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Abstract. In this note, we construct some integer matrices with determinant equal to
certain summation form of Liouville’s function. Hence, it offers a possible alternative way
to explore the Prime Number Theorem by means of inequalities related to matrices, provided
a better estimate on the relation between the determinant of a matrix and other information
such as its eigenvalues is known. Besides, we also provide some comparisons on the estimate
of the lower bound of the smallest singular value. Such discussion may be extended to that
of Riemann hypothesis.
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1. Introduction

We shall use n to denote an arbitrary positive integer throughout this paper.

Define Ω(n) as the number of prime factors of n and ω(n) as that of distinct prime

factors. The Möbius function µ(n) is (−1)ω(n) when n is square-free and 0 elsewhere.

Since the time of Landau (cf. [5] or [7]), we have known that M(n) =
n
∑

k=1

µ(k) is

closely related to the Prime Number Theorem (PNT):

PNT ⇐⇒ M(n) = o(n).

Redheffer [6] in 1977 introduced the matrix Rn = (rij) ∈ Mn consisting of 0 or 1

defined by

rij =

{

1 if i | j or j = 1,

0 else,
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and showed that its determinant detRn = M(n). This suggests a new possibility of

proving the Prime Number Theorem by means of inequalities estimation related to

matrices.

The Liouville function λ is defined by λ(n) = (−1)Ω(n). Put L(n) =
n
∑

k=1

λ(k), it

is also noted in Landau’s thesis that

PNT ⇐⇒ L(n) = o(n).

We suggest the following new matrix Sn = (sij) ∈ Mn which contains more zeros

than Rn. Put

(1.1) sij =

{

1 if j = 1 or j/i is a square-free integer,

0 else.

We shall prove

Theorem 1.1. detSn = L(n).

In particular, we have

PNT ⇐⇒ detSn = o(n).

Denote by Ck(Sn) the k-th column of Sn. If we just apply Hadamard’s inequality

|detSn| 6

n
∏

k=1

‖Ck(Sn)‖2,

we get a worse result than the trivial bound |detSn| 6 n as each column will contain

at least two 1’s (exactly two when the k-th column is such that ω(k) = 1 for k > 1).

Recently, O.Bordellès and B.Clôıtre continued by establishing another matrix

that relates its determinants to the Prime Number Theorem. In [2], they construct

a n × n matrix Γn with determinant equal to

n!

n
∑

k=1

µ(k)

k
.

Thus the Prime Number Theorem is equivalent to the fact that det Γn = o(n!).

In this paper, we shall also prove a similar result. Denote Tn =
n
∑

k=1

λ(k)/k. Landau

also noticed that the Prime Number Theorem is equivalent to Tn = o(1).
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Denote by Q(n) the number of positive square-free integers not larger than n. We

know that Q(n) = 6n/π
2 + O(

√
n) (cf. for example [7]). Consider now the matrix

Vn = (vij) also consisting of integers defined as follows:

(1.2) vij =























1 if j = 1 and i = 1 or n,

Q(j) − 2Q(j/2) − 1 if i = 1 and 2 6 j 6 n,

iQ(j/i)− (i + 1)Q(j/(i + 1)) if 2 6 i 6 n − 1 and i 6 j 6 n,

0 else.

We shall prove

Theorem 1.2. detVn = n!
n
∑

k=1

λ(k)/k.

2. Some notation, identities and proofs

Let x ∈ R. Consider any functions f, g : R −→ R with support on [1, +∞[. Their

generalized convolution is

(f ⋆ g)(x) :=
∑

n6x

f(n)g
(x

n

)

.

Denote the characteristic functions b := bN∗ and χ := b[1,+∞[, then

(f ⋆ χ)(x) =
∑

n6x

f(n).

We can write then M = µ ⋆ χ and L = λ ⋆ χ.

If f, g|R\N = 0, then the generalized convolution ⋆ becomes the Dirichlet convolu-

tion ∗, which is commutative. Moreover, for any function h : R −→ R we have

f ⋆ (g ⋆ h) = (f ∗ g) ⋆ h.

We shall denote, provided it exists, the Dirichlet convolution inverse of f by f̃ .

Hence, we write µ̃ = b as µ ∗ b = δ or

∑

k|n

µ(k) = 0 when n > 1.

The characteristic function of positive square-free integers is |µ|. We have Q =

|µ| ⋆ χ.
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Denote by κ the characteristic function of positive square integers. It is easy to

verify that λ = µ ∗ κ and λ̃ = κ̃ ∗ b = |µ| as these are multiplicative functions (see
also [1] or [7]).

Hence, for any real number x > 1 we have

(♯) |µ| ⋆ L(x) = |µ| ⋆ (λ ⋆ χ)(x)

= (|µ| ∗ λ) ⋆ χ(x)

= χ(x)

= 1.

We have also

b ⋆ L(x) = κ ⋆ χ(x)

or equivalently

(♮)
∑

k6x

λ(k)
⌊x

k

⌋

= ⌊
√

x⌋.

2.1. Proof of Theorem 1.1. The coefficients sij except for the first column of

Sn are in fact equal to |µ|(j/i) when i | j.

Put A = (aij), B = (bij) ∈ Mn with

aij =

{

|µ|(j/i) if i | j,

0 else.

and

bij =











L(n/i) if j = 1,

1 if i = j > 2,

0 else.

For any positive integer i 6 n,

n
∑

k=1

aikbk1 =
∑

k6n
i|k

|µ|
(k

i

)

L(n/k)

=

⌊n/i⌋
∑

k=1

|µ|(k)L
(n/i

k

)

= (|µ| ⋆ L)(n/i)

= 1 (from (♯))

= si1.
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When 2 6 j 6 n, then
n

∑

k=1

aikbkj = aij = sij .

Hence Sn = AnBn and

detSn = detAn detBn = detBn = L(n).

This proves our Theorem 1.1. �

2.2. Proof of Theorem 1.2. First, we shall describe a more general situation.

Let (ck,l) be an arbitrary double indices sequence. Using the Abel transformation,

we can write

(♭)

l
∑

k=1

λ(k)

k
ck,l =

l
∑

k=1

( k
∑

j=1

λ(j)

j
−

k−1
∑

j=1

λ(j)

j

)

ck,l

=

l
∑

j=1

λ(j)

j
cl,l +

l−1
∑

k=1

( k
∑

j=1

λ(j)

j

)

(ck,l − ck+1,l).

We easily verify that for any real number x > 1,

∑

n6x

λ(n)Q
(x

n

)

= λ ⋆ (|µ| ⋆ χ)(x)

= (λ ∗ |µ|) ⋆ χ(x)

= 1.

This suggests to take roughly ck,l = kQ(l/k).

Put L = (lij) ∈ Mn, U = (uij) ∈ Mn with

lij =















1 if i = j < n,
j

∑

k=1

λ(k)/k if i = n,

0 else,

and

uij =











1 if i = j = 1,

Q(j) − 2Q(j/2)− 1 if i = 1 and 2 6 j 6 n,

iQ(j/i) − (i + 1)Q(j/(i + 1)) else.
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Then for any positive integer i < n,

n
∑

k=1

likukj = uij = vij

If i = n, then for any 2 6 j 6 n,

n
∑

k=1

lnkukj = − 1 +

j
∑

k=1

( k
∑

t=1

λ(t)

t

)

(kQ(j/k) − (k + 1)Q(j/(k + 1)))

= − 1 +

j
∑

k=1

λ(k)Q(j/k)

= 0

= vij .

For the last case i = n, j = 1 we have

n
∑

k=1

lnkuk1 = ln1 = 1 = vn1.

Finally, Vn = LnUn and

detVn = detUn detLn = n!

n
∑

k=1

λ(k)

k
,

which is the conclusion of Theorem 1.2. �

3. Discussion

In particular, the Prime Number Theorem can be proved if we show that detVn =

o(n!) but this seems to remain open under the consideration of various known in-

equalities involving determinants.

In fact, it is easy to construct other matrices with a similar property. Using (♮)

and (♭) we could think of putting c1,l = l − ⌊
√

l⌋ − 2
⌊

1
2 l

⌋

and for 2 6 k 6 l,

ck,l = k
⌊ l

k

⌋

− (k + 1)
⌊ l

k + 1

⌋

in (♭).
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This induces the consideration of the matrix W = (wij) ∈ Mn with

wij =























1 if j = 1 and i = 1 or n

j − ⌊√j⌋ − 2⌊j/2⌋ if i = 1 and 2 6 j 6 n

i⌊j/i⌋ − (i + 1)⌊j/(i + 1)⌋ if 2 6 i 6 n − 1 and i 6 j 6 n

0 else,

and we can prove that

detWn = n!
n

∑

k=1

λ(k)

k
.

In [2], O.Bordellès and B.Clôıtre construct an invertible matrix Un with the small-

est singular value σn such that
∣

∣

∣

n
∑

k=1

µ(k)/k
∣

∣

∣
6 1/nσn. They cite a result in [3] that

for any triangular matrix A = (aii) with dominant diagonal (|aii| > |aij |), we can
have the estimate σn > |min aii|/2n−1. However, if we apply such estimate, we will

only obtain
∣

∣

∣

∣

n
∑

k=1

µ(k)

k

∣

∣

∣

∣

6
n − 1

n
2n−1,

which is very far from the bound
∣

∣

∣

n
∑

k=1

µ(k)/k
∣

∣

∣
6 1 obtained by further simple ma-

nipulation of the Möbius inversion formula.

In the consideration of our Un in the course of the proof of the computation of our

detTn, we can also show that
∣

∣

∣

n
∑

k=1

λ(k)/k
∣

∣

∣
appears in the top-right entry of U−1

n , as

the spectral norm is not smaller than max norm; we have then

(3.1)

∣

∣

∣

∣

n
∑

k=1

λ(k)

k

∣

∣

∣

∣

6 ‖U−1
n ‖2 6

1

σn

where σn is the smallest singular value of our Un.

Now, if we consider the lower bound of the smallest singular value by using the

estimate of in [4]:

σn >

(n − 1

n

)(n−1)/2

|detUn|
Cmin

∏n
i=1 ‖Ci(Un)‖2

where Cmin is the minimum of ‖Ci(Un)‖2.

On the one hand, Hadamard’s inequality ensures that |detUn|/
n
∏

i=1

‖Ci(Un)‖2 6 1.

On the other hand, the quantity
(

(n − 1)/n
)(n−1)/2

is bounded.
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It is not realistic to expect that such estimate could make σn → ∞ but only

a bounded estimate.

Hence it remains the same for
∣

∣

∣

n
∑

k=1

λ(k)/k
∣

∣

∣
in (3.1).

We can also relate an other famous conjecture such as the Riemann hypothesis to

our study by using matrices inequalities. However, we wonder if the actual meth-

ods in linear algebra could eventually lead to another proof of the Prime Number

Theorem.
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