear connection is

(Γi
j(x, y)) =


− y1y2

y3−x1y2 − y12
y3

2(y3−x1y2)2
y12

y2

2(y3−x1y2)2

y22

2(y3−x1y2)
2y1y2y3−y1y22

x1

2(y3−x1y2)2 − y1y22

2(y3−x1y2)2

y2y3

2(y3−x1y2) − y
2 y1y32

2(y3−x1y2)2 − y
1 − x1y1y22

2(y3−x1y2)2

 .

The derivatives of Γi
j by x2 and x3 vanish, we compute their derivatives by x1:

(
∂Γi

j

∂x1
(x, y)

)
=


− y1y22

(y3−x1y2)2 − y12
y2y3

(y3−x1y2)3
y12

y22

(y3−x1y2)3

y23

2(y3−x1y2)2
y1y22

(3y3−y2x1)
2(y3−x1y2)3 − y1y23

(y3−x1y2)3

y22
y3

2(y3−x1y2)2
y1y2y32

(y3−x1y2)3 −y1y22
(y3+x1y2)

2(y3−x1y2)3

 .
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In the following we put x = 0 and we get

(Γi
j) =


−y1y2

y3 − y12

2y3
y12

y2

2y32

y22

2y3
y1y2

y3 −y1y22

2y32

−y2

2 −y1

2 0

 ,

(
∂Γi

j

∂x1

)
=


−y1y22

y32 −y12
y2

y32
y12

y22

y33

y23

2y32
3
2
y1y22

y32 −y1y23

y33

y22

2y3
y1y2

y3 −y1y22
y3

2y33

 .

Moreover

(
∂Γi

1

∂yj

)
=


−y2

y3 −y1

y3
y1y2

y32

0 y2

y3 − y22

2y32

0 − 1
2 0

 ,

(
∂Γi

2

∂yj

)
=


−y1

y3 0 y12

2y32

y2

y3
y1

y3 −y1y2

y32

− 1
2 0 0


and (

∂Γi
3

∂yj

)
=


y1y2

y32
y12

2y32 −y12
y2

y33

− y22

2y32 −y1y2

y32
y1y22

y33

0 0 0

 .

We obtain for
∂Γi

a

∂xb − ∂Γi
a

∂ym Γm
b , (a, b) = (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2) the fol-

lowing expressions:

(
∂Γi

1

∂x2 − ∂Γi
1

∂ym Γm
2

)
=


y12

y2

y32

− 5
4
y1y22

y32

1
2
y1y2

y3

, (
∂Γi

2

∂x1 − ∂Γi
2

∂ym Γm
1

)
=


− 7

4
y12

y2

y32

3
2
y1y22

y32

1
2
y1y2

y3

,

(
∂Γi

1

∂x3 − ∂Γi
1

∂ym Γm
3

)
=


0

1
2
y1y23

y33

− 1
4
y1y22

y32

, (
∂Γi

3

∂x1 − ∂Γi
3

∂ym Γm
1

)
=


5
4
y12

y22

y33

− 1
2
y1y23

y33

− 1
2
y1y22

y32

,

(
∂Γi

2

∂x3 − ∂Γi
2

∂ym Γm
3

)
=


1
2
y13

y2

y33

0

1
4
y12

y2

y32

, (
∂Γi

3

∂x2 − ∂Γi
3

∂ym Γm
2

)
=


− 1

2
y13

y2

y33

5
4
y12

y22

y33

0

.
Hence we can obtain the following curvature vector fields on the indicatrix I0(M)
at x = 0:

r0(1, 2)=
11

4


y12

y2

y32

−y1y22

y32

0

, r0(1, 3)=


− 5

4
y12

y22

y33

y1y23

y33

1
4
y1y22

y32

, r0(2, 3)=


y13

y2

y33

− 5
4
y12

y22

y33

1
4
y12

y2

y32

.
where we use the notation r0(i, j) = r0

(
∂

∂xi ,
∂

∂xj

)
. These vector fields r0(i, j), i < j,

i, j = 1, 2, 3 generate the curvature algebra r0 at x = 0.
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Let us consider the vector fields

Ak,m(a1, a2, a3) := a1Y
k+1,mE1 + a2Y

k,m+1E2 + a3Y
k,mE3,

defined on h3 = T0H3, where

(a1, a2, a3) ∈ R3, Ei =
∂

∂yi

∣∣∣
0
, i = 1, 2, 3,

and

Y k,m :=
y1ky2m

y3k+m−1
, k,m ∈ N.

Then the curvature vector fields r0(i, j), i = 1, 2, 3 can be written in the form

r0(1, 2)=
11

4
A1,1(1,−1, 0), r0(1, 3)=

1

4
A1,2(−5, 4, 1), r0(2, 3)=

1

4
A2,1(4,−5, 1).

We have that [
Ak,l(a1, a2, a3), Ap,q(b1, b2, b3)

]
= Ak+p,l+q(c1, c2, c3),

where

c1 = b1
(
(p+ 1)a1 + qa2 − (p+ q)a3

)
− a1

(
(k + 1)b1 + lb2 − (k + l)b3

)
,

c2 = b2
(
pa1 + (q + 1)a2 − (p+ q)a3

)
− a2

(
kb1 + (l + 1)b2 − (k + l)b3

)
,

c3 = b3
(
pa1 + qa2 − (p+ q − 1)a3

)
− a3

(
kb1 + lb2 − (k + l − 1)b3

)
.

With these preparations we are able to completely describe the structure of the
curvature algebra of the Heisenberg group as a Lie subalgebra of the Witt algebra
W3(R). We have the following

Theorem 1. The curvature algebra r0 of the Berwald-Moór left-invariant cubic
metric F on the Heisenberg groupH3 is isomorphic to the Lie subalgebraW〈h1,h2,h3〉
of W 0

3 (R) generated by the elements

h1 = w̄(1, 1; 1)− w̄(1, 1; 2),

h2 = −5w̄(1, 2; 1) + 4w̄(1, 2; 2) + w̄(1, 2; 3),

h3 = 4w̄(2, 1; 1)− 5w̄(2, 1; 2) + w̄(2, 1; 3).

In particular, r0 is infinite dimensional, and we have the following sequence of Lie
algebras:

r0 ∼= W〈h1,h2,h3〉 ⊂ W 0
3 (R) ⊂ W3(R).

where W 0
3 (R) is the Lie algebra of homogeneous vector fields and W3(R) is the

Witt algebra of Laurent polynomial vector fields on the vector space h3
∼= R3.
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