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A LYAPUNOV-BASED DESIGN TOOL OF IMPEDANCE
CONTROLLERS FOR ROBOT MANIPULATORS

Marco Mendoza, Isela Bonilla, Fernando Reyes
and Emilio González-Galván

This paper presents a design tool of impedance controllers for robot manipulators, based on
the formulation of Lyapunov functions. The proposed control approach addresses two challen-
ges: the regulation of the interaction forces, ensured by the impedance error converging to zero,
while preserving a suitable path tracking despite constraints imposed by the environment. The
asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot
dynamics and the impedance control, is demonstrated according to Lyapunov’s direct method.
The system’s performance was tested through the real-time experimental implementation of an
interaction task involving a two degree-of-freedom, direct-drive robot.
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1. INTRODUCTION

For decades, robotic systems have captured the attention of control researchers. The ma-
jority of these systems consider rigid robot manipulators, whose function is to perform
specific industrial tasks using their end-effectors. A common feature in many robotic
applications is the motion of the system in an unconstrained space i. e., the end-effector
and the links of the manipulator are not in contact with the environment. However,
several industrial and medical processes automated by robotic technology, require con-
tact or interaction between the robot manipulator and its environment. The control of
this interaction is crucial for the successful execution of many practical tasks where the
robot’s end-effector has to manipulate an object or perform some operation on a surface
[25]. During interaction, manipulation is fundamental and requires the manipulator to
be mechanically coupled to the object being manipulated, i. e., the manipulator may
not be treated as an isolated system. In interaction tasks, the manipulator encounters
environmental constraints and the interaction forces are not negligible [8].

Interaction control of a manipulator has been treated using, among others, two ge-
neral strategies; the first, referred to as hybrid position/force control [22], divides the
robot’s workspace into orthogonal directions that are constrained either in force or po-
sition, and an appropriate force or position controller for each direction is designed [20].
The main problem with hybrid position/force control lies on its failure to recognize the
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importance of the manipulator’s impedance [1]. The second strategy, referred to as
impedance control [8] is based on the control of the relationship between the interaction
force and the position errors, resulting from this force. The dynamic interaction between
the manipulator and its environment can be regulated and controlled by changing its me-
chanical impedance. Then, by means of an artificially-created end-effector compliance,
the robot manipulator is able to maneuver in constrained environments maintaining
adequate contact forces.

Impedance control represents a valuable tool in interaction tasks that do not require
that the manipulator exerts a specific value of force. Instead, it is important that the
robot adapts its dynamic behavior, during the contact, to achieve a desired compliant
response. Systems whose motion is determined as a response to force inputs are described
as admittances. When a robot manipulator is in contact with the environment, in order
to ensure physical compatibility with the environmental admittance, it should assume
the role of an impedance [8]. Due to the fact that the mechanical impedance is a
relationship between force and motion, the impedance control schemes are widely used
in industrial tasks, biological systems, and particularly in human-robot interaction such
as: robotic surgery [6, 7], rehabilitation therapy [15, 16, 19], control of prosthetic devices
[8], haptic devices [21], etc.

Impedance control has been implemented in many forms. In its simplest form it can
be considered as a generalization of a damping and stiffness-control schemes [30]. In
this form, it is essentially a PD position controller, with position and velocity feedback
gains adjusted in order to obtain different apparent impedances. Extending the control
of dynamic interaction, Hogan [8] presents a general and unified approach to implement,
in a robot manipulator, an impedance controller and generate a linear mass-spring-
damper, closed-loop system. Based on this approach, several control schemes have
been developed for interaction control. Among them, a robust nonlinear impedance
control was presented by Kazerooni [13]. The control approach introduced by Anderson
and Spong [1], referred to as hybrid impedance control (HIC), combines the impedance
control and the hybrid position/force control within a single strategy, ensuring a suitable
interaction. In [5], a force-commanded impedance controller which results in an optimal
combination of robustness and performance, is presented. In Carelli and Kelly [3], a
solution to the adaptive impedance control of constrained robots with the presence of
parametric uncertainties in the robot model, is presented. Recent contributions propose
the use of visual information to determine the position of the object that interacts with
the robot manipulator within an impedance and/or force control scheme [17, 18]. In
reference [9], an accurate and robust impedance control technique, based on internal
model control structure and time-delay estimation, is presented.

Inverse-dynamics control, presented in [24][26], is a known scheme to effectively decou-
ple the manipulator’s nonlinearly coupled degrees-of-freedom. Then, the control problem
is reduced to design a suitable control acceleration according to the control issue to be
solved. In this paper, a structure of such a control acceleration is proposed resulting in
an impedance-control design tool based on the formulation of Lyapunov functions. The
proposed approach represents a generalization of motion control to solve the constrained
motion problem of robot manipulators. Typical impedance controllers are used to re-
gulate the interaction between the manipulator and its environment, regardless of the
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tracking errors caused by this interaction [8]. In order to reduce the errors, the value of
the impedance parameters has to be increased and the compliant behavior of the robot
end-effector is jeopardized. The present impedance control approach was designed in
such a way that it solves both challenges: the regulation of the interaction forces and a
suitable path tracking. The interaction forces are indirectly regulated by ensuring con-
vergence to zero of the impedance error. The controller also allows for a suitable path
tracking, despite the constraints imposed by the environment. The control scheme has
two control loops. The first loop is an inner kinematic control loop where the reference
position for the controller is modified, by generating an adjustment vector for the robot
motion according to the contact forces measured via a wrist force/torque sensor. The
second loop is a motion controller that allows the solution of the path tracking problem,
even when the system is acted upon by environmental forces, enabling the system to
maintain a compliant behavior. Further, this approach allows to lead the closed-loop
system to an asymptotically-stable equilibrium point.

In addition to the theoretical issues of the proposed control approach, this paper also
presents a real-time experimental implementation of an interaction task that makes use of
a direct-drive robot manipulator of two degrees of freedom. Based on the experimental
results, a comparison between two impedance controllers, derived from the proposed
impedance-control approach, and the control proposed by Hogan in [8], is presented. The
L2 norm of impedance errors, as suggested in [11, 12, 14, 29], and the index presented
in [28], were used to evaluate the performance of each controller.

The layout of the paper is as follows. Section 2 summarizes the constrained, robot-
dynamic model. The design tool of impedance controllers and its Lyapunov-stability
analysis are presented in Section 3. Section 4 presents the most important aspects of
the experimental implementation of an interaction task used to test the performance
of the proposed impedance controllers. Finally, some concluding remarks are given in
Section 5.

2. MODEL OF THE SYSTEM

2.1. Robot manipulator

The kinematic description of the position of robot’s end-effector can be performed in
joint-space or task-space. In the first case, q represents the joint coordinates while in
task-space, x represents the posture (position and orientation) between the end-effector
and a fixed cartesian coordinate frame [26].

Direct kinematics mapping K : IRn 7→ IRm, relates the joint position vector q ∈ IRn

with the task posture vector x ∈ IRm, and is given by

x = K(q). (1)

The number of degrees of freedom of the robot manipulator is represented by n while m
is the dimension of its work space. First and second time derivatives of (1) correspond
to the differential relationships between velocities and accelerations, respectively, of the
joint and task spaces,

ẋ = J(q)q̇ (2)
ẍ = J(q)q̈ + J̇(q)q̇, (3)
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where J(q) = ∂K/∂q ∈ IRm×n is the analytical Jacobian matrix [24] and J̇(q) =
dJ/dt ∈ IRm×n is its time derivative.

Interaction tasks require the relationship between joint torques and corresponding
externally-applied forces and torques. In the joint-space representation, the generalized
joint torques are given by τ . On the other hand, in task-space, the vector f consists of
the force and torque components operating at the end-effector with respect to the fixed
Cartesian coordinate system. Based on the principle of virtual work, the joint applied
torques τ ∈ IRn, needed to generate the forces and torques f ∈ IRm on the end-effector,
are given by the following relationship [27]

τ = JT (q)f . (4)

The joint-space dynamics of a n-link constrained rigid robot manipulator, interacting
with the environment, can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) + fr(q̇) = τ − JT (q)fe (5)

where M(q) ∈ IRn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ IRn×n

is the Coriolis and centripetal acceleration matrix, g(q) ∈ IRn is the vector of gravi-
tational torques, fr(q̇) ∈ IRn is the vector of viscous-friction torques, and fe ∈ IRm

denotes the vector of contact forces and torques [2].

2.2. Environment

Two main groups encompassing several environment models, have been considered:

• Constrained. Interaction between the robot and a rigid environment includes
the models of impact, contact, Coulomb friction, and associated constraints.

• Compliant. The environment also can be modeled as a high-stiffness spring:

fe = Ke(x− xe) (6)

where Ke = diag{[ke · · · ke]} ∈ IRm×m represents the stiffness of an object located
at xe ∈ IRm. This linear relationship between force and deformation represents
a first approach to robot-environment modeling. Hogan [8] proposed a dynamic-
interaction model consisting of a generalized mass-spring-damper system.

In many applications, the interaction forces and torques between the end-effector and
a compliant environment can be approximated by the ideal elastic model of the form
(6). If the stiffness matrix Ke is positive definite, this model corresponds to a fully
constrained case and the environment deformation coincides with the elementary end-
effector displacement [25]. With high spring stiffness, the effective range of displacement
decreases and force is a more appropriate measurement. On the other hand, with lower
spring stiffness, the effective range of applied force decreases and the effector distance is
the more appropriate measurement.
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3. DESIGN TOOL FOR IMPEDANCE CONTROL

The impedance-control approach presented in this paper corresponds to a generaliza-
tion of motion control in task-space, by choosing a desired trajectory xd. It attempts
to maintain the following dynamic relationship [26],

xd − x = F(s)fe (7)

where
F(s) = [s2Md + sBd + Kd]−1 (8)

while the diagonal, positive definite, stiffness, damping and inertia matrices are respecti-
vely Kd ∈ IRm×m, Bd ∈ IRm×m and Md ∈ IRm×m. Then F(s) is a stable, second-order
linear filter.

The impedance error ξ̃ ∈ IRm can be defined as [3]:

ξ̃ = x̃− xfe (9)

where x̃ = xd − x represents the unconstrained tracking error and xfe = F(s)fe is the
adjustment vector obtained from the force filtering.

Formally, the aim of our impedance-control approach consists of selecting τ in such
a way that:

lim
t→∞

ξ̃(t) = 0 (10)

lim
t→∞

˙̃ξ(t) = 0. (11)

Note that, in absence of contact, i. e., if fe ≡ 0, the objective of impedance control is
equivalent to the objective of motion control in task-space. Therefore, this approach
to impedance control can be seen as a motion-control approach allowing a tolerance to
error in the tracking of the desired trajectory, in the presence of interaction forces.

Considering the definition of impedance error (9), the vectors

˙̃
ξ = ẋd − ẋ− ẋfe

(12)
¨̃ξ = ẍd − ẍ− ẍfe (13)

represent the first and second time derivatives of the impedance error, respectively.
The impedance-control structure proposed in this paper is based on the concept of

inverse dynamics [4, 24, 26], where the robot torques are selected as

τ = M(q)J−1(q)[a− J̇(q)q̇] + C(q, q̇)q̇ + g(q) + fr(q̇) + JT (q)fe. (14)

In the case of a kinematically redundant manipulator, i. e., with nonsquare Jacobian
matrix, a dynamically consistent generalized inverse of the Jacobian [2] can be adopted
as,

J†(q) = JT (q)[J(q)JT (q)]−1 (15)

which is referred to as right pseudoinverse. If J(q) is square, the pseudoinverse (15) is
reduced to the standard inverse Jacobian matrix J−1(q).
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By substituting the impedance-control law (14) in the dynamic model (5) and con-
sidering the time derivatives (2) – (3), the following is obtained,

ẍ = a. (16)

In order to solve the impedance-control problem, several controllers can be derived from
a design tool given by the following theorem.

Theorem 3.1. Let V (ξ̃, ˙̃ξ) be a positive-definite Lyapunov function (Appendix A) given
by

V (ξ̃,
˙̃
ξ) =

1
2

ξ̃

˙̃
ξ


T Kv Md

Md Md


ξ̃

˙̃
ξ

+ Up(ξ̃) (17)

where ξ̃ ∈ IRm represents the impedance-error vector, Kv ∈ IRm×m and Md ∈ IRm×m

are diagonal positive-definite matrices, and Up : IRm 7→ IR is an artificial potential energy
function such that

• Up(ξ̃) > 0 and Up(ξ̃) ≡ 0 ⇐⇒ ξ̃ = 0, ∀ξ̃ ∈ IRm.

• ξ̃
T
∇Up(ξ̃) > 0 and ξ̃

T
∇Up(ξ̃) ≡ 0 ⇐⇒ ξ̃ = 0, ∀ξ̃ ∈ IRm.

• ∇Up(ξ̃) ≡ 0 ⇐⇒ ξ̃ = 0.

where ∇Up(ξ̃) is the gradient of Up. Then, there exists some a ∈ IRm given by

a = ẍd − ẍfe + M−1
d [∇Up(ξ̃) + Kv

˙̃ξ] (18)

such that the origin of the closed-loop equation (16) is asymptotically stable in Lyapunov
sense.

P r o o f . First, by introducing (18) in (16) and considering the time derivative (13),
the following closed-loop system equation, by combining the robot model (5) and the
control scheme (14), can be obtained

d
dt

ξ̃

˙̃
ξ

 =

 ˙̃ξ

−M−1
d [∇Up(ξ̃) + Kv

˙̃ξ]

 . (19)

The equilibrium point of the system (19) exists under the following conditions:

a) A singularity-free work space, i. e. rank[J(q)] = n ∀q ∈ IRn, is considered.

b) From the upper term of (19) follows directly that ˙̃ξ = 0.
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c) Since Md > 0 ⇒ ∃ M−1
d > 0, then

Kv
˙̃
ξ ≡ 0 ⇐⇒ ˙̃

ξ = 0

∇Up(ξ̃) ≡ 0 ⇐⇒ ξ̃ = 0.

Therefore, the origin of the state space is an equilibrium point of the closed-loop system.
In order to carry out the Lyapunov-stability analysis of the equilibrium point, the

function (17) is considered. Then, the time derivative of (17) along the trajectories of
the closed-loop equation (19), after some algebra (Appendix B), can be written as:

V̇ (ξ̃, ˙̃ξ) = −ξ̃
T
∇Up(ξ̃)− ˙̃ξ

T

(Kv −Md)
˙̃ξ (20)

where ξ̃
T
∇Up(ξ̃) is positive definite and Kv and Md are selected in such a way that

λmin{Kv} > λmax{Md} (Appendix A). Then, V̇ (ξ̃, ˙̃ξ) < 0 and therefore it is possible
to conclude that the origin of the state space is asymptotically stable in Lyapunov
sense. �

In order to minimize the effect of jump condition, i. e. when the robot losses and
reestablishes the contact, the environment is treated as a mechanical impedance and the
impedance-controller parameters are suitably tuned to obtain a smooth transition. The
force/torque filtering xfe

is stable and the impedance parameters Kd = diag{[kd · · · kd]},
Bd = diag{[bd · · · bd]} and Md = diag{[md · · ·md]} can be selected according to

ωn =
√

kd + ke

md
(21)

ζ =
bd

2
√

md(kd + ke)
(22)

where the natural frequency ωn and the damping factor ζ determine the dynamic be-
havior during the phase transition and the constrained motion (Appendix C).

3.1. Impedance controllers

An extended family of control algorithms can be designed from the proposed impedance-
control structure (18) presented in Theorem 3.1. In this paper, two examples of control
algorithms were proposed and tested. These algorithms were selected based on its sim-
plicity and performance, without restricting the possibility of deriving other control
schemes based on the proposed design tool. The two examples are:

Example 3.1.1. By selecting,

Up(ξ̃) =
1
2
ξ̃

T
Kpξ̃

where Kp ∈ IRm×m is a diagonal positive-definite matrix of proportional gains, it can
be obtained that

∇Up(ξ̃) = Kpξ̃
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then
a = ẍd − ẍfe

+ M−1
d [Kpξ̃ + Kv

˙̃
ξ], (23)

and thus it can be observed that Kpξ̃ + Kv
˙̃
ξ represents a proportional-derivative (PD)

control action.

Example 3.1.2. Saturated regulators have shown very good performance in robot-
control tasks. The tanh(·) is a saturation function with smooth transition and also
attenuates the error, therefore, allows more versatility in the tuning of controller gains.
In order to design an impedance controller with a tanh-structure, fp is developed via
the integral of tanh(·) function:

ln{cosh (ξ̃i)} =
∫

tanh(ξ̃i) dξ̃i i = 1, . . . ,m.

If Kp=diag{[kp1 · · · kpm
]} then

∂[kpi ln{cosh (ξ̃i)}]
∂ξ̃i

= kpi tanh(ξ̃i).

Then, a saturated-proportional derivative controller can be designed by selecting,

Up(ξ̃) = fp(ξ̃)T Kpfp(ξ̃)

where

fp(ξ̃) =


√

ln{cosh (ξ̃1)}
...√

ln{cosh (ξ̃m)}

 .

Up has a quadratic form to ensure positivity of the function, therefore, the square root
in fp is only for compatibility with such a quadratic form. The gradient of Up is given
by

∇Up(ξ̃) = 2Kp

∂fp(ξ̃)

∂ξ̃
fp(ξ̃)

where

∂fp(ξ̃)

∂ξ̃
=

1
2


tanh (ξ̃1)√

ln{cosh (ξ̃1)}
0

. . .

0 tanh (ξ̃m)√
ln{cosh (ξ̃m)}

 .

Then
∇Up(ξ̃) = Kp tanh (ξ̃)

and therefore
a = ẍd − ẍfe

+ M−1
d [Kp tanh (ξ̃) + Kv

˙̃ξ]. (24)

This controller will be referred to as Tanh-D impedance control.
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3.2. Hogan’s impedance-controller

The fundamental idea underlying impedance control [8] is that environmental constraints
impose a relationship between the posture of a manipulator and the contact forces and
torques exerted by the environment. The equation for the desired behavior may be
regarded as a specification of the desired end-point acceleration, as a result of an external
force and torque imposed on the manipulator. Then, the control input in (14) is chosen
as

a = ẍd + M−1
d

[
Kdx̃ + Bd

˙̃x− fe

]
(25)

where the parameters Md, Bd y Kd are, respectively, the mass, damping and stiffness
of the desired mechanical impedance between the end-effector posture error x̃ and the
contact force and torque fe.

4. EXPERIMENTAL RESULTS

In order to provide experimental verification of the theoretical development presented
herein, this section presents the real-time experimental implementation of a robotic
interaction task, controlled by the proposed impedance-control structure. The experi-
mental results presented in this section only consider the position and force components
of x and fe, respectively.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

Fig. 1. Experimental setup.

4.1. Experimental setup

The experimental setup depicted in Figure 1 consists of a two degree-of-freedom, direct-
drive robot manipulator [23] with a force and torque sensor mounted at the end-effector.
The robot is composed by two aluminum links and the joints are actuated by two
Parker Compumotor direct-drive servomotors, whose torque limits are listed in Table 1.
Servomotors are operated in torque mode, i. e. they act as torque sources and receive
an analog voltage as a torque reference signal. Joint position data is obtained by using
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incremental encoders installed in the motors while the velocities are obtained through
numerical differentiation of the position measurements. In order to read the encoder’s
data and generate reference voltages, the robot includes a Precision MicroDynamics Inc.
motion control card. The control algorithms were written in C language and run in real
time, with a sample rate of 2.5 milliseconds, on a 166 MHz Pentium-I computer.

Joint Model Max. Torque(Nm) Resolution(ppr)
1. Shoulder DM-1150A 150 1,024,000
2. Elbow DM-1015B 15 1,024,000

Tab. 1. Torque limits of the robot servo actuators.

The interaction forces fe are measured explicitly by means of an appropriate force
sensor which is mounted at the end of manipulator, therefore, the system can be de-
coupled during interaction with the environment. In the control approach presented
herein, the impedance parameters are tuned according to a desired behavior. The tuned
parameters are used in a discrete model that represents the force filtering defined in
equations (7) – (8) and it was obtained by using a zero-order hold (Appendix C), in or-
der to obtain a motion adjustment, xfe in the impedance error (9), that is processed by
the controller. Force sensing was performed by using an ATI Industrial FT Gamma sen-
sor, whose measurements limits are listed in Table 2. The acquisition card for the sensor
was installed on a 3.6 GHz Pentium-IV computer and the signals were processed using
a Visual C++ application. In order to communicate the robot with the force sensor,
a communication protocol via parallel port was developed. With the purpose of gua-
ranteeing the stability of the robot system and in order to synchronize both computers,
sensor readings are sent by generating an interruption signal through the parallel port.
Force data are floating-point, sharing memory location within an 8-nibble structure,
enabling the sending of interaction-force information through the parallel port. Finally,
the robot is to interact with a planar, wooden wall with an estimated stiffness of about
Ke = diag{[104 104]} N/m.

Signal Operation range Units
fx, fy ± 130 N

fz ± 400 N
τx, τy, τz ± 10 Nm

Tab. 2. Force/torque sensor features.

4.2. Interaction task

The robot task consisted of tracking a pre-established trajectory without contact with
the environment. In the presence of external forces, the manipulator must follow the
trajectory imposed by the environment, regulating the contact forces in order to obtain
a suitable tracking.
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The desired trajectory was generated according to a cubic interpolation, with null
initial and final velocities. The initial joint configuration of the robot manipulator
was (qd1(0) = 5o, qd2(0) = −5o), corresponding to the Cartesian end-effector position
(0.0392 m, –1.1283 m). The final joint configuration was defined as (qd1(tf ) = 115o,
qd2(tf ) = −28o) which corresponds to the end-effector position (1.0869 m, 0.1545 m)
on the x-y plane. The trajectory was planned in such a way that the robot must arrive
to the final position in tf=10 seconds. In joint-space, with the purpose of avoiding
singularities of J(qd), the planned trajectory is given by

qd(t) = qd(0) + 3

(
∆q

t2f

)
t2 − 2

(
∆q

t3f

)
t3 (26)

where ∆q = qd(tf )−qd(0). Such a trajectory was transformed to Cartesian coordinates
using direct kinematics, in order to obtain the desired trajectory xd = [xd yd]T as,

xd(t) = l1 sin (qd1) + l2 sin (qd1 + qd2) (27)
yd(t) = −l1 cos (qd1)− l2 cos (qd1 + qd2). (28)

The desired velocity and acceleration can be obtained by differentiating (27) and (28).

4.3. Performance Results

The experimental results of PD-type (23), Tanh-D (24) and Hogan’s (25) impedance
controllers are depicted in Figure 2 – 5. In order to compare the performance of the
controllers, the interaction task described above was performed with the direct-drive
manipulator. In all cases, the wall was placed approximately at xe = 0.98 m.

Parameter PD Tanh-D Hogan Units
Kp diag{[600 600]} diag{[600 600]} - N/m
Kv diag{[60 60]} diag{[60 60]} - N·s/m
Kd diag{[10 10]} diag{[10 10]} diag{[10 10]} N/m
Bd diag{[25 25]} diag{[25 25]} diag{[25 25]} N·s/m
Md diag{[2 2]} diag{[2 2]} diag{[2 2]} kg

Tab. 3. Parameters of the impedance controllers.

Figure 2 shows the desired and actual end-effector paths. It is possible to observe
that the desired trajectory is accurately followed by the end-effector until it encounters
the wall, which imposes a vertical trajectory in x = 0.98 m. During the interaction with
the wall, the contact forces are regulated by the impedance parameters Kd, Bd and
Md.

Tuned parameters for the impedance controllers are listed in Table 3. In order to
compare the proposed controllers, similar tuned parameters are used in every case; Kp

was chosen on the basis of a trade-off between tracking accuracy during the free motion
and compliant behavior of the end-effector during the constrained motion, while Kv was
chosen in order to guarantee a well-damped behavior.
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Fig. 2. Trajectory on the x-y plane.
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Fig. 3. Impedance error and its time-derivative, respectively.

Figure 3 shows that, as time evolves, the impedance error ξ̃ tends to zero, in agreement
with the impedance control objective defined in eq. (10). Similarly, as shown at the

bottom of Figure 3, ˙̃ξ tends to zero, in agreement with the impedance control objective
presented in eq. (11). However, it can be observed that in the case of Hogan’s controller,
the impedance-error components increase during the interaction with the environment,
contrasting with those obtained with the controllers derived from the approach proposed
herein.

The forces generated by the contact between the end-effector and the wall in the x-
and y-direction, over time, are depicted in Figure 4. Notice that the contact forces are
null during the motion in free space and become different from zero after contact. Such
force components are due to impact and friction phenomena, which appears when the
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end-effector is moving over the surface. The maximum force component appears when
the end-effector contacts the wall, however, as detailed in eq. (7), the robot follows the
trajectory imposed by the environment with a compliant behavior of the end-effector.
Hence, the force values decrease when the interaction is regulated.
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Fig. 4. Interaction forces in x and y directions, respectively.
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Fig. 5. Applied torques to the manipulator’s joints: shoulder and

elbow, respectively.

Figure 5 depicts the torques applied to each joint. As seen in these graphs, the torques
generated for the impedance controllers do not exceed the saturation limits of the robot
motors listed in Table 1, ensuring their correct operation.

Previous results do not allow us to compare the tracking performance of the two pro-
posed controllers and the Hogan’s controller. With this purpose, the L2 norm criterion
has proven useful. The scalar-valued L2 norms of impedance error and its first derivative
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are given by

‖ξ̃‖L2 =

√
1
Te

∫ Te

0

‖ξ̃‖2 dt (29)

‖ ˙̃ξ‖L2 =

√
1
Te

∫ Te

0

‖ ˙̃ξ‖2 dt (30)

where Te ∈ IR+ is the duration of the experimental test, in this case, 10 seconds. A small
L2 value represents a better controller performance.
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Fig. 6. Performance index including the interaction forces.

The performance results represent the RMS average of the impedance errors of five
runs, under the same operation conditions. The performance indexes for the PD-type
impedance controller were ‖ξ̃‖L2 = 0.0054 m and ‖ ˙̃ξ‖L2 = 0.0083 m/sec, whereas for

the Tanh-D controller were ‖ξ̃‖L2 = 0.0047 m and ‖ ˙̃ξ‖L2 = 0.0062 m/sec. On the

other hand, for the Hogan’s controller were ‖ξ̃‖L2 = 0.0664 m, ‖ ˙̃ξ‖L2 = 0.0328 m/sec.
Considering these results, we can conclude that the Tanh-D impedance controller had
the best tracking performance when compared using the scalar-valued L2 norm criterion.

The comparison criteria used above is useful only to measure the performance of
controllers in path tracking, however, in an interaction task, the regulation of the forces
generated during the contact between the end-effector and its environment is significant
in the controller performance. In order to analyze the performance of the impedance
controllers considering the contact forces, the interaction performance index presented
in [28] was used, which is given by

J =
ξ̃

T
ξ̃

xT
r xr

+
fT

e fe

fT
maxfmax

(31)

where xr is the reference trajectory defined as xr = xd − xfe , and fmax represents the
maximum force.
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The results of the performance evaluation obtained using the index (31) are presented
in Figure 6. The data in this figure represent the average of the impedance errors and
contact forces of five runs, under the same operation conditions. By considering the
smallest value as the best performance, it can be observed that Than-D controller had,
marginally, a better behavior during the development of the interaction task.

5. CONCLUSIONS

In this paper, an approach to impedance control was presented, which consists of
an extension of motion control in task-space for robot manipulators. The proposed
impedance-control approach allows for an accurate trajectory tracking in both interac-
tion task phases, i. e. a correct unconstrained and/or constrained motion tracking. The
impedance-control approach leads to a closed-loop equilibrium point locally, asympto-
tically stable in Lyapunov sense. This impedance-control structure represents a design
tool that can be used to generate several impedance controllers. Two controllers were
derived from the proposed approach and, in order to evaluate their performance, an
experimental validation was implemented using a direct-drive, robot manipulator.

The experimental results enabled us to verify the ability of the proposed impedance-
control approach to perform interaction tasks. The scalar-valued L2 norm provided a
suitable index used to compare the tracking performance of the proposed impedance
controllers which, for the cases presented herein, favors the Tanh-D controller over the
PD-type controller and the controller proposed by Hogan, as it provides the smallest
L2 norm. Additionally the performance J of equation (31) was used to evaluate the
impedance controllers during the interaction, and the Tanh-D controller had the best
behavior during the development of the task.

A. PROOF OF POSITIVITY OF LYAPUNOV FUNCTION

The first term of (17) is positive definite due to its quadratic form, where Kv and Md

are diagonal positive definite matrices, then

KvMd −MdMd > 0
(Kv −Md)Md > 0

Kv −Md > 0

such that

Kv > Md

I > K−1
v Md

ρ(I) > ρ(K−1
v Md) =⇒ ρ(K−1

v Md) < 1 (32)

where ρ(K−1
v Md) is the spectral radius of K−1

v Md, defined as ρ(K−1
v Md) = max{|λ| :

λ ∈ σ(K−1
v Md)} where σ(K−1

v Md) is the spectrum or set of all eigenvalues of K−1
v Md

[10]. Then, in order to fulfill the condition (32), the following is selected,

λmin{Kv} > λmax{Md}. (33)
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While the second term of (17), Up(ξ̃), is the artificial potential energy function in-
duced by the control law, and also it is a positive definite function with respect to the
impedance error ξ̃, according to the design properties formulated in Theorem 3.1, and
thus V (ξ̃,

˙̃
ξ) > 0 as well as a radially unbounded function.

B. TIME DERIVATIVE OF LYAPUNOV FUNCTION

The time derivative of Lyapunov function (17) is given by

V̇ (ξ̃, ˙̃ξ) =

ξ̃

˙̃
ξ


T Kv Md

Md Md


 ˙̃

ξ

¨̃ξ

+∇Up(ξ̃)T ˙̃ξ

= ˙̃
ξ

T

Md
¨̃ξ + ˙̃

ξ
T

Md
˙̃ξ + ξ̃

T
Md

¨̃ξ + ξ̃
T
Kv

˙̃ξ +∇Up(ξ̃)T ˙̃ξ. (34)

Along the trajectories of the closed-loop equation (19), the derivative (34) can be rewrit-
ten as

V̇ (ξ̃,
˙̃
ξ) = ˙̃

ξ
T

Md{−M−1
d [∇Up(ξ̃) + Kv

˙̃ξ]}+ ˙̃ξ
T

Md
˙̃ξ + ξ̃

T
Md{−M−1

d [∇Up(ξ̃)

+Kv
˙̃ξ]}+ ξ̃

T
Kv

˙̃ξ +∇Up(ξ̃)T ˙̃ξ,

= − ˙̃ξ
T

∇Up(ξ̃)− ˙̃ξ
T

Kv
˙̃ξ + ˙̃ξ

T

Md
˙̃ξ − ξ̃

T
∇Up(ξ̃)− ξ̃

T
Kv

˙̃ξ + ξ̃
T
Kv

˙̃ξ

+∇Up(ξ̃)T ˙̃ξ.

Finally, after some algebra

V̇ (ξ̃,
˙̃
ξ) = −ξ̃

T
∇Up(ξ̃)− ˙̃ξ

T

(Kv −Md)
˙̃ξ. (35)

C. PRACTICAL ISSUES AND IMPLEMENTATION OF IMPEDANCE
CONTROLLERS

C.1. Tuning of the impedance parameters

The selection of the impedance-parameter values can be carried out according to the
desired dynamic behavior during interaction. By considering Kd = diag{[kd · · · kd]},
Bd = diag{[bd · · · bd]} and Md = diag{[md · · ·md]}, equation (7) can be rewritten as

md(ẍd − ẍ) + bd(ẋd − ẋ) + kd(xd − x) = fe. (36)

In addition, from the model (6), fe = ke(x−xe). If xd is constant, the dynamics of the
manipulator and environment system along the operational space is described by

mdẍ + bdẋ + (kd + ke)x = kdxd + kexe. (37)
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Then, the following transfer function is obtained

F(s) =
1

s2 + bd

md
s + kd+ke

md

. (38)

According to the known response of a second-order system

ω2
n =

kd + ke

md
ωn =

√
kd + ke

md
(39)

=⇒

2ζωn =
bd

md
ζ =

bd

2
√

md(kd + ke)
(40)

Therefore, the tuning of impedance parameters is determined by the type of desired
response: underdamped, critically damped and overdamped.

C.2. Practical implementation of the force filtering

The force filtering defined in equations (7) – (8) was implemented using a discretized
state-space model. By considering Kd = diag{[kd · · · kd]} ∈ IRm×m, Bd = diag{[bd · · · bd]}
∈ IRm×m and Md = diag{[md · · ·md]} ∈ IRm×m, the transfer-function model of force
filtering is given by

xfe =
1

mds2 + bds + kd
fe, (41)

where xfe = [xf1 · · ·xfm ]T and fe = [fe1 · · · fem ]T .
The contact forces fe are measured explicitly by means of an appropriate force sensor,

therefore, the system can be decoupled during interaction with the environment, and
the force filtering of each component can be written in state space as

zfi = Azfi + Bfei (42)

where i = 1, . . . ,m and

zfi
=

[
xfi

ẋfi

]
(43)

A =
[

0 1
−kd/md −bd/md

]
(44)

B =
[

0
1/md

]
. (45)

By using a zero-order hold the force filtering can be represented by the following
discrete model

zfi(k + 1) = Φzfi(k) + Γfi(k) (46)

where k represents the kth sample,

Φ = eAh =
[

α0 α1

−(kd/md)α1 α0 − (bd/md)α1

]
(47)

Γ =
∫ h

0

eAσB dσ =
1

md

[ ∫ h

0
α1 dσ∫ h

0
[α0 − (bd/md)α1] dσ

]
(48)
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with h as sampling period and

α0 =
λ1eλ2h − λ2eλ1h

λ1 − λ2
(49)

α1 =
eλ1h − eλ2h

λ1 − λ2
. (50)

The eigenvalues λ1 and λ2 are given by

λ1,2 =
−bd ±

√
b2
d − 4kdmd

2md
. (51)

Therefore, by tuning the impedance parameters (kd, bd, md) and using the model
(46), the adjustment vector xfe can be computed from zfi(k), in order to implement
the proposed impedance controllers.

(Received November 8, 2011)
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versidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Col. San Manuel, Puebla, Pue.,

72570. Mexico.

e-mail: freyes@ece.buap.mx
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