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Associative and Lie deformations of Poisson algebras

Elisabeth Remm

Abstract. Considering a Poisson algebra as a nonassociative algebra satisfy-
ing the Markl-Remm identity, we study deformations of Poisson algebras as
deformations of this nonassociative algebra. We give a natural interpreta-
tion of deformations which preserve the underlying associative structure and
of deformations which preserve the underlying Lie algebra and we compare
the associated cohomologies with the Poisson cohomology parametrizing
the general deformations of Poisson algebras.

1 Introduction
The Poisson bracket is a multiplication which naturally appears when studying de-
formations of associative commutative algebras. For instance the algebra C∞(R2)
with its ordinary multiplication µ = µ0 admits a formal deformation

∑∞
0 tnµn

such that the skew-symmetric bracket {a, b} = µ1(a, b) − µ1(b, a) is the classical
Poisson bracket (recalled in Section 2). This deformation is connected to the star
product and then to the theory of deformation quantization (see Section 1 of [10]).
This naturally leads to study deformations of Poisson algebras. But a Poisson
algebra is usually defined by two multiplications, an associative commutative one
a ∗ b and a Lie bracket {a, b} (also called Poisson bracket) which are linked by the
Leibniz rule {a ∗ b, c} = a ∗ {b, c}+ {a, c} ∗ b. The deformations of Poisson algebras
which are classically considered consist of those deforming the Lie bracket while the
associative product remains unchanged. The first studied Poisson algebras were
defined on associative algebras of functions whose product is undeformable. This
explains why this type of deformations, that we call Lie deformations of Poisson
algebras, were first studied. They are parametrized by the Poisson-Lichnerowicz
cohomology. Here we want to give a general approach of deformations of Poisson
algebras, that is, we make deformations where both products are deformed. We
then use the presentation of Poisson algebras in [13] with a single nonassociative
multiplication which capture all informations. Then we find the Lie deformations
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as a particular case of deformations of this single multiplication but also the asso-
ciative deformations obtained by deforming the associative product and letting the
Lie bracket unchanged. We call Poisson-Hochschild the cohomology parametrizing
the associative deformations (see Section 4.2). We then describe the Poisson coho-
mology parametrizing the general deformations of Poisson algebras and study the
interactions between Poisson, Poisson-Lichnerovicz and Poisson-Hochschild coho-
mologies.

2 Generalities on Poisson algebras
2.1 Definition

Let K be a field of characteristic 0. A K-Poisson algebra is a K-vector space P
equipped with two bilinear products denoted by x∗y and {x, y}, with the following
properties:

1. The couple (P, ∗) is an associative commutative K-algebra.

2. The couple (P, {·, ·}) is a K-Lie algebra.

3. The products ∗ and {·, ·} satisfy the Leibniz rule:

{x ∗ y, z} = x ∗ {y, z}+ {x, z} ∗ y

for any x, y, z ∈ P.

The product {·, ·} is usually called Poisson bracket and the Leibniz identity means
that the Poisson bracket acts as a derivation of the associative product.

Classical examples: Poisson structures on the polynomial algebra. The polynomial
algebra An = C[x1, . . . , xn] is provided with several Poisson algebra structures.
These examples are well studied, see, for example, [2], [8], [20] for results on clas-
sifications, or [16] for the study of the Poisson-Lichnerowicz cohomology.

2.2 Non standard example: Poisson algebras defined by a contact structure

The first Poisson structures appeared in classical mechanics. In 1809 Siméon Denis
Poisson introduced a bracket in the algebra of smooth functions on R2r:

{f, g} =

r∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

This classical example has a natural generalization in symplectic geometry ([3]):
Let (M2p, θ) be a symplectic manifold. For any Pfaffian form α on M2p, we will
denote by Xα the vector field defined by α = i(Xα)θ, where i(X) is the interior
product by X: (i(X)θ)(Y ) = θ(X,Y ). The Poisson bracket of two Pfaffian forms
α, β on M2p is the Pfaffian form {α, β} = i([Xα, Xβ ])θ. If D(M2p) denotes the
associative commutative algebra of smooth functions on M2p, we provide it with
a Poisson algebra structure letting {f, g} = −θ(Xdf , Xdg). This Poisson bracket
satisfies d({f, g}) = {df, dg}.

We can also define a Poisson bracket in contact geometry ([5]). Let (M2p+1, α)
be a contact manifold, that is, α is a Pfaffian form on the (2p + 1)-dimensional
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differential manifold M2p+1 satisfying (α ∧ (dα)p)(x) 6= 0 for any x ∈ M2p+1.
There exists one and only one vector field Zα on M2p+1, called the Reeb vector
field of α, such that α(Zα) = 1 and i(Zα)dα = 0 at any point of M2p+1. Let
Dα(M2p+1) be the set of first integrals of Zα, that is,

Dα(M2p+1) = {f ∈ D(M2p+1), Zα(f) = 0} .

Since we have Zα(f) = i(Zα)df = 0, then df is invariant by Zα.

Lemma 1. Dα(M2p+1) is a commutative associative subalgebra of D(M2p+1).

Proof. This is a consequence of the classical formulae

Zα(f + g) = Zα(f) + Zα(g) and Zα(fg) =
(
Zα(f)

)
g + f

(
Zα(g)

)
.

�

Lemma 2. For any non zero Pfaffian form β on M2p+1 satisfying β(Zα) = 0, there
exists a vector field Xβ with β(Y ) = dα(Xβ , Y ) for any vector field Y . Two vector
fields Xβ and X ′β with this property satisfy i(Xβ −X ′β)dα = 0.

This means that Xβ is uniquely defined up to a vector field belonging to the
distribution given by the characteristic space of dα,

A(dα)x = {Xx ∈ TxM2p+1, i(Xx)dα(x) = 0} .

In any Darboux open set, the contact form writes as α = x1dx2 + · · ·+x2p−1dx2p+
dx2p+1. The Reeb vector field is Zα = ∂/∂x2p+1 and the form β satisfying β(Zα) =

0 writes as β =
∑2p
i=1 βidxi. Then we have

Xβ =

p∑
i=1

(β2i∂/∂x2i−1 − β2i−1∂/∂x2i) .

For any f ∈ Dα(M2p+1), we writes Xf for Xdf .

Theorem 1. The algebra Dα(M2p+1) is a Poisson algebra.

Proof. (see [5]). Let f1, f2 be in Dα(M2p+1). Since we have

dα(Xf1 , Xf2) = dα(Xf1 + U1, Xf2 + U2)

for any U1, U2 ∈ A(dα), the bracket

{f1, f2} = dα(Xf1 , Xf2)

is well defined. It is a Poisson bracket. �
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2.3 Poisson algebra viewed as nonassociative algebra

In [13], we prove that any Poisson structure on a K-vector space is also given by a
nonassociative product denoted by xy and satisfying the nonassociative identity

3A(x, y, z) = (xz)y + (yz)x− (yx)z − (zx)y , (1)

where A(x, y, z) is the associator A(x, y, z) = (xy)z−x(yz). In fact, if P is a Poisson
algebra with associative product x ∗ y and Poisson bracket {x, y}, then xy is given
by xy = {x, y}+x∗y. Conversely, the Poisson bracket and the associative product
of P are the skew-symmetric part and the symmetric part of the product xy. Thus
it is equivalent to present a Poisson algebra classically or by this nonassociative
product.

If P is a Poisson algebra given by the nonassociative product (1), we denote by
gP the Lie algebra on the same vector space P whose Lie bracket is {x, y} = xy−yx

2
and by AP the commutative associative algebra, on the same vector space, whose
product is x ∗ y = xy+yx

2 .
In [7], we have studied algebraic properties of the nonassociative algebra P.

In particular we have proved that this algebra is flexible, power-associative, and
admits a Pierce decomposition.

Remark 1. A class of Poisson algebras is already defined with a single noncommu-
tative multiplication but starting with a Jordan algebra. In [19], a noncommutative
Jordan algebra is viewed as a Jordan commutative algebra J with an additional
skew-symmetric operator [·, ·] : J × J → J such that

[x2, y] = 2[x, y] · x .

This definition is equivalent to consider only one multiplication satisfying

(xy)x− x(yx) = (x2y)x− x2(yx).

A particular class of such algebras for which A(+) is associative corresponds to
Poisson algebras.

2.4 Classification of complex Poisson algebras of dimension 2 and 3

If e is an idempotent of the associative algebra, then the Leibniz rule implies that
it is in the center of the Lie algebra corresponding to the Poisson bracket. In fact
if e satisfies e ∗ e = e, thus {e ∗ e, x} = 2e ∗ {e, x} = {e, x}. But if y is a non zero
vector with e ∗ y = λy, then

(e ∗ e) ∗ y = e ∗ y = λy = e ∗ (e ∗ y) = λ2y.

This gives λ2 = λ, that is, λ = 0 or 1. Since we have e ∗ {e, x} = 2−1{e, x}, the
vector {e, x} is zero for any x and e is in the center of the Lie algebra corresponding
to the Poisson bracket. This remark simplifies the determination of all possible
Poisson brackets when the associative product is fixed. In the following, we give
the associative and Lie products in a fixed basis {ei} and the null products or
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the products which are deduced by commutativity or skew-symmetry are often not
written.

Dimension 2

algebra associative product Lie product

P2
1 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

e2 ∗ e2 = e2

P2
2 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

P2
3 e1 ∗ e1 = e2 {ei, ej} = 0

P2
4 e1 ∗ e1 = e1 {ei, ej} = 0

P2
5 ei ∗ ej = 0 {e1, e2} = e2

P2
6 ei ∗ ej = 0 {ei, ej} = 0

Dimension 3

P3
1 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

e3 ∗ e3 = e3

P3
2 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

e3 ∗ e3 = e2 − e1

P3
3 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

P3
4 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e3 ∗ e3 = e2

P3
5 e1 ∗ ei = ei , i = 1, 2, 3 {e2, e3} = e3

P3
6 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

P3
7 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

e2 ∗ e2 = e2

P3
8 e1 ∗ e1 = e1 {e2, e3} = e3

P3
9 e1 ∗ e1 = e1 {ei, ei} = 0

P3
10 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

P3
11 e1 ∗ e1 = e1 {ei, ej} = 0

e2 ∗ e2 = e3

P3
12(b) e1 ∗ e1 = e2 {e1, e3} = e2 + be3

P3
13 e1 ∗ e1 = e2 {e1, e3} = e3

P3
14 e1 ∗ e1 = e2 {ei, ej} = 0

P3
15 e1 ∗ e1 = e2 {ei, ej} = 0

e1 ∗ e2 = e3

P3
16(a) ei ∗ ej = 0 any Lie algebra
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It is also possible to establish this classification in small dimension starting from
the nonassociative product. We can use, for example, technics used in [4] where
we classify all the complex 2-dimensional algebras (and in particular the Poisson
algebras).

3 Deformations of Poisson algebras
In this section we recall briefly the classical notion of formal deformations of a
K-algebra. These deformations are parametrized by a cohomology, called deforma-
tion cohomology, which is often difficult to define globally and to compute explicitly.
But using the operadic approach, we can sometimes obtain this cohomology using
the associated operad: when the operad is Koszul, which is the case for the op-
erad associated to Poisson algebras. When the operad is non Koszul the operadic
and deformation cohomologies differ and the last one is even more complicated
to describe see [14]. Using the Markl-Remm definition of a Poisson algebra, we
describe the formal deformations. So in this section, we mean by Poisson algebra
a K-algebra defined by a nonassociative product satisfying Identity (1).

3.1 Formal deformations of a Poisson algebra

Let R be a complete local augmented ring such that the augmentation ε takes
values in K. If B is an R-Poisson algebra, we consider the K-Poisson algebra
B = K ⊗R B given by α(β ⊗ b) = αβ ⊗ b, with α, β ∈ K and b ∈ B. It is clear
that B satisfies (1). An R-deformation of a K-Poisson algebra A is an R-Poisson
algebra B with a K-algebra homomorphism

% : B → A .

A formal deformation of A is an R-deformation with R = K[[t]], the local ring
of formal series on K. We assume also that B is an R-free module isomorphic to
R⊗A.

Let K[Σ3] be the K-group algebra of the symmetric group Σ3. We denote by
τij the transposition exchanging i and j and by c the cycle (1, 2, 3). Every σ ∈ Σ3

defines a natural action on any K-vector space W by:

Φσ : W⊗
3 −→ W⊗

3

x1 ⊗ x2 ⊗ x3 −→ xσ(1) ⊗ xσ(2) ⊗ xσ(3).

We extend this action of Σ3 to an action of the algebra K[Σ3]. If v = Σiaiσi ∈
K[Σ3], then

Φv = ΣiaiΦσi
.

Consider vP the vector of K[Σ3]

vP = 3Id− τ23 + τ12 − c+ c2.

Let P be a Poisson algebra and µ0 its (nonassociative) multiplication. Identity (1)
writes as

(µ0 ◦1 µ0) ◦ ΦvP − 3(µ0 ◦2 µ0) = 0
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where ◦1 and ◦2 are the compi operations given by

(µ ◦1 µ′)(x, y, z) = µ(µ′(x, y), z) ,

(µ ◦2 µ′)(x, y, z) = µ(x, µ′(y, z))

for any bilinear maps µ and µ′.

Theorem 2. A formal deformation B of the K-Poisson algebra A is given by a
family of linear maps

{µi : A⊗A→ A, i ∈ N}
satisfying

(i) µ0 is the multiplication of A,

(ii) (Dk):
∑

i+j=k,
i,j≥0

(µi ◦1 µj) ◦ ΦvP = 3
∑

i+j=k,
i,j≥0

µi ◦2 µj for each k ≥ 1.

Proof. The multiplication in B is determined by its restriction to A⊗A ([1]). We
expand µ(x, y) for x, y in A into the power series

µ(x, y) = µ0(x, y) + tµ1(x, y) + t2µ2(x, y) + · · ·+ tnµn(x, y) + · · ·

then µ is a Poisson product if and only if the family {µi} satisfies condition (Dk)
for each k. �

Remark 2. As R is a complete ring, this formal expansion is convergent. It is also
the case if R is a valued local ring (see [6]).

Let K = C or an algebraically closed field. If {e1, . . . , en} is a fixed basis of Kn,
we denote by Pn the set of all Poisson algebra structures on Kn, that is, the
set of structure constants {Γkij} given by µ(ei, ej) =

∑n
k=1 Γkijek. Relation (1) is

equivalent to

n∑
l=1

(
3ΓlijΓ

s
lk − 3ΓsilΓ

l
jk − ΓlikΓslj − ΓljkΓsli + ΓljiΓ

s
lk + ΓlkiΓ

s
lj

)
= 0.

Thus Pn is an affine algebraic variety. If we replace Pn by a differential graded
scheme, we call Deformation Cohomology, the cohomology of the tangent space of
this scheme.

Remark 3. This cohomology of deformation is defined in same manner for any
K-algebra and more generally for any n-ary algebra. If we denote by Hdef(A) =⊕

n≥0H
n
def(A) the deformation cohomology of the algebra A, then H0

def(A) = K,

H1
def(A) is the space of outer derivations of A and the coboundary operator δ1

def

corresponds to the operator of derivation, and the space of 2-cocycles is determined
by the linearization of the identities defining A. Thus, in any case, the three first
spaces of cohomology are easy to compute. But the determination of the spaces
Hn

def(A) for n ≥ 3 is usually not easy; we cannot deduce for example H3
def(A)

directly from the knowledge of H2
def(A). However we have the following result:
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Proposition 1. Let PA be the quadratic operad related to A. If PA is a Koszul
operad, then Hdef(A) coincides with the natural operadic cohomology.

For example, if A is a Lie algebra or an associative algebra, the corresponding
operads Lie and Ass are Koszul and Hdef(A) coincides with the operadic cohomol-
ogy, that is, respectively, the Chevalley-Eilenberg cohomology and the Hochschild
cohomology. Examples of determination of Hdef(A) in the non-Koszul cases can
be found in [9], [17]. A theory of deformations on non-Koszul operads in presented
in [14].

3.2 The operadic cohomology of a Poisson algebra

Let Poiss be the quadratic binary operad associated with Poisson algebras. Recall
briefly its definition. Let E = K [Σ2] be the K-group algebra of the symmet-
ric group on two elements. The basis of the free K-module F(E)(n) consists of
the “n-parenthesized products” of n variables {x1, . . . , xn}. Let R be the K[Σ3]-
submodule of F(E)(3) generated by the vector

u = 3x1(x2x3)− 3(x1x2)x3 + (x1x3)x2 + (x2x3)x1 − (x2x1)x3 − (x3x1)x2 .

Then Poiss is the binary quadratic operad with generators E and relations R. It
is given by

Poiss(n) = (F(E)/R)(n) =
F(E)(n)

R(n)

where R is the operadic ideal of F(E) generated by R satisfying R(1) = R(2) = 0,
R(3) = R. The dual operad Poiss! is equal to Poiss, that is, Poiss is self-dual.
In [18] we defined, for a binary quadratic operad E , an associated quadratic operad

Ẽ which gives a functor

E ⊗ Ẽ → E .

In the case E = Poiss, we have Ẽ = Poiss! = Poiss. All these properties show that
the operad Poiss is a Koszul operad (see also [12]). In this case the cohomology
of deformation of Poiss-algebras coincides with the natural operadic cohomology.
An explicit presentation of the space of k-cochains is given in [15]:

Ck(P,P) = Lin(Poiss(n)! ⊗Σn
V ⊗n, V ) = End(P⊗k,P)

where V is the underlying vector space (here Cn). The cohomology associated with
the complex (Ck(P,P), δkP )k where δkP denotes the coboundary operator

δkP : Ck(P,P)→ Ck+1(P,P) ,

is denoted by H∗P (P,P). We will describe the coboundary operators δ2
P in Subsec-

tion 3.3 and δkP in Section 5.
Consequence: The deformation cohomology of a Poisson algebra. If P is
a Poisson algebra, then Hdef(P) is the operadic cohomology H∗P (P,P) or briefly
H∗P (P).
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3.3 Some relations on the coboundary operator δ2P
Let P be a Poisson algebra whose nonassociative product µ0(X,Y ) is denoted by
X ·Y . Let gP and AP be its corresponding Lie and associative algebras. We denote
by H∗C(gP , gP) the Chevalley-Eilenberg cohomology of gP and by H∗H(AP ,AP) the
Hochschild cohomology of AP . A important part of this work devoted to describe
the coboundary operator and its links with the Chevalley-Eilenberg and Hochschild
coboundary operators. We focus in this section on the degree 2 because it is related
to the parametrization of deformations. The condition (D1) writes as

(µ0 ◦1 µ1 + µ1 ◦1 µ0) ◦ ΦvP = 3(µ0 ◦2 µ1 + µ1 ◦2 µ0) ,

that is,

3µ1(µ0(x, y), z)− 3µ1(x, µ0(y, z))− µ1(µ0(x, z), y)− µ1(µ0(y, z), x)

+ µ1(µ0(y, x), z) + µ1(µ0(z, x), y) + 3µ0(µ1(x, y), z)− 3µ0(x, µ1(y, z))

− µ0(µ1(x, z), y)− µ0(µ1(y, z), x) + µ0(µ1(y, x), z) + µ0(µ1(z, x), y) = 0

for any x, y, z ∈ P. If ϕ is a 2-cocycle of H2
def(P), this implies

δ2
Pϕ = (ϕ ◦1 µ+ µ ◦1 ϕ) ◦ ΦvP − 3(ϕ ◦2 µ+ µ ◦2 ϕ) ◦ ΦId.

Recall that vP = 3Id− τ23 + τ12 − c+ c2.

Let ϕ : P⊗2 → P be a bilinear map and µ be the nonassociative multiplication
of the Poisson algebra P. We denote by ϕa = ϕ−ϕ̃

2 and ϕs = ϕ+ϕ̃
2 the skew-

symmetric and symmetric parts of ϕ with ϕ̃(X,Y ) = ϕ(Y,X). We consider the
following trilinear maps:

LC(ϕ) =
1

2
[ϕ ◦1 µ ◦ ΦId+c+c2−τ12−τ13−τ23 + (µ ◦1 ϕ− µ ◦2 ϕ) ◦ ΦId+c+c2 ] ,

LH(ϕ) =
1

2
[µ ◦1 ϕ ◦ ΦId−c − µ ◦2 ϕ ◦ ΦId−c2 + ϕ ◦1 µ ◦ ΦId+τ12 − ϕ ◦2 µ ◦ ΦId+τ13 ].

If ϕ = ϕa, that is, if ϕ is skew-symmetric, then LC(ϕa) = δ2
C,{ ,}ϕa where δ2

C,{·,·} is
the Chevalley-Eilenberg coboundary operator of the cohomology of the Lie algebra
gP associated with P. Similarly if ϕ = ϕs, that is, if ϕ is symmetric, then LH(ϕs) =
δ2
H,∗ϕs where δ2

H,∗ is the Hochschild coboundary operator of the cohomology of the
associative algebra AP associated with P. Since no confusions are possible we will
write δ∗C and δ∗H in place of δ∗C,{·,·} δ

∗
H,∗. Then for any bilinear map ϕ on P⊗2

with
skew-symmetric part ϕa and symmetric part ϕs, we obtain

4δ2
Cϕa = (µ ◦1 ϕ+ ϕ ◦1 µ− µ ◦2 ϕ+ ϕ ◦2 µ) ◦ ΦV

with V = Id− τ12 − τ13 − τ23 + c+ c2 ,

4LC(ϕs) = (µ ◦1 ϕ− µ ◦2 ϕ) ◦ ΦW + (ϕ ◦1 µ+ ϕ ◦2 µ) ◦ ΦV

with W = Id+ τ12 + τ13 + τ23 + c+ c2 ,

4LH(ϕa) = µ ◦1 ϕ ◦ ΦId−τ12+τ13−c + µ ◦2 ϕ ◦ Φ−Id−τ13+τ23+c2

+ ϕ ◦1 µ ◦ ΦId+τ12+τ13+c + ϕ ◦2 µ ◦ Φ−Id−τ13−τ23−c2 ,

4δ2
Hϕs = µ ◦1 ϕ ◦ ΦId+τ12−τ13−c + µ ◦2 ϕ ◦ Φ−Id+τ13−τ23+c2

+ ϕ ◦1 µ ◦ ΦId+τ12−τ13−c + ϕ ◦2 µ ◦ Φ−Id+τ13−τ23+c2 .
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At least we introduce the following operators, L1 which acts on the space of
skew-symmetric bilinear maps and L2 which acts on the space of symmetric bilinear
maps on P:

4L1(ϕa) = µ ◦1 ϕ ◦ Φτ13−τ23−c+c2 + µ ◦2 ϕ ◦ Φ−Id−τ12+τ23+c

+ ϕ ◦1 µ ◦ ΦId+τ12 + ϕ ◦2 µ ◦ Φ−τ13−c2 ,

4L2(ϕs) = µ ◦1 ϕ ◦ Φ2Id+2τ12−τ13−τ23−c−c2 + µ ◦2 ϕ ◦ Φ−Id+τ12−τ13+c

+ ϕ ◦1 µ ◦ ΦId+τ12+2τ13−4c + ϕ ◦2 µ ◦ Φ−4Id+τ13+2τ23+c2 .

Lemma 3. We have L1(ϕa) = 0 if and only if ϕa is a skew derivation of the
associative product associated with µ, that is:

ϕa(x ∗ y, z) = x ∗ ϕa(y, z) + ϕa(x, z) ∗ y .

Proof.

ϕa(x ∗ y, z)− x ∗ ϕa(y, z)− ϕa(x, z) ∗ y

= 1
2

(
ϕa(xy + yx, z)− xϕa(y, z)− ϕa(y, z)x− ϕa(x, z)y − yϕa(x, z)

)
= 1

2

(
ϕa(xy, z) + ϕa(yx, z) + xϕa(z, y) + ϕa(z, y)x+ ϕa(z, x)y + yϕa(z, x)

)
= 1

4L1(ϕa)(x, y, z).

�

Proposition 2. For every bilinear map ϕ on P, we have

δ2
Pϕ = 2

(
δ2
Cϕa + LC(ϕs) + δ2

Hϕs + LH(ϕa) + L1(ϕa) + L2(ϕs)
)
. (2)

Corollary 1. Let ϕ be a bilinear map and ϕa and ϕs the skew-symmetric and the
symmetric parts of ϕ. We have:

12δ2
Cϕa = δ2

Pϕ ◦ ΦId−τ12−τ13−τ23+c+c2 (3)

and
12δ2

Hϕs = δ2
Pϕ ◦ ΦId−τ13+τ23−c2 . (4)

4 Particular deformations: Lie and associative deformations of
a Poisson algebra

In this section we study two particular types of deformations. Usually, only Lie
deformations of Poisson algebras are considered. This is a consequence of the
classical problem of considering Poisson algebras on the associative commutative
algebra of differential functions on a manifold. In this context, the associative
algebra is preserved when we consider deformations of Poisson structures on this
algebra, for example in problems of deformation quantization. Moreover, such an
associative structure is rigid, so it is not appropriate to consider deformations of this
multiplication. As consequence, the corresponding deformation cohomology is the
Poisson-Lichnerowicz cohomology [11]. So the first particular type we consider, the
Lie deformations, is when we deform the Poisson bracket and let the associative
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product unchanged. We study a second special case which is non classical, the
associative deformations. It consists in deformations of the associative product
with a preserved Poisson bracket. Such deformations appear naturally when the
Poisson bracket is a rigid Lie bracket. These deformations are parametrized by a
cohomology defined by a subcomplex of the Poisson complex. We called it Poisson-
-Hochschild cohomology and describe it explicitely.

4.1 Lie deformations

Definition 1. We say that the formal deformation µ of the Poisson multiplication
µ0 is a Lie formal deformation if the corresponding commutative associative mul-
tiplication is conserved, that is, if

µ0(x, y) + µ0(y, x) = µ(x, y) + µ(y, x)

for any x, y.

As µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y), if µ is a Lie deformation of µ0, then

µ(x, y) + µ(y, x) = µ0(x, y) + µ0(y, x) +
∑
n≥1

tn
(
µn(x, y) + µn(y, x)

)
.

So ∑
n≥1

tn
(
µn(x, y) + µn(y, x)

)
= 0

and

µn(x, y) + µn(y, x) = 0

for any n ≥ 1. Each bilinear maps µn is skew-symmetric. In particular µ1 is
skew-symmetric and (µ1)s = 0. As δ2

Pµ1 = 0, Relation (2) writes as

δ2
Cµ1 + LH(µ1) + L1(µ1) = 0 .

But, from (3), δ2
Pµ1 = 0 implies δ2

Cµ1 = 0. Thus we have LH(µ1) + L1(µ1) = 0.
Since µ1 is skew-symmetric:

LH(µ1)(x, y, z) = µ1(x, y) ∗ z − x ∗ µ1(y, z) + µ1(x ∗ y, z)− µ1(x, y ∗ z)
=− µ1(x, y ∗ z) + µ1(x, y) ∗ z + y ∗ µ1(x, z) + µ1(x ∗ y, z)
− x ∗ µ1(y, z)− µ1(x, z) ∗ y

= L1(µ1)(x, y, z) + L1(µ1)(y, z, x) .

So

LH(µ1) = L1(µ1) ◦ ΦId+c .

We deduce that

LH(µ1) + L1(µ1) = L1(µ1) ◦ Φ2Id+c

and LH(µ1) + L1(µ1) = 0 implies L1(µ1) = 0.
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Theorem 3. If µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y) is a Lie deformation of the
Poisson product µ0, then µ1 is a skew-symmetric map satisfying{

δ2
Cµ1 = 0,
L1(µ1) = 0.

Recall that Poisson-Lichnerowicz cohomology [11] is associated with the com-
plex

(C∗PL(P,P), δ∗C)

where the cochains are the skew-symmetric multilinear maps P × · · · × P → P
satisfying the Leibniz rule in each of their arguments (such maps are called skew-
symmetric multiderivations of the algebra P). The coboundary operators coin-
cide with the Chevalley-Eilenberg coboundary operator denoted by δ∗C . Of course
CnPL(P,P) is a vector subspace of CnP (P,P). The previous theorem shows that if
ϕ is a 2-cochain of C2

PL(P,P), thus its classes of cohomology in H2
PL(P,P) and

H2
P (P,P) are equal.

4.2 Associative deformations of Poisson algebras

Definition 2. We say that the formal deformation µ of the Poisson multiplication
µ0 is an associative formal deformation if the corresponding Lie multiplication is
conserved, that is, if

µ0(x, y)− µ0(y, x) = µ(x, y)− µ(y, x)

for any x, y.

As µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y), if µ is an associative deformation of
µ0, then

µ(x, y)− µ(y, x) = µ0(x, y)− µ0(y, x) +
∑
n≥1

tn
(
µn(x, y)− µn(y, x)

)
.

Thus ∑
n≥1

tn
(
µn(x, y)− µn(y, x)

)
= 0

and

µn(x, y)− µn(y, x) = 0

for any n ≥ 1. Each bilinear maps µn is symmetric. In particular µ1 is symmetric
and (µ1)a = 0. Since δ2

Pµ1 = 0, Relation (2) writes as

LC(µ1) + δ2
Hµ1 + L2(µ1) = 0 .

But, from (4), δ2
Pµ1 = 0 implies δ2

Hµ1 = 0. Thus

LC(µ1) + L2(µ1) = 0 .
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Lemma 4. When ϕ is a symmetric map with δ2
Hϕ = 0,

LC(ϕ)(x, y, z) = {ϕ(x, y), z}+ {ϕ(y, z), x}+ {ϕ(z, x), y}
+ ϕ({x, y} , z) + ϕ({y, z} , x) + ϕ({z, x} , y) ,

L2(ϕ)(x, y, z) = {y, ϕ(x, z)} − {z, ϕ(x, y)}+ 3ϕ(x, {z, y}) .

This is a direct consequence of the definition of LC(ϕs) and L2(ϕs) when ϕ is a
symmetric bilinear map, replacing µ0(x, y)− µ0(y, x) by 2 {x, y} .

We deduce(
LC(µ1) + L2(µ1)

)
(x, y, z) = 2{µ1(x, y), z}+ {µ1(y, z), x}+ µ1({x, y}, z)

+ µ1({z, x}, y) + 2µ1({z, y}, x)

= 2{µ1(x, y), z} − 2µ1({y, z}, x)− 2µ1({x, z}, y)

+ {µ1(y, z), x} − µ1({y, x}, z)− µ1({z, x}, y)

= 2∆µ1(x, y, z) + ∆µ1(y, z, x)

with
∆µ1(x, y, z) = {µ1(x, y), z} − µ1({y, z}, x)− µ1({x, z}, y) .

We deduce that (
LC(µ1) + L2(µ1)

)
= ∆µ1 ◦ Φ2Id+c .

But Φ2Id+c is an invertible map on P⊗3

. Then
(
LC(µ1) + L2(µ1)

)
= 0 if and only

if
∆µ1(x, y, z) = {µ1(x, y), z} − µ1

(
{y, z}, x

)
− µ1

(
{x, z}, y

)
= 0 .

Definition 3. Let P be a Poisson algebra and let {x, y} be its Poisson bracket.
A bilinear map ϕ on P is called a Lie biderivation if

{ϕ(x1, x2), x3} − ϕ
(
x1, {x2, x3}

)
− ϕ

(
{x1, x3}, x2

)
= 0

for any x1, x2, x3 ∈ P.

We deduce that µ1, which is a symmetric map, is a Lie biderivation.

Theorem 4. If µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y) is an associative deformation
of the Poisson product µ0, then µ1 is a symmetric map such that

1. δ2
Hµ1 = 0.

2. µ1 is a Lie biderivation.

In case of Lie deformation of the Poisson product µ0, we have seen that the relations
concerning µ1 can be interpreted in terms of Poisson-Lichnerowicz cohomology. We
propose a similar approach for the Lie deformations of µ0.

Recall that x∗y the associative commutative product associated with the Pois-

son product µ0, that is x ∗ y =
µ0(x, y) + µ0(y, x)

2
.
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Lemma 5. Let ϕ be a symmetric bilinear map on P which is a Lie biderivation. If
δ2
Hϕ is the Hochschild coboundary operator, we have

δ2
Hϕ(x1, x2, x3) = x1 ∗ ϕ(x2, x3)− ϕ(x1 ∗ x2, x3)

+ ϕ(x1, x2 ∗ x3)− ϕ(x1, x2) ∗ x3

and

{δ2
Hϕ(x1, x2, x3), x4} = δ2

Hϕ({x1, x4}, x2, x3) + δ2
Hϕ(x1, {x2, x4}, x3)

+ δ2
Hϕ(x1, x2, {x3, x4})

for any x1, x2, x3, x4 ∈ P.

Proof. As ϕ is a Lie biderivation, we have

{ϕ(x1, x2), x3} − ϕ(x1, {x2, x3})− ϕ({x1, x3}, x2) = 0 .

Thus, using the definition of δ2
Hϕ, we obtain

{δ2
Hϕ(x1, x2, x3), x4} = {x1 ∗ ϕ(x2, x3), x4} − {ϕ(x1 ∗ x2, x3), x4}

+ {ϕ(x1, x2 ∗ x3), x4} − {ϕ(x1, x2) ∗ x3, x4}
= x1 ∗ {ϕ(x2, x3), x4} − x3 ∗ {ϕ(x1, x2), x4}

+ ϕ(x2, x3) ∗ {x1, x4} − ϕ(x1, x2) ∗ {x3, x4}
− {ϕ(x1 ∗ x2, x3), x4}+ {ϕ(x1, x2 ∗ x3), x4}

As ϕ is a Lie biderivation,

{δ2
Hϕ(x1, x2, x3), x4} = x1 ∗ ϕ({x2, x4}, x3) + x1 ∗ ϕ(x2, {x3, x4})

− x3 ∗ ϕ({x1, x4}, x2)− x3 ∗ ϕ(x1, {x2, x4})
+ ϕ(x2, x3) ∗ {x1, x4} − ϕ(x1, x2) ∗ {x3, x4}
− ϕ(x1 ∗ {x2, x4}, x3)− ϕ(x2 ∗ {x1, x4}, x3)

− ϕ(x1 ∗ x2, {x3, x4}) + ϕ({x1, x4}, x2 ∗ x3)

+ ϕ(x1, x2 ∗ {x3, x4}) + ϕ(x1, x3 ∗ {x2, x4}) .

But

δ2
Hϕ({x1, x4}, x2, x3) = {x1, x4} ∗ ϕ(x2, x3)− ϕ({x1, x4} ∗ x2, x3)

+ ϕ({x1, x4}, x2 ∗ x3)− ϕ({x1, x4}, x2) ∗ x3

δ2
Hϕ(x1, {x2, x4}, x3) = x1 ∗ ϕ({x2, x4}, x3)− ϕ(x1 ∗ {x2, x4}, x3)

+ ϕ(x1, {x2, x4} ∗ x3)− ϕ(x1, {x2, x4}) ∗ x3

δ2
Hϕ(x1, x2, {x3, x4}) = x1 ∗ ϕ(x2, {x3, x4})− ϕ(x1 ∗ x2, {x3, x4})

+ ϕ(x1, x2 ∗ {x3, x4})− ϕ(x1, x2) ∗ {x3, x4} .

As the product ∗ is commutative, we deduce

{δ2
Hϕ(x1, x2, x3), x4} = δ2

Hϕ({x1, x4}, x2, x3) + δ2
Hϕ(x1, {x2, x4}, x3)

+ δ2
Hϕ(x1, x2, {x3, x4}) .

�
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Observe that the last identity is not a consequence of the symmetry of ϕ. It is
satified for any bilinear Lie biderivation. Now, we can generalize these identities.

Definition 4. Let φ be a k-linear map on P. We say that φ is a Lie k-derivation if

{φ(x1, . . . , xk), xk+1} =

k∑
i=1

φ(x1, . . . , {xi, xk+1}, . . . , xk)

for any x1, . . . , xk+1 ∈ P, where {x, y} denotes the Lie bracket associated with the
Poisson product.

For example, from the previous lemma, if ϕ is a Lie 2-derivation (or biderivation),
then δ2

Hϕ is a Lie 3-derivation.

For any (k − 1)-linear map on P, let δk−1
H ϕ the k-linear map given by

δk−1
H ϕ(x1, . . . , xk) = x1 ∗ ϕ(x2, · · · , xk)− ϕ(x1 ∗ x2, · · · , xk) + ϕ(x1, x2 ∗ x3, · · · , xk)

+ · · ·+ (−1)k−1ϕ(x1, x2, · · · , xk−1 ∗ xk)

+ (−1)kϕ(x1, x2, · · · , xk−1) ∗ xk.

This operator is the coboundary operator of the Hochschild complex related to the
associative operad Ass.

Theorem 5. If ϕ is a Lie k-derivation of P, then δkHϕ is a Lie (k + 1)-derivation
of P.

Proof. It is analogous to the proof detailed for k = 3. It depends only of the
symmetry of the associative product x ∗ y. �

Recall that a k-linear map ϕ on a vector space is called commutative if it satisfies
ϕ ◦ φVk

= 0 where Vk =
∑
σ∈Σk

ε(σ)σ = 0.

Lemma 6. For any k-linear commutative map ϕ on P, the (k+ 1)-linear map δkHϕ
is commutative.

Proof. In fact, consider the first term of δkHϕ(x1, . . . , xk+1), that is,

x1 ∗ ϕ(x2, . . . , xk+1) .

We have ∑
σ∈Σi

k+1

ε(σ)xi ∗ ϕ(xσ(1), . . . , xσ(i−1), xσ(i+1), . . . , xσ(k+1)) = 0

because ϕ is commutative, where Σik+1 = {σ ∈ Σk+1, σ(i) = i}. The same trick
vanishes the last terms, that is,∑

σ∈Σk+1

ϕ
(
xσ(1), xσ(2), · · · , xσ(k)

)
∗ xσ(k+1) .

The terms in between vanishes two by two when we compose with ΦVk
. �
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Let CkPH(P,P) be the vector space constituted by k-linear maps on P which are
commutative and which are Lie k-derivations. From the previous result, the image
of the CkPH(P,P) by the map δkH is contained in Ck+1

PH (P,P). As these maps
coincide with the coboundary operators of the complex, we obtain a complex
(CkPH(P,P), δkH) whose associated cohomology is called the Poisson-Hochschild
cohomology.

Theorem 6. Let P be a Poisson algebra whose (nonassociative) product is denoted
µ0. For any associative deformation µ =

∑
n≥0 t

iµi of µ0, the linear term µ1 is a
2-cocycle for the Poisson-Hochschild cohomology.

4.3 Example: Poisson structures on rigid Lie algebras

Such Poisson structures have been studied in [8], [7]. We will study these struc-
tures in terms of Poisson-Hochschild cohomology. Consider, for example, the
3-dimensional complex Poisson algebra given, in a basis {e1, e2, e3}, by

e1e2 = 2e2 , e1e3 = −2e3 , e2e3 = e1 .

If {·, ·} and ∗ denote respectively the Lie bracket and the commutative associative
product attached with the Poisson product, we have

{e1, e2} = 2e2 , {e1, e3} = −2e3 , {e2, e3} = e1

and
ei ∗ ej = 0 ,

for any i, j. If ϕ is a Lie biderivation, it satisfies

{ϕ(ei, ej), ek} = ϕ({ei, ek}, ej) + ϕ({ej , ek}, ei) .

This implies ϕ = 0 and the Poisson algebra is rigid.

5 Coboundary operators of the general Poisson cohomology
In this section, we describe relations between the coboundary operators δkP of the
Poisson cohomology (the operadic cohomology or the deformation cohomology) of
a Poisson algebra P and the corresponding operators of the Poisson-Lichnerowicz
and Poisson-Hochschild cohomology of P.

5.1 The cases k = 0 and k = 1

• k = 0. We put

H0
P (P,P) = {X ∈ P such that ∀Y ∈ P, X · Y = 0} .

• k = 1. For f ∈ End(P,P), we put

δ1
P f(X,Y ) = f(X) · Y +X · f(Y )− f(X · Y )

for any X,Y ∈ P. Then we have

H1
P (P,P) = H1

C(gP , gP) ∩H1
H(AP ,AP) .
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5.2 Description of δ2P
In Section 4, we have seen that

δ2
Pϕ(x, y, z) = 3ϕ(x · y, z)− 3ϕ(x, y · z)− ϕ(x · z, y)− ϕ(y · z, x)

+ ϕ(y · x, z) + ϕ(z · x, y) + 3ϕ(x, y) · z − 3x · ϕ(y, z)

− ϕ(x, z) · y − ϕ(y, z) · x+ ϕ(y, x) · z + ϕ(z, x) · y

and
δ2
Pϕ = 2

(
δ2
Cϕa + LC(ϕs) + δ2

Hϕs + LH(ϕa) + L1(ϕa) + L2(ϕs)
)
.

Let us compare this operator with the corresponding Poisson-Lichnerowicz and
Poisson-Hochschild ones.

Example 1. Assume that the Poisson product is skew-symmetric. Then {x, y} =
x · y and x ∗ y = 0. If ϕ ∈ C2

P (P,P) is also skew-symmetric, then

δ2
Pϕ(x, y, z) = 2ϕ(x · y, z) + 2ϕ(y · z, x)− 2ϕ(x · z, y)

+ 2ϕ(x, y) · z + 2ϕ(y, z) · x− 2ϕ(x, z) · y
= δ2

PLϕ(x, y, z) ,

that is, the coboundary operator of the Poisson-Lichnerowicz cohomology.

The results of the previous sections imply:

Theorem 7. Let ϕ be in C2
P (P,P), ϕs and ϕa be its symmetric and skew-symmetric

parts. Then the following propositions are equivalent:

1. δ2
Pϕ = 0.

2.

{
i) δ2

Cϕa = 0, δ2
Hϕs = 0,

ii) LC(ϕs) + LH(ϕa) + L1(ϕa) + L2(ϕs) = 0.

Applications. Suppose that ϕ is skew-symmetric. Then ϕ = ϕa and ϕs = 0. Then
δ2
Pϕ = 0 if and only if δ2

Cϕ = 0 and LH(ϕ) + L1(ϕ) = 0. Morever if we suppose
than ϕ is a biderivation on each argument, that is, L1(ϕ) = 0, then δ2

Pϕ = 0 if and
only if LH(ϕ) = 0. But we have seen in Section 3 that

LH(ϕ) = L1(ϕ) ◦ ΦId+c.

Thus LH(ϕ) = 0 as soon as L1(ϕ) = 0.

Proposition 3. Let ϕ be a skew-symmetric map which is a biderivation, that is,
ϕ is a Poisson-Lichnerowicz 2-cochain. Then ϕ ∈ Z2

PL(P,P) if and only if ϕ ∈
Z2
P (P,P).

Similarly, if ϕ is symmetric, then δ2
Pϕ = 0 if and only if δ2

Hϕ = 0 and LC(ϕ) +
L2(ϕ) = 0. If ϕ be a skew-symmetric map which is a Lie biderivation, that is, if ϕ is
a Poisson-Hochschild 2-cochain, then ϕ ∈ Z2

PH(P,P) if and only if ϕ ∈ Z2
P (P,P).
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5.3 The case k ≥ 3

Let P be a Poisson algebra and H∗def (P) or H∗P (P,P) its operadic cohomology. We
propose here to describe Hn

P (P,P) for n ≥ 3. Let ϕ be a n-cochain of CnP (P,P),
that is, a n-linear map on P. Its skew-symmetric part is the skew-symmetric n-
linear map

ϕa =
1

n!
ϕ ◦ ΦVn

with Vn =
∑
σ∈Σn

ε(σ)σ; its symmetric part is the symmetric n-linear map

ϕs =
1

n!
ϕ ◦ ΦWn

with Wn =
∑
σ∈Σn

σ. We denote by δnP , δ
n
C and δnH respectively the coboundary

operators associated with the Poisson cohomology of P, the Chevalley-Eilenberg
cohomology of gP and the Hochschild cohomology of AP .

The formulae (3) and (4) can be generalized as follows

2(n+ 1)!δnCϕa = δnpϕ ◦ ΦVn
, (5)

2(n+ 1)!δnHϕs = δnpϕ ◦ ΦUH,n
, (6)

where UH,n =
∑
σ∈Σ1,n

σ + (−1)n
∑
σ∈Σn,n

σ with Σi,n = {σ ∈ Σn, σ(1) = i} .

Proposition 4. Let ϕ be a n-cochain of the Poisson complex of the Poisson alge-
bra P. Then

δnPϕ = 0⇒

{
δnCϕa = 0 ,

δnHϕs = 0 .

Let us consider L1,n acting on the skew-symmetric n-linear map by

2(n− 1)!L1,nϕa =
∑

σ−1∈Σi,i+1,n

ε(σ)ϕ ◦σ−1(1) µ ◦ Φ(Id+τ12)◦σ

+ (−1)n−1
∑

σ−1∈Σn,n

ε(σ)µ ◦1 ϕ ◦ Φ(Id+τ12)◦σ

−
∑

σ−1∈Σ1,n

ε(σ)µ ◦2 ϕ ◦ Φ(Id+τ12)◦σ

where Σi,i+1,n = {σ ∈ Σn, σ(1) = i, σ(2) = i+ 1}.

Lemma 7. ϕa is a skew-symmetric n-derivation, that is, a skew-symmetric n-linear
map which is a derivation for the associative product x ∗ y on each argument, if
and only if L1,nϕa = 0.

Now we define the operator LH,nwhich acts on the the skew-symmetric n-linear
map by

LH,nϕa = L1,nϕa ◦ ΦId+cn+c2n+···+cn−2
n

where cn ∈ Σn is the cycle (1, 2, . . . , n).



Associative and Lie deformations of Poisson algebras 135

Proposition 5. Let ϕ be a skew-symmetric linear map on P⊗n

. Then δnPϕ = 0 if
and only if δnCϕ = 0 and L1,nϕ = 0.

We find again the classical result: the associative deformations of a Poisson
algebra are parametrized by the Poisson-Lichnerowciz cohomology.

Assume now that ϕ is a symmetric n-linear map. We have seen that:

δnPϕ = 0⇒ δnHϕs = δnHϕ = 0 .

Consider the operator ∇n acting on the symmetric n-linear maps by:

∇nϕs(x1, . . . , xn+1) = {ϕ(x1, . . . , xn), xn+1} − ϕ({x1, xn+1} , x2, . . . , xn)

− ϕ(x1, {x2, xn+1} , x3, . . . , xn)

− · · · − ϕ(x1, x2, . . . , xn−1, {xn, xn+1}) .

Then ϕ = ϕs is a Lie n-derivation if and only if ∇nϕs = 0.
Now we consider the following operator acting also on the symmetric n-linear

maps by:

LnCϕs = µ ◦1 ϕ ◦ Φ−c+c2+···+(−1)n+1cn+1 + µ ◦2 ϕ ◦ ΦId−c+c2+···+(−1)ncn

+ ϕ ◦1 µ ◦ Φ∑
1≤i,j≤n+1(−1)i+j+1cij

where cij is the permutation

(
1 2 3 · · · · · · · · · · · · · · · n+ 1
i j 1 · · · ǐ · · · ǰ · · · n+ 1

)
and

Ln2ϕs defined by:
LnCϕs + Ln2ϕs = ∇nϕs ◦ Φu

with u ∈ K[Σn] equal to τ12 + τ13 + · · ·+ τ1n. Since Φu is invertible, the equation
LnCϕs + Ln2ϕs = 0 implies ∇nϕs = 0 and we find that the Poisson-Hochschild
cohomology coincides with the Poisson cohomology when ϕ = ϕs.
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