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Distinguished Riemann-Hamilton geometry in the

polymomentum electrodynamics

Alexandru Oană, Mircea Neagu

Abstract. In this paper we develop the distinguished (d-) Riemannian dif-
ferential geometry (in the sense of d-connections, d-torsions, d-curvatures
and some geometrical Maxwell-like and Einstein-like equations) for the
polymomentum Hamiltonian which governs the multi-time electrodynam-
ics.

1 Introduction

Let Mn be a smooth real manifold of dimension n, whose local coordinates are
x = (xi)i=1,n, having the physical meaning of “space of events”. In order to justify
the “electrodynamics” terminology used in this paper, we recall that, in the study
of classical electrodynamics, the Lagrangian function L : TM → R that governs
the movement law of a particule of mass m 6= 0 and electric charge e, placed
concomitantly into a gravitational field and an electromagnetic one, is expressed
by

L(x, y) = mcϕij(x)yiyj +
2e

m
Ai(x)yi + P(x) , (1)

where the semi-Riemannian metric ϕij(x) represents the gravitational potentials
of the space M , Ai(x) are the components of an 1-form on M representing the
electromagnetic potential, P(x) is a smooth potential function on M and c is the
velocity of light in vacuum. The Lagrange space Ln = (M,L(x, y)), where L is
given by (1), is known in the literature of specialty as the autonomous Lagrange
space of electrodynamics. A deep geometrical study of the Lagrange space Ln

is now completely done in Miron-Anastasiei’s book [15]. More general, in the
study of classical time-dependent electrodynamics, a central role is played by the
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autonomous time-dependent Lagrangian function of electrodynamics:

L(t, x, y) = mcϕij(x)yiyj +
2e

m
Ai(t, x)yi + P(t, x) , (2)

where L : R×TM → R. Note that the non-dynamical character (i.e., the indepen-
dence on the temporal coordinate t) of the spatial semi-Riemannian metric ϕij(x)
determines the usage of the term “autonomous” in the preceding definition.

Let (T m, hab(t)) be a “multi-time” smooth Riemannian manifold of dimension
m (please do not confuse with the mass m 6= 0), having the local coordinates
t = (tc)c=1,m, and let J1(T ,M) be the 1-jet space produced by the manifolds T
and M .

Remark 1. The use in our work of the “multi-time” terminology was lent by us
from Dickey’s monograph [6]. However, it is important to note that “multi-time”
does not mean a “multidimensional time”, but has the sense of a “multi-parameter”
or “many parameters”.

By a natural extension of the preceding examples of electrodynamics Lagrangian
functions, we can consider the jet multi-time Lagrangian function

L(tc, xk, xkc ) = mchab(t)ϕij(x)xiax
j
b +

2e

m
A

(a)
(i) (t, x)xia + P(t, x) , (3)

where A
(a)
(i) (t, x) is a d-tensor on J1(T ,M) and P(t, x) is a smooth function on the

product manifold T ×M .

Remark 2. Throughout this paper, the indices a, b, c, . . . run from 1 to m, while
the indices i, j, k, . . . run from 1 to n. The Einstein convention of summation is
also adopted all over this work.

The pair EDMLn
m = (J1(T ,M), L), where L is given by (3), is called the au-

tonomous multi-time Lagrange space of electrodynamics. The distinguished Rie-
mannian geometrization of the multi-time Lagrange space EDMLn

m is now com-
pletely developed in the Neagu’s works [17] and [18].

Via the classical Legendre transformation, the jet multi-time Lagrangian func-
tion of electrodynamics (3) leads us to the Hamiltonian function of polymomenta

H =
1

4mc
habϕ

ijpai p
b
j −

e

m2c
habϕ

ijA
(b)
(j)p

a
i +

e2

m3c
‖A‖2 − P , (4)

where H : J1∗(T ,M)→ R, and

‖A‖2 (t, x) = habϕ
ijA

(a)
(i)A

(b)
(j) .

Definition 1. The pair EDMHn
m = (J1∗(T ,M), H), where H is given by (4), is

called the autonomous multi-time Hamilton space of electrodynamics.
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But, using as a pattern the Miron’s geometrical ideas from [16], the distinguished
Riemannian geometry for quadratic Hamiltonians of polymomenta (geometry in the
sense of d-connections, d-torsions, d-curvatures and geometrical Maxwell-like and
Einstein-like equations) is constructed on dual 1-jet spaces in the Oană-Neagu’s
paper [21]. Consequently, in what follows, we apply the general geometrical re-
sult from [21] for the particular Hamiltonian function of polymomenta (4), which
governs the multi-time electrodynamics.

2 The geometry of the autonomous multi-time Hamilton space
of electrodynamics EDMHn

m

To initiate our Hamiltonian geometrical development for multi-time electrodynam-
ics, let us consider on the dual 1-jet space E∗ = J1∗(T ,M) the fundamental vertical
metrical d-tensor

Φ
(i)(j)
(a)(b) =

1

2

∂2H

∂pai ∂p
b
j

= h∗ab(t
c)ϕij(xk) ,

where h∗ab(t) := (4mc)
−1 · hab(t). Let χa

bc(t) (respectively γkij(x)) be the Christof-

fel symbols of the metric hab(t) (respectively ϕij(x)). Obviously, if
∗
χ a

bc are the

Christoffel symbols of the Riemannian metric h∗ab(t), then we have
∗
χ a

bc = χ a
bc.

Using a general result from the geometrical theory of multi-time Hamilton
spaces (see [2] and [21]), by direct computations, we find

Theorem 1. The pair of local functions NED =
(
N
1

(a)
(i)b, N2

(a)
(i)j

)
on the dual 1-jet

space E∗, which are given by

N
1

(a)
(i)b = χa

bfp
f
i , N

2

(a)
(i)j = γrij

[
2e

m
A

(a)
(r) − p

a
r

]
− e

m

∂A(a)
(i)

∂xj
+
∂A

(a)
(j)

∂xi

 ,
represents a nonlinear connection on E∗. This nonlinear connection is called the
canonical nonlinear connection of the multi-time Hamilton space of electrodynamics
EDMHn

m.

Now, let {
δ

δta
,
δ

δxi
,
∂

∂pai

}
⊂ χ (E∗) ,

{
dta, dxi, δpai

}
⊂ χ∗ (E∗)

be the adapted bases produced by the nonlinear connection NED, where

δ

δta
=

∂

∂ta
−N

1

(f)
(r)a

∂

∂pfr
,

δ

δxi
=

∂

∂xi
−N

2

(f)
(r)i

∂

∂pfr
,

δpai = dpai +N
1

(a)
(i)fdt

f +N
2

(a)
(i)rdx

r .
(5)

Working with these adapted bases, by direct computations, we can determine
the adapted components of the generalized Cartan canonical connection of the
space EDMHn

m, together with its local d-torsions and d-curvatures (for details, see
the general formulas from [21]).
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Theorem 2. (1) The generalized Cartan canonical linear connection of the au-
tonomous multi-time Hamilton space of electrodynamics EDMHn

m is given
by

CΓ(N) =
(
χa
bc, A

i
jc, H

i
jk, C

i(k)
j(c)

)
,

where its adapted components are

Hc
ab = χc

ab , Ai
jc = 0 , Hi

jk = γijk , C
i(k)
j(c) = 0 . (6)

(2) The torsion T of the generalized Cartan canonical linear connection of the
space EDMHn

m is determined by three effective adapted components:

R
(f)
(r)ab = χf

gabp
g
r ,

R
(f)
(r)aj = −2e

m
γsrjA

(f)
(s);a +

e

m

∂A(f)
(r)

∂xj
+
∂A

(f)
(j)

∂xr


;a

,

R
(f)
(r)ij = Rs

rij

[
2e

m
A

(f)
(s) − p

f
s

]
− e

m

∂A(f)
(i)

∂xj
−
∂A

(f)
(j)

∂xi


:r

,

(7)

where χc
dab(t) (respectively Rk

rij(x)) are the classical local curvature tensors of
the Riemannian metric hab(t) (respectively semi-Riemannian metric ϕij(x)),
and “;a” and “:k” represent the following generalized Levi-Civita covariant
derivatives:

• the T -generalized Levi-Civita covariant derivative:

T
bi(d)(r)...
cj(l)(f)...;a

def
=
∂T

bi(d)(r)...
cj(l)(f)...

∂ta
+ T

gi(d)(r)...
cj(l)(f)... χ

b
ga + T

bi(g)(r)...
cj(l)(f)...χ

d
ga

+ · · · − T bi(d)(r)...
gj(l)(f)...χ

g
ca − T

bi(d)(r)...
cj(l)(g)... χ

g
fa − · · · ,

• the M -generalized Levi-Civita covariant derivative:

T
bi(d)(r)...
cj(l)(f)···:k

def
=
∂T

bi(d)(r)...
cj(l)(f)...

∂xk
+ T

bs(d)(r)...
cj(l)(f)... γ

i
sk + T

bi(d)(s)...
cj(l)(f)... γ

r
sk

+ · · · − T bi(d)(r)...
cs(l)(f)... γ

s
jk − T

bi(d)(r)...
cj(s)(f)...γ

s
lk − · · · .

(3) The curvature R of the Cartan canonical connection of the space EDMHn
m

is determined by the following four effective adapted components:

Hd
abc = χd

abc , Rl
ijk = Rl

ijk

and
−R(d)(i)

(l)(a)bc = δilχ
d
abc , −R(d)(l)

(i)(a)jk = −δdaRl
ijk .
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3 Electromagnetic-like model on the multi-time Hamilton space
of electrodynamics EDMHn

m

In order to describe our geometrical electromagnetic-like theory (depending on
polymomenta) on the multi-time Hamilton space of electrodynamics EDMHn

m, we
underline that, by a simple direct calculation, we obtain (see [21]).

Proposition 1. The metrical deflection d-tensors of the space EDMHn
m are ex-

pressed by the formulas:

∆
(i)
(a)b =

[
h∗afϕ

irpfr

]
/b

= 0 , ϑ
(i)(j)
(a)(b) = [h∗afϕ

irpfr ]
∣∣(j)
(b)

=
1

4mc
habϕ

ij ,

∆
(i)
(a)j = [h∗afϕ

irpfr ]|j =
e

4m2c
hafϕ

ir
[
A

(f)
(r):j +A

(f)
(j):r

]
,

(8)

where “ /b”, “ |j” and “
∣∣(b)
(j)

” are the local covariant derivatives induced by the

generalized Cartan canonical connection CΓ (N) (see [20] and [21]).

Moreover, taking into account some general formulas from [21], we introduce

Definition 2. The distinguished 2-form on J1∗ (T ,M), locally defined by

F = F
(i)
(a)jδp

a
i ∧ dxj + f

(i)(j)
(a)(b)δp

a
i ∧ δpbj , (9)

where

F
(i)
(a)j =

1

2

[
∆

(i)
(a)j −∆

(j)
(a)i

]
=

e

8m2c
· A
{i,j}

{
hafϕ

ir
[
A

(f)
(r):j +A

(f)
(j):r

]}
,

f
(i)(j)
(a)(b) =

1

2

[
ϑ
(i)(j)
(a)(b) − ϑ

(j)(i)
(a)(b)

]
= 0 ,

(10)

is called the polymomentum electromagnetic field attached to the multi-time Hamil-
ton space of electrodynamics EDMHn

m.

Now, particularizing the generalized Maxwell-like equations of the polymomen-
tum electromagnetic field that govern a general multi-time Hamilton space MHn

m,
we obtain the main result of the polymomentum electromagnetism on the space
EDMHn

m (for more details, see [21]):

Theorem 3. The polymomentum electromagnetic components (10) of the auto-
nomous multi-time Hamilton space of electrodynamics EDMHn

m are governed by



142 A. Oană, M. Neagu

the following geometrical Maxwell-like equations:

F
(i)
(a)j/b = F

(i)
(a)j;b =

e · haf
8m2c

· A
{i,j}

ϕir

∂A(f)
(r)

∂xj
+
∂A

(f)
(j)

∂xr


;b

−2ϕirγsrjA
(f)
(s);b


∑
{i,j,k}

F
(i)
(a)j|k =

∑
{i,j,k}

F
(i)
(a)j:k =− haf

8mc
·
∑
{i,j,k}

{[
ϕsrRi

rjk−ϕirRs
rjk

]
pfs+

+
e

m
ϕir

2Rs
rjkA

(f)
(s)−

∂A(f)
(j)

∂xk
−
∂A

(f)
(k)

∂xj


:r

∑
{i,j,k}

F
(i)
(a)j

∣∣(k)
(c)

= 0 ,

(11)
where A{i,j} represents an alternate sum,

∑
{i,j,k} represents a cyclic sum, and we

have

F
(i)
(a)j

∣∣(k)
(c)

=
∂F

(i)
(a)j

∂pck
= 0 .

4 Gravitational-like geometrical model on the multi-time Hamil-
ton space of electrodynamics

To expose our geometrical Hamiltonian polymomentum gravitational theory on
the autonomous multi-time Hamilton space of electrodynamics EDMHn

m, we recall
that the fundamental vertical metrical d-tensor

Φ
(i)(j)
(a)(b) = h∗ab(t)ϕ

ij(x)

and the canonical nonlinear connection

NED =
(
N
1

(a)
(i)b, N2

(a)
(i)j

)
of the multi-time Hamilton space EDMHn

m produce a polymomentum gravitational
h∗-potential G on E∗ = J1∗(T ,M), locally expressed by

G = h∗abdt
a ⊗ dtb + ϕijdx

i ⊗ dxj + h∗abϕ
ijδpai ⊗ δpbj . (12)

We postulate that the geometrical Einstein-like equations, which govern the
multi-time gravitational h∗-potential G of the multi-time Hamilton space of elec-
trodynamics EDMHn

m, are the abstract geometrical Einstein equations attached
to the Cartan canonical connection CΓ(N) and to the adapted metric G on E∗,
namely

Ric(CΓ)− Sc(CΓ)

2
G = KT , (13)

where Ric(CΓ) represents the Ricci tensor of the Cartan connection, Sc(CΓ) is
the scalar curvature, K is the Einstein constant and T is an intrinsic d-tensor of
matter, which is called the stress-energy d-tensor of polymomenta.
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In order to describe the local geometrical Einstein-like equations (together with
their generalized conservation laws) in the adapted basis

{XA} =

{
δ

δta
,

δ

δxi
,

∂

∂pai

}
,

let CΓ (N) = (χc
ab, 0, γ

i
jk, 0) be the generalized Cartan canonical connection of

the space EDMHn
m. Taking into account the expressions of its adapted curvature

d-tensors on the space EDMHn
m, we immediately find (see [21]):

Theorem 4. The Ricci tensor Ric(CΓ) of the autonomous multi-time Hamilton
space of electrodynamics EDMHn

m is characterized by two effective local Ricci
d-tensors:

χab = χf
abf , Rij = Rr

ijr .

These are exactly the classical Ricci tensors of the Riemannian temporal metric
hab(t) and the semi-Riemannian spatial metric ϕij(x).

Consequently, using the notations χ = habχab and R = ϕijRij , we get

Theorem 5. The scalar curvature Sc(CΓ) of the generalized Cartan connection CΓ
of the space EDMHn

m has the expression (for details, see [21])

Sc(CΓ) = (4mc) · χ+ R ,

where χ and R are the classical scalar curvatures of the semi-Riemannian metrics
hab(t) and ϕij(x).

Particularizing the generalized Einstein-like equations and the generalized con-
servation laws of an arbitrary multi-time Hamilton space MHn

m, we can establish
the main result of the geometrical polymomentum gravitational theory on the au-
tonomous multi-time Hamilton space of electrodynamics EDMHn

m (for more de-
tails, see [21]):

Theorem 6. (1) The local geometrical Einstein-like equations, that govern the
polymomentum gravitational potential of the space EDMHn

m, have the form

χab −
(4mc) · χ+ R

8mc
hab = KTab

Rij −
(4mc) · χ+ R

2
ϕij = KTij

− (4mc) · χ+ R

8mc
habϕ

ij = KT(i)(j)
(a)(b),

(14)

 0 = Tai, 0 = Tia, 0 = T(i)
(a)b

0 = T (j)
a(b), 0 = T (j)

i(b), 0 = T(i)
(a)j ,

(15)

where TAB , A,B ∈
{
a, i, (i)

(a)

}
, are the adapted components of the polymo-

mentum stress-energy d-tensor of matter T.
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(2) The polymomentum conservation laws of the geometrical Einstein-like equa-
tions of the space EDMHn

m are expressed by the formulas

[
(4mc) · χf

b −
(4mc) · χ+ R

2
δfb

]
/f

= 0[
Rr

j −
(4mc) · χ+ R

2
δrj

]
|r

= 0,

(16)

where χf
b = hfdχdb and Rr

j = ϕrsRsj .
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