Communications in Mathematics

Florian Luca
On a problem of Bednarek

Communications in Mathematics, Vol. 20 (2012), No. 2, 79--80

Persistent URL: http://dml.cz/dmlcz/143140

Terms of use:

© University of Ostrava, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Editor-in-Chief

Olga Rossi, The University of Ostrava \& La Trobe University, Melbourne

Division Editors

Ilka Agricola, Philipps-Universität Marburg
Attila Bérczes, University of Debrecen
Anthony Bloch, University of Michigan
George Bluman, The University of British Columbia, Vancouver
Yong-Xin Guo, Eastern Liaoning University, Dandong
Haizhong Li, Tsinghua University, Beijing
Vilém Novák, The University of Ostrava
Štefan Porubský, Academy of Sciences of the Czech Republic, Prague
Geoff Prince, La Trobe University, Melbourne
Thomas Vetterlein, Johannes Kepler University Linz

Technical Editors

Jan Štěpnička, The University of Ostrava
Jan Šustek, The University of Ostrava

On a problem of Bednarek

Florian Luca

Abstract

We answer a question of Bednarek proposed at the 9th Polish, Slovak and Czech conference in Number Theory.

There are several problems in the literature concerning various arithmetic properties of the digit sum number function, see e.g. [1] and the references given there. In this paper, we deal with a particular problem. Namely, at the 9th Polish, Slovak and Czech Conference on Number Theory, June 11-14, 2012, W. Bednarek (via A. Schinzel) asked the following question.

Question Is there a positive integer n divisible by $\underbrace{\overline{11 \ldots 1}}_{k \text { times }}$ whose digit sum is less
than k ?
Here, we prove that the answer is no in a slightly more general setting. For integers $N \geq 1$ and $b \geq 2$, let $N=\overline{d_{m} d_{m-1} \ldots d_{0}}(b)$ be the base b representation of N, where $d_{0}, \ldots, d_{m} \in\{0,1, \ldots, b-1\}$ with $d_{m} \neq 0$. We have the following result.

Proof. We may assume that $k \geq 2$, otherwise there is nothing to prove. Write

$$
n=\sum_{i=0}^{m} d_{i} b^{i}
$$

where d_{0}, \ldots, d_{m} are in $\{0,1, \ldots, b-1\}$ with $d_{m} \neq 0$. We may also assume that $d_{0} \neq 0$. Put $N=\left(b^{k}-1\right) /(b-1)$. Then $b^{k} \equiv 1(\bmod N)$. Thus,

$$
n \equiv \sum_{j=0}^{k-1} c_{j} b^{j} \quad(\bmod N)
$$

where

$$
c_{j}=\sum_{\substack{0 \leq i \leq m \\ i \equiv j \\(\bmod k)}} d_{i} .
$$

It is clear that $c_{0}+\cdots+c_{k-1}$ is the sum of the digits of n.
For each $\ell \in\{0,1, \ldots, k-1\}$, put

$$
r_{j, \ell}=j+\ell-k\left\lfloor\frac{j+\ell}{k}\right\rfloor,
$$

and consider the integer

$$
m_{\ell}=\sum_{j=0}^{k-1} c_{j} b^{r_{j, \ell}} .
$$

Note that since $b^{k} \equiv 1(\bmod N)$, it follows that

$$
m_{\ell} \equiv \sum_{j=0}^{k-1} b^{j+\ell} c_{j} \quad(\bmod N) \equiv b^{\ell} n \quad(\bmod N) \equiv 0 \quad(\bmod N),
$$

and since $c_{j}>0$ for some j, we get that $m_{\ell} \geq N$. Summing this up for all $\ell \in\{0,1, \ldots, k-1\}$, we get

$$
k N \leq \sum_{\ell=0}^{k-1} \sum_{j=0}^{k-1} b^{r_{j, \ell}} c_{j}=\sum_{j=0}^{k-1} c_{j} \sum_{\ell=0}^{k-1} b^{r_{j, \ell}}=N \sum_{j=0}^{k-1} c_{j}
$$

so $\sum_{j=0}^{k-1} c_{j} \geq k$, which is what we wanted to prove.
Note After this paper was submitted, we learned that Bednarek's question was also asked by Zhi-Wei Sun in [3], who solved the particular case when the modulus b is a prime. We also learned that the main result of this paper was obtained independently by Pan in [2].
Acknowledgements I thank the referee for comments which improved the quality of this note and Professor A. Schinzel for advice. This work was supported in part by Project PAPIIT 104512 and a Marcos Moshinsky fellowship.

References

[1] F. Luca: Arithmetic properties of positive integers with a fixed digit sum. Revista Matematica Iberoamericana 22 (2006) 369-412.
[2] H. Pan: On the m-ary expansion of a multiple of $\left(m^{k}-1\right) /(m-1)$. Publ. Math. Debrecen, to appear.
[3] Z.-W. Sun: On divisibility concerning binomial coefficients. J. Austral. Math. Soc., in press, arXiv:1005.1054.

Author's address:
Florian Luca: Centro de Ciencias de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México
E-mail: fluca@matmor.unam.mx

Received: 15 June, 2012
Accepted for publication: 24 August, 2012
Communicated by: Attila Bérczes

