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A note on loops of square-free order

Emma Leppälä, Markku Niemenmaa

Abstract. Let Q be a loop such that |Q| is square-free and the inner mapping
group I(Q) is nilpotent. We show that Q is centrally nilpotent of class at most
two.
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1. Introduction

A positive integer n is said to be square-free if n is divisible by no (perfect)
square except 1. If n is square-free, then in the prime factorization of n, no prime
occurs more than once. In this short note we show that if a loop Q has square-free
order and the inner mapping group I(Q) is nilpotent, then Q is centrally nilpotent
of class at most two. Our notation in loop theory and group theory is standard.
If H ≤ G, then by HG we denote the core of H in G (the largest normal subgroup
of G contained in H). By HG = 〈Hg | g ∈ G〉 we denote the normal closure of H
in G.

2. Loops and connected transversals

If Q is a loop, then the two mappings La(x) = ax and Ra(x) = xa are per-
mutations on Q for every a ∈ Q. We write M(Q) = 〈La, Ra | a ∈ Q〉 and say
that M(Q) is the multiplication group of Q. The stabilizer of the neutral element
e ∈ Q is denoted by I(Q) and it is said to be the inner mapping group of Q. If we
write A = {La | a ∈ Q} and B = {Ra | a ∈ Q}, then the commutator subgroup
[A,B] ≤ I(Q) and A,B are left transversals to I(Q) in M(Q). Furthermore, I(Q)
is core-free in M(Q). A loop Q is centrally nilpotent of class at most two if and
only if M(Q)′ ≤ NM(Q)(I(Q)) (for the details, see [1, p. 281]).

If we replace M(Q) by G and I(Q) by H , then we have the following situation:
H ≤ G and A and B are two left transversals to H in G. As [A,B] ≤ H , we
say that A and B are H-connected transversals in G. If G′ ≤ NG(H), then Q is
centrally nilpotent of class at most two. In 1990 Kepka and Niemenmaa proved
the following [3, Theorem 4.1]

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if

and only if there exists a subgroup H which is core-free in G and H-connected

transversals A and B such that G = 〈A,B〉.
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In the following two lemmas, we assume that A and B are H-connected trans-
versals in G.

Lemma 2.2. Let N be a normal subgroup of G and let L be the core of HN
in G. Then AL/L and BL/L are HL/L-connected transversals in G/L.

Lemma 2.3. If G is a finite group, H is nilpotent and G = 〈A,B〉, then H is

subnormal in G.

For the proofs, see [3, Lemma 2.8] and [4, Theorem 2.8].

Lemma 2.4. If H ≤ G is nilpotent and subnormal in G, then the normal closure

HG is nilpotent.

For the proof, see [2, Theorem 8.8, p. 29].

3. Main theorems

Theorem 3.1. Let H be a nilpotent proper subgroup of a finite group G and let

A and B be H-connected transversals in G such that G = 〈A,B〉. If [G : H ] is

square-free, then G′ ≤ NG(H).

Proof: Clearly, we can assume that H 6= 1. Let G be a minimal counterexample.
By Lemma 2.3, H is subnormal in G and then, by Lemma 2.4, HG is nilpotent.
Let HG = P × Q, where P > 1 is a Sylow p-subgroup of HG and Q is a Hall
π-subgroup of HG with p /∈ π (here π is a — possibly empty — set of prime
numbers).

Let us first assume that Q > 1. Then P and Q are both nontrivial characteristic
subgroups of HG, hence they are nontrivial normal subgroups of G. Let K be
the core of HP in G. By Lemma 2.2, AK/K and BK/K are HP/K-connected
transversals in G/K. As [G/K : HP/K] is square-free, we may conclude that
(G/K)′ ≤ NG/K(HP/K), which means that G′ ≤ NG(HP ). In a similar manner
we can show that G′ ≤ NG(HQ). Thus G′ ≤ NG(HP ) ∩NG(HQ) ≤ NG(HP ∩
HQ) = NG(H).

Then assume that Q = 1. It follows that H ≤ HG = P . If x, y ∈ G, then
x = ah and y = bk, where a ∈ A, b ∈ B and h, k ∈ H . Since A and B are
H-connected transversals in G, it follows that [xP, yP ] = [aP, bP ] = [a, b]P = P .
We conclude that G/P is an abelian group and thus G′ ≤ P . As [G : H ] is
square-free, we see that [P : H ] = p or P = H . But then NG(H) ≥ P , whence
G′ ≤ NG(H). �

We can slightly loosen the condition on [G : H ] if we assume that H is a p-
group.

Theorem 3.2. Let H < G be a p-group and let A and B be H-connected

transversals in G such that G = 〈A,B〉. If [G : H ] = pk and p ∤ k, then

G′ ≤ NG(H).

The proof is similar to the proof of Theorem 3.1. By using Theorems 3.1, 3.2
and 2.1, we get



A note on loops of square-free order 3

Corollary 3.3. If Q is a loop of square-free order and I(Q) is nilpotent, then Q
is centrally nilpotent of class at most two.

Corollary 3.4. Let Q be a loop and |Q| = pk, where p is a prime number and

p ∤ k. If I(Q) is a p-group, then Q is centrally nilpotent of class at most two.

Remark. If G is a finite group and |G| is square-free, then G is solvable (this is an
easy consequence of the Burnside normal complement theorem). If |G| is square-
free and I(G) = Inn(G) (the group of inner automorphisms of G) is nilpotent,
then G is cyclic.

It is easy to construct loops of order six which are not solvable. Now, consider
the following loop Q of order six:

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 2 1
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3

Here |Q| is square-free, M(Q) has order 24, I(Q) is isomorphic to Klein’s four
group and Q is centrally nilpotent of class two.
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