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Abstract. We are interested in an optimal shape design formulation for a class of free
boundary problems of Bernoulli type. We show the existence of the optimal solution of
this problem by proving continuity of the solution of the state problem with respect to the
domain. The main tools in establishing such a continuity are a result concerning uniform
continuity of the trace operator with respect to the domain and a recent result on the
uniform Poincaré inequality for variable domains.
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1. Introduction

In this paper, we consider a shape optimization formulation to solve the so-called

Bernoulli’s problem. Many physical and industrial applications lead to such a prob-

lem which can be considered as a typical example of free boundary problems. This

class of problems serves as mathematical models in fluid dynamics (see [13]), in insu-

lation and electro-chemistry (see [1]), in electromagnetics (see [9], [10]) and in various

other engineering fields (see [11]). The bidimensional free boundary value problem

of Bernoulli type is stated as follows: Find a doubly connected domain Ω in R
2 and
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a function u : Ω → R such that

(1)





∆u = f in Ω,

u = g on Γ0,

u = 0 on Γ,

∂u

∂ν
= h on Γ,

where f , g and h are given functions, ν is the exterior unit normal of the domain Ω,

Γ0 is the interior fixed part of the boundary ∂Ω and Γ the exterior free component

of ∂Ω which is to be determined (see Fig. 1).

This problem has received a great deal of attention. The first theoretical results

with elliptic solutions were carried out by Beurling [4]. Later, the problem has been

extensively studied by several authors, see for example [2], [3], [7], [12], [18] and

references therein. Among others, a way to solve this free boundary problem is to

transform it into a shape optimization problem. Such an optimal shape design formu-

lation of this problem was recently considered by Haslinger-Kozubek-Kunisch-Peichl

in [14], where the Neumann boundary condition on Γ is included into a suitable least

squares cost functional while the remaining Dirichlet boundary condition on Γ is

considered as part of an appropriate state problem. The existence of the optimal so-

lution of this formulation was established in [15], where the C2-regularity of the free

boundaries was used to construct a C1-diffeomorphism of a uniform tubular neigh-

borhood of the boundaries. However, this regularity of the free boundary occurs only

when the given data of the boundary conditions are smooth enough (see [18], [12]).

More recently, another optimal shape design formulation was used in the work of

Ito-Kunisch-Peichl, [17], where the Dirichlet boundary condition on Γ was included

into a suitable least squares cost functional while the remaining Neumann boundary

condition on Γ was considered as part of an appropriate state problem. A numerical

realization was investigated without theoretical justification of the existence of an

optimal solution. This motivated us to carry out the existence analysis of an optimal

solution for this formulation. This analysis uses a weaker regularity assumption on

the free boundary than [15].

The main idea in our analysis is the construction of a C1-diffeomorphism of a

uniform tubular neighborhood of the boundary by using only the C1-regularity of

the boundary. By the way, this C1-regularity is the basic assumption made by

Kinderlehrer-Nirenberg, [18], to show that, under some additional regularity as-

sumptions on the data, the free boundary is in fact more regular than C1. The

construction of such a diffeomorphism is the main ingredient in establishing the uni-

form continuity of the trace operator with respect to the domain, a result which is

similar to that obtained in [6] for non closed boundaries. Then, we show the main
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result of this paper which is the continuity of the solution of the state problem with

respect to the domain using an appropriate topology on an admissible family of do-

mains. The proof relies on the uniform continuity of the trace operator with respect

to the domain and on the uniform Poincaré inequality established in [5].

The outline of this paper is as follows. In Section 2, the shape optimization

formulation of the free boundary Bernoulli problem is described using a suitable

family of admissible domains. In Section 3, we show the existence of an optimal

solution using the C1-regularity for the boundaries and assuming the continuity

with respect to the domain of the state problem. Section 4 is devoted to the proof

of such a continuity.

2. Formulation of the problem

Let D be a fixed, connected and bounded open subset of R2. Let us consider the

following 2-dimensional exterior Bernoulli problem:

(2)






Find Ω ⊂ D and u ∈ H1(Ω) such that

∆u = f in Ω,

u = g on Γ0,

u = 0 on Γ,

∂u

∂ν
= h on Γ,

where f ∈ L2(D), g ∈ H1/2(Γ0) and h ∈ H1(D) are given functions and ν is the

outward unit normal vector to Γ. An admissible domain Ω will be a doubly connected

Lipschitz open subset of D. The boundary ∂Ω of Ω is the disjoint union of a fixed

part Γ0 and a free boundary unknown part Γ. We assume that Γ is exterior to Γ0

and we denote by K the domain inside of Γ0 (see Fig. 1).

Ω

Γ

Γ0

K

D

Figure 1. The considered domain Ω = Ω(ϕ).
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Since two boundary conditions must be satisfied on Γ in the boundary value prob-

lem (2), we can reformulate the free boundary problem as an optimal shape design

one as follows: The Dirichlet boundary condition is included into a suitable least

squares cost functional which can be minimized with respect to Γ, while the remain-

ing condition is viewed as part of a state problem. The customary problem of shape

optimization is then

(3)






Minimize J(Ω) =

∫

Γ

|uΩ|2 dσ for all Ω ∈ Oad,

where uΩ is the solution of

(PE)





∆u = f in Ω,

u = g on Γ0,

∂u

∂ν
= h on Γ.

Here, Oad is the space of admissible domains. In order to define Oad and to give the

description of an appropriate topology on it, we assume that the free boundary Γ is

a parameterized curve defined by

Γ = Γ(ϕ) = {ϕ(t) = (ϕ1(t), ϕ2(t)) ; t ∈ R},

where ϕ : R → R
2 is a C1, 1-periodic and injective function on [0, 1[. We shall also

write Ω = Ω(ϕ) to indicate the dependence on the parameterization ϕ. In fact, we

shall also view ϕ as a mapping from the quotient space R/Z to R2. It is well known

that R/Z is a compact metric space endowed with the distance d(t + Z, t′ + Z) =

inf{|x− x′|/x ∈ t+ Z, x′ ∈ t′ + Z} = inf{|t− t′ + k|/k ∈ Z}, t+ Z and t′ + Z being

two elements of R/Z.

We define Vad to be the set of vector functions ϕ ∈ C1(R,R2) such that

(H1) ϕ is 1-periodic;

(H2) there exist positive constants C0, C1 and C2 such that

|ϕ(t)| 6 C0, ∀t̄ ∈ R/Z,

C1d(t̄, t̄′) 6 |ϕ(t) − ϕ(t′)| 6 C2d(t̄, t̄′) for all t̄, t̄′ ∈ R/Z;

(H3) Ω(ϕ) ⊂ D;

(H4) there exists a positive constant γ such that

dist(Γ0,Γ(ϕ)) > γ.
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Clearly, Vad is a closed and bounded subset of C
1(R,R2).

Now, the set Uad of admissible functions will be any compact subset of Vad. In

other words, Uad is a subset of Vad whose elements and their derivatives are equicon-

tinuous as it follows from the Ascoli-Arzelà theorem. An example of such a set Uad

is that of a closed subset of Vad which is bounded in C
1,δ(R,R2) for some δ such that

0 < δ 6 1.

The set of admissible domains is then defined by

Oad = {Ω = Ω(ϕ) ⊂ D; ϕ ∈ Uad}.

We shall also use the larger set

Õad = {Ω = Ω(ϕ) ⊂ D; ϕ ∈ Vad}

to state some intermediate results.

R em a r k 1. It follows from the assumptions on Vad that the elements of Õad

(hence, those of Oad as well) are uniformly Lipschitz open sets in R
2 and so they

satisfy the uniform cone property; see [16], [20].

R em a r k 2. It is not clear in general whether the shape optimization formulation

(3) is equivalent to the Bernoulli problem (2). However, we can say that it will be

so if the set of admissible domains Oad is so large that it contains the domain which

solves (2). This requires to know some regularity result on (2), that is, to know

what is the regularity of the solution Γ of (2). In fact, in such generality, that is,

for such general data f, g, h, we do not know whether one can solve (2). What is

known is that, in the case f = 0, g = 1 and h being a Hölder function, Γ is of

class C1,α for some positive α (Alt-Caffarelli, [3]), and so, it is analytic (Lewy, [19],

Kinderlehrer-Nirenberg, [18]). See also the discussion on this subject in [12]. Hence,

we can state

Theorem 1. In the case f = 0, g = 1 and h ∈ C0,α(Γ0) for some positive α, the

Bernoulli problem (2) is equivalent to its shape optimization formulation (3).
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3. Existence of an optimal solution

We first give some notation and definitions which will be used in the sequel.

Let HΓ0
(Ω) be the space defined by

HΓ0
(Ω) = {v ∈ H1(Ω); v|Γ0

= 0},

where H1(Ω) is the usual Sobolev space equipped with the norm ‖ · ‖1,Ω defined by

‖v‖1,Ω = (‖v‖2
0,Ω + ‖∇v‖2

0,Ω)1/2,

‖v‖0,Ω =

( ∫

Ω

|v|2 dx

)1/2

.

The space HΓ0
(Ω) is equipped with the norm

|v|1,Ω = ‖∇v‖0,Ω.

We define the bilinear form a in HΓ0
(Ω) by

a(u, v) =

∫

Ω

∇u · ∇v dx.

Let u0 ∈ H1(D) be fixed and such that u0 = g on Γ0. Then a variational formulation

of the state problem (PE) is the following:

(4)

{
find w = u− u0 ∈ HΓ0

(Ω) such that

a(w, v) = −a(u0, v) +
∫
Ω
fv dx+

∫
Γ
hv dσ, ∀v ∈ HΓ0

(Ω).

Since the given functions f , g and h are smooth enough, the existence and uniqueness

of the solution of the variational problem (4) are ensured by Lax-Milgram’s theorem.

Thus, we can define the mapping Ω 7→ w = w(Ω) and denote its graph by

F = {(Ω, w(Ω)); Ω ∈ Oad and w(Ω) is the solution of (4) on Ω}.

Now, the customary problem of shape optimization is

(5) to minimize J(Ω) = J(Ω, w(Ω)) on F .

This minimization problem is usually solved by endowing the set F with a topology
for which F is compact and J is lower semi-continuous. Let us therefore define
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the topology we shall work with. First, we define the convergence of a sequence

(ϕn)n ⊂ Vad by

(6) ϕn → ϕ⇐⇒
{
ϕn → ϕ uniformly on [0, 1],

ϕ′
n → ϕ′ uniformly on [0, 1]

that is, iff ϕn → ϕ in the C1 topology. Then, the convergence of a sequence (Ωn)n =

(Ω(ϕn))n ⊂ Õad to Ω = Ω(ϕ) ∈ Õad is simply defined by

(7) Ωn → Ω ⇐⇒ ϕn → ϕ.

If w ∈ H1(Ω), we denote by w̃ a uniform extension of w from Ω to the fixed open

bounded domain D. Note that the existence of such a uniform extension is ensured

by the result of D. Chenais, [8], and Remark 1. We can then define the convergence

of a sequence (wn)n of solutions of (4) on Ω(ϕn) to the solution w of (4) on Ω(ϕ) by

(8) wn → w ⇐⇒ w̃n ⇀ w̃ weakly in H1(D).

Finally, the topology we introduce on F is the one induced by the convergence defined
by

(9) (Ωn, wn) → (Ω, w) ⇐⇒
{

Ωn → Ω,

wn → w.

We can now state

Theorem 2. The minimization problem (5) admits a solution in F .

As already mentioned, the proof of this theorem is reduced to showing the com-

pactness of F and the lower semi-continuity of J .
Concerning the compactness of F with respect to the convergence (9), note first

that the compactness of Oad with respect to the convergence (7) follows easily from

the compactness of Uad and the Ascoli-Arzelà theorem. Thus, the compactness of F
will be a consequence of the continuity of the state problem (PE) with respect to the

domain. The proof of this continuity turned out to be non trivial and will be done

in the next section.

The proof of the lower semi-continuity (in fact, continuity!) of the functional J

on F also uses arguments that will be developed in the next section. Therefore, we
postpone it to the end of the paper.
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4. Continuity of the state problem

The proof of continuity of the state problem with respect to the domain is based on

essentially two ingredients that are the uniform Poincaré inequality and the uniform

continuity of the trace operator with respect to the domain. The former ingredient

is precisely

Theorem 3. There exists a constant M > 0 such that

(10) ‖u‖0,Ω 6 M‖∇u‖0,Ω ∀u ∈ HΓ0
(Ω), ∀Ω ∈ Õad.

The proof of this statement is non trivial. Anyhow, because of Remark 1, it follows

from Corollary 3 (ii) of [5] and we refer to that paper.

As for the latter ingredient, it concerns the trace operator and reads as follows:

Theorem 4. Let r be such that 1
2 < r 6 1. Then there exists a constant K such

that, for all ϕ ∈ Uad and all u in H
r(D),

‖u‖0,Γ(ϕ) 6 K‖u‖r,D,

where ‖ · ‖0,Γ(ϕ) is the L
2(Γ(ϕ))-norm and ‖ · ‖r,D is the H

r(D)-norm.

Clearly, this claims the uniform continuity of the trace operator with respect to all

the boundaries Γ(ϕ) or, equivalently, with respect to all the domains Ω(ϕ), ϕ ∈ Uad.

The proof of this theorem is based on the construction of a C1-diffeomorphism of a

uniform tubular neighborhood of the free boundary onto a strip in the plane. We

need some lemmas.

We start by showing that the derivatives of the elements of Vad are uniformly

bounded, that is

Lemma 1. If ϕ ∈ Vad, then C1 6 |ϕ′(t)| 6 C2 for all t ∈ R.

P r o o f. Let t0 ∈ [0, 1[, then we have d(t0, t0 + h) = inf
k∈Z

|h+ k| = |h| if |h| < 1
2 .

Then

∣∣∣
ϕ(t0 + h) − ϕ(t0)

h

∣∣∣ =
∣∣∣
ϕ(t0 + h) − ϕ(t0)

d(t0, t0 + h)

∣∣∣ 6 C2 for all h ∈ ]−1/2, 1/2[.

Taking the limit as h→ 0, we obtain that |ϕ′(t0)| 6 C2. By the same argument, we

conclude that |ϕ′(t0)| > C1. �
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We turn now to the construction of the announced diffeomorphism or, more pre-

cisely, its inverse. To this end, with a given ϕ ∈ Uad, one can associate the function

Φj ∈ C1((R/Z) × R,R2) defined by

(11) Φj(t, s) = ϕ(t) + sψj(t),

where ψj(t) =
∫
R
ϕ′(t − τ)⊥χ(jτ)j dτ , j > 1, ϕ′⊥ = (−ϕ′

2, ϕ
′
1) and χ ∈ C∞(R) is

such that χ > 0,
∫
R
χ dx = 1 and χ(t) = 0 if |t| > 1. Recall that ϕ′(t)⊥ defines

the normal direction to Γ = ϕ(R) at ϕ(t). Note also that ψj is just a regularized

function of ϕ′⊥ and as such it represents a good approximation for the latter as is

well known. More precisely, we have

Lemma 2. Given ε > 0, there exists jε such that, for all j > jε and all ϕ ∈ Uad,

‖ψj − ϕ′⊥‖L∞ < ε.

Note that what will be important in the sequel is that jε is independent of ϕ ∈ Uad.

P r o o f. We have

|ψj(t) − ϕ′(t)⊥| =

∣∣∣∣
∫

R

(ϕ′(t− τ)⊥ − ϕ′(t)⊥)χ(jτ)j dτ

∣∣∣∣

6

∫

R

∣∣∣ϕ′
(
t− τ

j

)
− ϕ′(t)

∣∣∣χ(τ) dτ.

Since Uad is compact, the functions ϕ
′ are equicontinuous and uniformly continuous

when ϕ describes Uad as follows from the Ascoli-Arzelà theorem. So, given ε > 0,

there exists γε > 0 independent of ϕ such that

(12) ∀t, t′ ∈ R, |t− t′| 6 γε implies that |ϕ′(t) − ϕ′(t′)| 6 ε, ∀ϕ ∈ Uad.

Hence, for j such that |τ |/j 6 1/j 6 γε and all t ∈ R,

|ψj(t) − ϕ′(t)⊥| 6

∫

R

εχ(τ) dτ = ε.

So, we can take jε > 1/γε. �

In the sequel and, in particular, in the next lemma, we shall take j = jε and, for

simplicity, we shall write ψ and Φ instead of ψjε
and Φjε

respectively. Of course,

as one can guess, the number ε will be taken sufficiently small to be able to get the

result.
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Lemma 3. There exists a small enough s0 > 0 such that s0 is independent of

ϕ ∈ Uad and the following three assertions hold.

(i) The Jacobian JΦ of Φ is such that

(13) |JΦ| >
1

2
C2

1 on R× [−s0, s0].

(ii) There exists C3 > 0 independent of ϕ such that

(14)
|Φ(t, s) − Φ(t′, s′)| 6 C3|(t− t′, s− s′)|,

∀(t, s), (t′, s′) ∈ R× [−s0, s0].

(iii) Φ is injective in (R/Z) × [−s0, s0], and, more precisely,

|Φ(t̄, s) − Φ(t̄′, s′)| >
C1

2
√

2
(d(t̄, t̄′)2 + |s− s′|2)1/2,(15)

∀(t̄, s), (t̄′, s′) ∈ R/Z× [−s0, s0],

where C1 is the same constant as that used in the definition of Vad.

P r o o f. The proof of assertions (i) and (ii) is not difficult and uses the same

arguments as those used to prove Lemma 1 of [6]. So, we refer to that paper.

Let us show (iii). Let (t̄, s), (t̄′, s′) be in R/Z× [−s0, s0]. We have

(16) Φ(t̄, s) − Φ(t̄′, s′) = ϕ(t) − ϕ(t′) + (s− s′)ψ(t) − s′(ψ(t) − ψ(t′)).

Now, let η be a small enough parameter to be determined later. We distinguish two

cases:

First case, if |s− s′| 6 ηd(t̄, t̄′), we have

(17) |Φ(t̄, s) − Φ(t̄′, s′)| > C1d(t̄, t̄′) − ηd(t̄, t̄′)‖ψ‖L∞ − s0‖ψ′‖L∞d(t̄, t̄′).

In fact, for the last term we have

|ψ(t) − ψ(t′)| = |ψ(t+ k) − ψ(t′)| 6 ‖ψ′‖L∞ |t− t′ + k| for all k ∈ Z;

hence

|ψ(t) − ψ(t′)| 6 ‖ψ′‖L∞d(t̄, t̄′).

Therefore,

|Φ(t̄, s) − Φ(t̄′, s′)| > C1d(t̄, t̄′) − ηd(t̄, t̄′)‖ψ‖L∞ − s0‖ψ′‖L∞d(t̄, t̄′)

> (C1 − ηC2 − s0C2kε‖χ′‖L1)d(t̄, t̄′)

> (C1 − (η + s0kε‖χ′‖L1)C2)
(1

2
d(t̄, t̄′)2 +

1

2

1

η2
|s− s′|2

)1/2

.
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Assuming that η 6 1, we obtain

|Φ(t̄, s) − Φ(t̄′, s′)| >
1√
2
(C1 − (η + s0kε‖χ′‖L1)C2)(d(t̄, t̄′)

2 + |s− s′|2)1/2.

Second case, if |s− s′| > ηd(t̄, t̄′), we can write, for all k ∈ Z,

Φ(t̄, s) − Φ(t̄′, s′) = −
(

(t′ − t+ k)ϕ′(t) + (t′ − t+ k)

×
∫ 1

0

(ϕ′(t+ τ(t′ − t+ k)) − ϕ′(t)) dτ

)
+ (s− s′)ϕ′(t)⊥

+ (s− s′)(ψ(t) − ϕ′(t)⊥) + s′(ψ(t) − ψ(t′ + k)).

We know that ‖ψ−ϕ′⊥‖L∞ 6 ε. On the other hand, it follows from the compactness

of Uad and the Ascoli-Arzelà theorem that there exists γε independent of ϕ such that

for all t, t′ ∈ R such that d(t̄, t̄′) 6 γε, we have |ϕ′(t) − ϕ′(t′)| 6 ε. Hence, if

|s− s′| 6 ηγε, we have

∣∣∣∣
∫ 1

0

(ϕ′(t+ τ(t′ − t+ k)) − ϕ′(t)) dτ

∣∣∣∣ 6 ε.

Indeed, if k is such that |t− t′ + k| = d(t̄, t̄′), we have

inf
l∈Z

|t+τ(t′− t+k)− t+ l| 6 inf
l∈Z

(|τ | |(t′− t+k)|+ |l|) 6 |τ | |(t′− t+k)| 6 d(t̄, t̄′) 6 γε.

Therefore, if s0 6 1
2ηγε, we have

|Φ(t̄, s) − Φ(t̄′, s′)| > |(t′ − t+ k)ϕ′(t) + (s− s′)ϕ′(t)
⊥|

− ε|t′ − t+ k| − ε|s− s′| − s0C2kε‖χ′‖L1 |t′ − t+ k|
> (|t′ − t+ k|2|ϕ′(t)|2 + |s− s′|2|ϕ′(t)|2)1/2

− (ε+ s0C2kε‖χ′‖L1)|t′ − t+ k| − ε|s− s′|
> C1(d(t̄, t̄′)

2 + |s− s′|2)1/2

− (ε+ s0C2kε‖χ′‖L1)|t′ − t+ k| − ε|s− s′|.

Now, we take the inf with respect to k to obtain

|Φ(t̄, s) − Φ(t̄′, s′)|
> C1(d(t̄, t̄′)

2 + |s− s′|2)1/2 − (ε+ s0C2kε‖χ′‖L1)d(t̄, t̄′) − ε|s− s′|
> (C1 − 2ε− s0C2kε‖χ′‖L1)(d(t̄, t̄′)2 + |s− s′|2)1/2.
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The constants ε, η and s0 can be chosen, for example, such that

(ηs0C2kε‖χ′‖L1)C2 6
C1

2
, 2ε+ s0C2kε‖χ′‖L1 6

C1

2
and s0 6

1

2
ηγε.

Hence, it suffices to take

η =
C1

4C2
, ε =

C1

8
and s0 = min

{C1γε

8C2
,

C1

8C2kε‖χ′‖L1

}
.

This shows that there exists s0 independent of ϕ such that Φ is injective in R/Z ×
[−s0, s0] and

|Φ(t̄, s) − Φ(t̄′, s′)| >
C1

2
√

2
(d(t̄, t̄′)2 + |s− s′|2)1/2, ∀(t̄, s), (t̄′, s′) ∈ R/Z× [−s0, s0].

�

Corollary 1. The function Φ defines a C1 diffeomorphism from (R/Z)× ]−s0, s0[
onto an open neighbourhood of Γ = ϕ(R/Z). In particular, it is by restriction a

diffeomorphism from ]0, 1[ × ]−s0, s0[ onto a neighbourhood of Γ \ {ϕ(0)}.
P r o o f of Theorem 4. Let us denote I = ]0, 1[ and J = ]−s0, s0[ and let us

consider u ∈ Hr(D) where 1
2 < r 6 1. We have

u(ϕ(t)) = u|Γ ◦ ϕ(t), ∀t ∈ R,

and, on the other hand,

u(ϕ(t)) = u(Φ(t, s))|s=0 ≡ v(t, s)|s=0, ∀t ∈ R,

where Φ is the function studied above and v = u ◦Φ. From Corollary 1 we have that

Φ is a C1 diffeomorphism from (R/Z)×J onto an open subset of R2 which is some

tubular neighborhood of Γ, and thus v ∈ Hr(I × J ). Now,

‖u‖0,Γ(ϕ) 6 C2‖u ◦ ϕ‖0,I = C2‖v(t, s)|s=0‖0,I ,

and, according to the standard result on the continuity of the trace operator from

Hr(I × J ) to L2(I × {0}), there exists a constant β, independent of v, such that
‖v|s=0‖0,I 6 β‖v‖r,I×J for all v ∈ Hr(I × J ). Hence,

‖u‖0,Γ(ϕ) 6 C2 β ‖v‖r,I×J .

Using the same arguments as in [6], we can show that there exists a constant C4

independent of ϕ, such that

‖v‖r,I×J 6 C4‖u‖r,D.

This completes the proof of the theorem. �
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Now, as a consequence of Theorem 4, we state and prove the following convergence

result which will also be needed for the continuity of the state problem.

Corollary 2. Let (ϕn)n ⊂ Vad be a sequence such that ϕn → ϕ in the sense

of (6), that is in the C1 topology, and let u, h ∈ H1(D). Then

lim
n→∞

u ◦ ϕn = u ◦ ϕ in L2([0, 1]),

and lim
n→∞

∫

Γ(ϕn)

uh dσ =

∫

Γ(ϕ)

uh dσ.

P r o o f. The first assertion is proved by using essentially a density result and

the Lebesgue convergence theorem. Since it is proved in [6], Corollary 1, we refer to

it.

As for the second assertion, we have
∣∣∣∣
∫

Γ(ϕn)

uh dσ −
∫

Γ(ϕ)

uh dσ

∣∣∣∣

=

∣∣∣∣
∫ 1

0

(h ◦ ϕn)(t)(u ◦ ϕn)(t)|ϕ′
n(t)| − (h ◦ ϕ)(t)(u ◦ ϕ)(t)|ϕ′(t)| dt

∣∣∣∣

6

∣∣∣∣
∫ 1

0

(h ◦ ϕn − h ◦ ϕ)(u ◦ ϕn)|ϕ′
n| dt

∣∣∣∣ +

∣∣∣∣
∫ 1

0

(u ◦ ϕn − u ◦ ϕ)(h ◦ ϕn)|ϕ′
n| dt

∣∣∣∣

+

∣∣∣∣
∫ 1

0

(h ◦ ϕ)(u ◦ ϕ)(|ϕ′
n| − |ϕ′|) dt

∣∣∣∣

6
√
C2‖u‖0,Γ(ϕn)‖h ◦ ϕn − h ◦ ϕ‖0,[0,1] +

√
C2‖h‖0,Γ(ϕn)‖u ◦ ϕn − u ◦ ϕ‖0,[0,1]

+
1

C1
sup
[0,1]

|ϕ′
n − ϕ′| ‖u‖0,Γ(ϕ)‖h‖0,Γ(ϕ).

It follows from the first part that

lim
n→∞

‖u ◦ ϕn − u ◦ ϕ‖0,[0,1] = lim
n→∞

‖h ◦ ϕn − h ◦ ϕ‖0,[0,1] = 0.

Thus, Corollary 2 follows by applying Theorem 4 and using the C1 convergence of

(ϕn) to ϕ. �

In what follows, we shall prove the continuity of the state problem.

Let (Ωn) = (Ω(ϕn)) be a sequence in Oad such that Ωn converges, in the sense

of (7), to Ω = Ω(ϕ) ∈ Oad and let wn = w(Ωn) be the solution of the problem (4)

on Ωn, that is,

(18)





find wn ∈ HΓ0
(Ωn) such that

∫
Ωn

∇wn · ∇v dx = −
∫
Ωn

∇u0 · ∇v dx+
∫
Ωn

fv dx+
∫
Γ(ϕn)

hv dσ,

∀v ∈ HΓ0
(Ωn).
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Now, we state the result on the continuity of the state problem.

Theorem 5. (i) There exist an extension w̃n of wn to H
1(D) and a constant C

independent of n such that

‖w̃n‖1,D 6 C.

(ii) There exists a subsequence of (w̃n)n which is weakly convergent in H
1(D) to a

limit, denoted by w̃, which is the extension of the solution w of (4) to Ω.

P r o o f. (i) Let wn be the solution of (18). Using D. Chenais’s result, [8], there

exists w̃n an extension of wn to H
1(D) and a non negative constant C̃ independent

of n such that

(19) ‖w̃n‖1,D 6 C̃‖wn‖1,Ωn
.

Let us show that ‖wn‖1,Ωn
is bounded with respect to n. Taking v = wn in (18), we

can write

∫

Ωn

∇wn · ∇wn dx = −
∫

Ωn

∇u0 · ∇wn dx+

∫

Ωn

fwn +

∫

Γ(ϕn)

hwn dσ.

Hence,

(20) |wn|21,Ωn

6 ‖u0‖1,D|wn|1,Ωn
+ ‖f‖0,D‖wn‖0,Ωn

+ ‖h‖0,Γn
‖wn‖0,Γn

,

where Γn stands for Γ(ϕn). Now, it follows from Theorem 3, inequality (19) and

Theorem 2 that

‖wn‖0,Γn
6 K‖w̃n‖1,D 6 KC̃‖wn‖1,Ωn

6 KC̃
√

1 +M2|wn|1,Ωn
,

so that

(21) |wn|1,Ωn
6 ‖u0‖1,D +M‖f‖0,D + C2K

2C̃
√

1 +M2‖h‖1,D.

Hence,

(22) ‖wn‖1,Ωn
6

√
1 +M2(‖u0‖1,D +M‖f‖0,D + C2K

2C̃
√

1 +M2‖h‖1,D),

which establishes the first part.

(ii) It follows from (i) that (w̃n)n is a bounded sequence in H
1(D). Therefore,

we can extract a subsequence, denoted again by (w̃n)n, which weakly converges in

H1(D) to a limit denoted by w̃. Note that w = w̃|Ω is in HΓ0
(Ω) as follows from the
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boundedness of the trace operator. To prove that w is the solution of (4) on Ω, it

suffices to show that w satisfies the equation

(23)

∫

Ω

∇w · ∇v dx = −
∫

Ω

∇u0 · ∇v dx+

∫

Ω

fv dx+

∫

Γ(ϕ)

hv dσ, ∀v ∈ HΓ0
(Ω).

In fact, it suffices to show that the variational equation (23) holds for all v ∈
HΓ0

(D) = {ξ ∈ H1(D); ξ = 0 on Γ0}. Note that, since for all v in HΓ0
(D), the

restriction v|Ωn
is in HΓ0

(Ωn) for all n, we have

(24)

∫

Ωn

∇wn ·∇v dx = −
∫

Ωn

∇u0 ·∇v dx+

∫

Ωn

fv dx+

∫

Γ(ϕn)

hv dσ, ∀v ∈ HΓ0
(D).

Now, we obtain (23) from (24) just by passing to the limit. Indeed, for v ∈ HΓ0
(D),

let us define I1, I2, I3 and I4 by

I1 =

∫

Ωn

∇w̃n · ∇v dx−
∫

Ω

∇w̃ · ∇v dx

=

∫

D

χΩ(∇w̃n −∇w̃) · ∇v dx+

∫

D

(χΩn
− χΩ)∇w̃n · ∇v dx,

I2 =

∫

Ω

∇u0 · ∇v dx−
∫

Ωn

∇u0 · ∇v dx

=

∫

D

(χΩn
− χΩ)∇u0 · ∇v dx,

I3 =

∫

Ω

fv dx−
∫

Ωn

fv dx

=

∫

D

(χΩn
− χΩ)fv dx,

I4 =

∫

Γ(ϕ)

hv dσ −
∫

Γ(ϕn)

hv dσ.

Clearly, Corollary 2 implies that lim
n→∞

I4 = 0. As for the others, it follows from the

convergence

w̃n ⇀ w̃ in H1(D)-weak,

the convergence of characteristic functions, due to Pironneau [16], [20],

χΩn
→ χΩ in L∞(D)-weak*,

and the fact that (w̃n) is bounded in H1(D), that lim
n→∞

I1 = lim
n→∞

I2 = lim
n→∞

I3 = 0.

This proves Theorem 5. �

To complete the proof of Theorem 2, let us establish
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Theorem 6. The functional J(Ω, u) =
∫
Γ
|u|2 dσ is continuous on F in the topol-

ogy induced by the convergence (9).

P r o o f. Let ((Ωn, un))n be a sequence in F , Ωn = Ω(ϕn), and assume that

(Ωn, un) → (Ω, u) as n→ ∞,

where Ω = Ω(ϕ) and (Ω, u) ∈ F . In what follows, the functions under consideration
are of course the uniform extensions ũ, ũn ∈ H1(D), but for simplicity we shall drop

the tilde. To show that J(Ωn, un) → J(Ω, u), let us prove that
√
J(Ωn, un) →√

J(Ω, u). Letting ‖.‖ stand for the L2 norm on [0, 1], we can write

(25) |
√
J(Ωn, un) −

√
J(Ω, u)|

=
∣∣‖un ◦ ϕn · |ϕ′

n|1/2‖ − ‖u ◦ ϕ · |ϕ′|1/2‖
∣∣

6 ‖un ◦ ϕn · |ϕ′
n|1/2 − u ◦ ϕ · |ϕ′|1/2‖

6 ‖(un ◦ ϕn − u ◦ ϕn)|ϕ′
n|1/2‖ + ‖(u ◦ ϕn − u ◦ ϕ)|ϕ′

n|1/2‖
+ ‖u ◦ ϕ(|ϕ′

n|1/2 − |ϕ′|1/2)‖
6 ‖un − u‖0,Γn

+
√
C2‖u ◦ ϕn − u ◦ ϕ‖

+
1√
C1

‖u‖0,Γ sup
[0,1]

∣∣|ϕ′
n|1/2 − |ϕ′|1/2

∣∣

6 K‖un − u‖r,D +
√
C2‖(u ◦ ϕn − u ◦ ϕ)‖ +

1

2C1
‖u‖0,Γ sup

[0,1]

|ϕ′
n − ϕ′|,

where we have used Theorem 4. Then, Theorem 6 follows from Corollary 2 and the

compactness of the injection of H1(D) into Hr(D), of course by taking 1
2 < r < 1.

�
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