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ON THE ENERGY AND SPECTRAL PROPERTIES OF THE HE

MATRIX OF HEXAGONAL SYSTEMS
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Abstract. The He matrix, put forward by He and He in 1989, is designed as a means for
uniquely representing the structure of a hexagonal system (= benzenoid graph). Observing
that the He matrix is just the adjacency matrix of a pertinently weighted inner dual of the
respective hexagonal system, we establish a number of its spectral properties. Afterwards,
we discuss the number of eigenvalues equal to zero of the He matrix of a hexagonal system.
Moreover, we obtain a relation between the number of triangles and the eigenvalues of the
He matrix of a hexagonal system. Finally, we present an upper bound on the He energy of
hexagonal systems.
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1. Introduction

A hexagonal system can be viewed as a planar arrangement of mutually congruent

(connected or disconnected) regular hexagons. For a detailed treatment of hexagonal

systems, we refer to [1], [2], [6]. Apart from their various applications in telecommu-

nications, hexagonal systems are of great significance in chemistry structures (see [6]

and some references therein).

A technique to reduce the number of vertices and edges in our graphical model

of hexagons is to construct the inner dual graph of the hexagonal system. This is

constructed by replacing each hexagon with a vertex, and joining two vertices with

K.Ch.Das was supported by the Faculty research Fund, Sungkyunkwan University, 2012
and Sungkyunkwan University BK21 Project, Sungkyunkwan University, Suwon, Repub-
lic of Korea; S.Ali Ahmed was supported for six months by Mathematics Department of
LUMS for the Research Assistantship.
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an edge if their corresponding hexagons are adjacent. In the following, we discuss

the details of the inner dual of hexagonal systems.

The most common algebraic representation of a graph is the adjacency matrix,

followed by the Laplacian matrix, incidence matrix and various other forms [3], [4].

While capturing most structural information of graphs, these matrices ignore the

orientation of edges in the graph. Generally, graphs do not have edges in particular

directions/orientations, so it is not necessary to represent it. However, in the case

of hexagonal systems, a given hexagon can have another hexagon adjacent to it only

from 6 directions (i.e., from each side). Thus two hexagons can only be connected at

0◦, 60◦ or 120◦ relative to the horizontal axis. For this reason, we use the He matrix,

which records the orientation of edges in the inner dual graph. For more details on

the He matrix see [6].

For the inner dual, we follow the description given in [6]. Consider the examples

shown in Figure 1.

(a) Graph H1 (b) Graph H2

Figure 1. Two hexagonal systems. Their inner duals are shown in Figure 2.

Definition 1.1. The inner dual ID(H) of a hexagonal system H is a graph

constructed by placing a vertex in the center of each hexagon of H and connecting

those vertices that are in adjacent hexagons.

In Figure 2, we show the inner duals of the hexagonal systems in Figure 1.

(c) Graph ID(H1) (d) Graph ID(H2)

Figure 2. The inner duals ID(H1) and ID(H2) of the hexagonal systems H1 and H2 in
Figure 1.

While [6] mainly discusses the spectral properties of the inner dual of a hexagonal

system using the He matrix, in this paper we establish relationships between some

spectral and structural properties.
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The elementary spectral properties of the He matrix have been studied in [6]. In

[6], it has been defined that the He energy is the sum of the absolute values of the

eigenvalues of the He matrix of a hexagonal system. The He energy is different from

other energies, i.e., adjacency, Laplacian [8], etc., which have been studied extensively

in the literature. The rest of the paper is organized as follows. In Section 2, we

determine the characterization of hexagonal systems from the spectral radius of the

He matrix. In Section 3, we discuss the number of eigenvalues equal to zero of the

He matrix of a hexagonal system. In Section 4, we obtain a relation between the

number of triangles and the eigenvalues of the He matrix of a hexagonal system.

In Section 5 we give our main results on the upper bounds for the He energy

in terms of edge orientations. This is followed by the Section 6 on coalescence of

hexagonal systems, with the emphasis on the energy of coalesced systems. We also

show that to satisfy the inner dualist of coalesced systems, new edges have to be

added to the existing system.

Here we give the formal definition of the He matrix:

Definition 1.2. Let H be a hexagonal system with n hexagons. Let the vertices

of the dualist graph of H be labeled by 1, 2, . . . , n . Denote by (rs) the edge of the

dualist graph connecting the vertices r and s. Sometimes, we use the notation i ∼ j,

when vertices i and j are adjacent. Then the He matrix A(H) of H is a square

matrix of order n whose (i, j)-entry aij is defined as follows:

aij =



















































0 if i = j or if the vertices i and j of the dualist graph are not adjacent,

1 if (ij) is an edge, and the angle between (ij)

and the horizontal direction is kπ,

2 if (ij) is an edge, and the angle between (ij)

and the horizontal direction is kπ + π/3,

3 if (ij) is an edge, and the angle between (ij)

and the horizontal direction is kπ + 2π/3.

Since A(H) is symmetric and real, and all the diagonal elements are zero, the eigen-

values of A(H) are real and their sum is equal to zero. The eigenvalues of A(H)

form the spectrum of the He matrix and may be ordered as

λ1(A(H)) > λ2(A(H)) > . . . > λn(A(H)).

In the rest of the paper we will write λi(H) or simply λi instead of λi(A(H)).
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2. Characterization of hexagonal systems from

the spectral radius of the He matrix

In this section, we determine the characterization of hexagonal systems from the

spectral radius of the He matrix. The following is a result of Perron-Frobenius in

matrix theory [7], which we need in our paper at a later stage.

Lemma 2.1. A non-negative matrix B always has a non-negative eigenvalue r

such that the moduli of all the eigenvalues of B do not exceed r. To this “maximal”

eigenvalue r there corresponds a non-negative eigenvector Y such that

BY = rY (Y > 0,Y 6= 0).

Lemma 2.2 [9]. Let B = ‖bij‖ be an n× n irreducible non-negative matrix with

spectral radius λ1(B), and let Ri(B) be the i-th row sum of B, i.e., Ri(B) =
n
∑

j=1

bij .

Then

(2.1) min{Ri(B) : 1 6 i 6 n} 6 λ1(B) 6 max{Ri(B) : 1 6 i 6 n}.

Moreover, if the row sums of B are not all equal, then both inequalities in (2.1) are

strict.

Lemma 2.3. Let B be a p× p symmetric matrix and let Bk be its leading k × k

submatrix; that is, Bk is the matrix obtained from B by deleting its last p− k rows

and columns. Then, for i = 1, 2, . . . , k,

(2.2) λp−i+1(B) 6 λk−i+1(Bk) 6 λk−i+1(B),

where λi(B) is the i-th largest eigenvalue of B.

We now give a lower bound on the spectral radius of the He matrix of a hexagonal

system.

Theorem 2.4. Let H be a hexagonal system with n hexagons. Then the spectral

radius of the He matrix is given by

(2.3) λ1(H) > max
i

{√

∑

j : j∼i

a2
ij

}

.
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P r o o f. Let ID(H) be the dualist graph corresponding to the hexagonal sys-

tem H . By Lemma 2.3, we have

(2.4) λ1(H) > λ1(H
∗),

where H∗ is the square submatrix k × k obtained from H by deleting the rows and

columns except the i-th and j-th such that j ∼ i. Let X = (x1, x2, . . . , xk)T be an

eigenvector corresponding to the eigenvalue λ1(H
∗) of the dualist graph H∗. We can

assume that xi = max
j
xj . Then we have

λ1(H
∗)xi =

∑

j : j∼i

aijxj ,

that is,

λ2
1(H

∗)xi =
∑

j : j∼i

aijλ1(H
∗)xj .

Since λ1(H
∗)xj > aijxi for all j ∼ i (as all xt > 0, by Lemma 2.1), using (2.4) we

get the required result (2.3). �

In the following we give the results in the form of corollaries.

Corollary 2.5. Let ID(H) be the dualist graph of H with maximum degree 6.

Then λ1 > 5.29.

Corollary 2.6. Let ID(H) be the dualist graph of H with maximum degree

greater than or equal to 5. Then λ1 > 4.358.

Corollary 2.7. Let ID(H) be the dualist graph of H with maximum degree

greater than or equal to 4. Then λ1 > 3.162.

Let H3 be a hexagonal system with two hexagons (the “naphthalene graph”), see

Figure 3 (obtained from [6]). The spectrum of its He matrix is either {−1, 1} or
{−2, 2} or {−3, 3}, depending on the way in which H3 is drawn. Thus the spectrum

of A(H3) is integral.

H3a H3b H3c

Figure 3. A hexagonal system whose He matrix has integral spectrum. For the orientations
H3a, H3b, and H3c, the spectra of A(H3) are {−1, 1}, {−2, 2}, and {−3, 3},
respectively.
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From the definition, the edges of the dualist graphs have three different possible

directions. We classify them into types (a), (b), and (c), so that an edge e is of type

(a) if the angle between e and the positive horizontal direction is either 0 or π,

(b) if the angle between e and the positive horizontal direction is either π/3 or 4π/3,

and

(c) if the angle between e and the positive horizontal direction is either 2π/3 or

5π/3.

Now we will determine the characterization of hexagonal systems from the integral

spectral radius.

Theorem 2.8. Let H be a hexagonal system with n hexagons. Also let λ1(H) = i

for i = 1, 2, 3. Then H ∼= H3a or H ∼= H3b or H ∼= H3c or H ∼= H5 (in Figure 4).

P r o o f. Suppose ID(H) is the dualist graph corresponding to the hexagonal

system H . Using Corollary 2.7, we conclude that the maximum degree of ID(H) is

less than or equal to 3. If n = 2, then λ1 = 1 and H ∼= H3a, or λ1 = 2 and H ∼= H3b,

or λ1 = 3 and H ∼= H3c. Otherwise, n > 3 and the maximum degree of ID(H) is

2 or 3. Now we construct a hexagonal system H ′

3c corresponding to dualist graph

ID(H ′

3c), by adding a pendant edge in any direction to any one vertex in ID(H3c).

Then one can see easily that λ1(H
′

3c) > 3 as n > 3. If ID(H ′

3c) is a subgraph of

ID(H), then λ1(H) > 3 and we are done. Otherwise, ID(H ′

3c) is not a subgraph

of ID(H). From this we conclude that there is no edge of type (c) in ID(H). If

the maximum degree of ID(H) is 3, then we must have at least one edge of type

(c) in ID(H), which is a contradiction. Otherwise, maximum degree of ID(H) is 2.

First we assume that ID(H) is isomorphic to a path Pn with all the edges in two

different possible directions. When all the edges of the path Pn are of type (a),

we have 1 < λ1(H) < 2. When all the edges of the path Pn are of type (b), we

have 3 < λ1(H) < 4 for n > 4 and 2 < λ1(H) < 3 for n = 3. Next we assume

that ID(H) is isomorphic to a path Pn with the edges of type (a) and (b). From

above we have seen that at most two consecutive edges are of type (b) in ID(H),

otherwise λ1(H) > 3. If there is one edge of type (b) adjacent to edges of type

(a) in the path Pn, then by Lemma 2.2, 2 < λ1(H) < 3. It remains to show that

two consecutive edges are of type (b), adjacent to edges of type (a) in path Pn. So

ID(H4) or/and ID(H5) are subgraphs of ID(H) (see Figure 4). By Mathematica, we

have λ1(H5) = 3. One can see readily that λ1(H) > 3 if ID(H5) is a strict subgraph

of ID(H). Now we consider the matrix D−1A(H)D, where D is the diagonal matrix

whose diagonal elements are the degrees of the dualist graph. It is well known that

λ1(D
−1A(H)D) = λ1(A(H)). If ID(H4) is a subgraph of ID(H), but ID(H5) is not

a subgraph of ID(H), then λ1(H) = λ1(D
−1A(H)D) < 3, by Lemma 2.2. This

completes the proof. �
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H4 ID(H4) H5 ID(H5)

Figure 4. Two hexagonal systems H4, H5 and their inner duals ID(H4), ID(H5).

3. Eigenvalues equal to zero in hexagonal system

In this section we discuss the number of eigenvalues equal to zero in a hexagonal

system. Let H0 be a hexagonal system with the corresponding inner dual ID(H0).

Also let v be vertex of the inner dual ID(H0). Construct a hexagonal system H1

with the corresponding inner dual ID(H1) from ID(H0) by attaching a new pendant

vertex to v such that the angle between the pendant edge and the positive horizontal

direction is 0 or π/3 or 2π/3 or π or 4π/3 or 5π/3. Construct a hexagonal system H2

with the corresponding inner dual ID(H2) by attaching one pendant vertex to v in

ID(H1) such that the angle between these two pendant edges is 2π/3 or π or 4π/3.

If the two pendant vertices are labeled by 1 and 2, and the vertex v by 3, then the

He matrix is of the form

A(H2) =



















0 0 a13 0 . . . 0

0 0 a23 0 . . . 0

a13 a23 ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗
· · · · . . . ·
0 0 ∗ ∗ . . . ∗



















,

where ∗ stands for the He matrix of ID(H0).

The He characteristic polynomial of an inner dual ID(H) is defined by ψ(H) =

ψ(H,λ) = det(λI −A(H)). Then

ψ(H2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ 0 −a13 0 . . . 0

0 λ −a23 0 . . . 0

−a13 −a23 ∗ ∗ . . . ∗
0 0 ∗ ∗ . . . ∗
· · · · . . . ·
0 0 ∗ ∗ . . . ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where now ∗ indicates ψ(H0, λ).
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By pertinent transformations of the above determinant we arrive at

(3.1) ψ(H2) =

(

1 +
a2
13

a2
23

)

λψ(H1) − λ2 a13

a23

ψ(H0).

From (3.1), we obtain the following result:

Theorem 3.1. Let H be a hexagonal system with the corresponding inner dual

ID(H). If any two pendant edges incident to the same vertex with angle 2π/3 or π

or 4π/3 in any inner dual ID(H), then 0 is an eigenvalue in H .

H6 ID(H6)

Figure 5. Hexagonal system H6, and its inner dual ID(H6).

By Theorem 3.1, these are at least three eigenvalues of the He matrix A(H6) of

the hexagonal system H6 equal to zero. Actual eigenvalues of A(H6) are {4.65224,

−4.65224,−3.52922, 3.52922,−2.81092, 2.81092, 0, 0, 0, 0}.

4. The number of triangles

It is mentioned in [5] that the number of closed paths of length 3 is equal to the

3-rd spectral moment of the adjacency matrix. Therefore,
n
∑

i=1

λ3
Ai
is equal to 6 × ∆,

where ∆ is the number of triangles, λAi are the eigenvalues of the adjacency matrix

A, and n is the number of vertices.

The motivation for 6 in 6 × ∆ comes from the fact that a triangle of vertices a, b

and c can be represented by 6 closed paths of length 3:

a−b−c−a, a−c−b−a, b−a−c−b,
b−c−a−b, c−a−b−c, c−b−a−c.

54



Since
n
∑

i=1

λ3
Ai
is equal to the number of closed paths of length 3, we get

(4.1)

n
∑

i=1

λ3
Ai

= Tr(A3) = 6 × ∆.

Here we extend the result to the He matrices.

Theorem 4.1. The number of triangles in a dualist graph of a hexagonal system

is related to the cube of the eigenvalues of the He matrix by the equation

(4.2)

n
∑

i=1

λ3
i = 36 × ∆,

where ∆ is the number of triangles, n is the number of vertices and λi, 1 6 i 6 n, is

an eigenvalue of the He matrix.

P r o o f. Let A be the adjacency matrix of the dualist graph ID(H). Then

(4.3)

n
∑

i=1

(A3)ii =

n
∑

i=1

n
∑

p=1

n
∑

r=1

aipaprari

If there is a closed path i–p–r–i, then this path is a triangle and all of aip, apr and

ari will be non-zero and equal to 1.

Now let A(H) be the He matrix, and hij be the (i, j)-entry in A(H). Then

n
∑

i=1

(A(H)3)ii =
n

∑

i=1

n
∑

p=1

n
∑

r=1

hiphprhri.

Due to the restrictions of the He matrix, edges in the triangles will be of orientation

0◦, 60◦ and 120◦, and thus,

hiphprhri =

{

3 × 2 × 1 (in some order) if the path i–p–r–i exists,

0 otherwise.

Since

aipaprari =

{

1 × 1 × 1 if the path i–p–r–i exists,

0 otherwise.

We can say that hiphprhri = 6 × aipaprari for every i, p, r.

55



Then,
n

∑

i=1

n
∑

p=1

n
∑

r=1

hiphprhri =

n
∑

i=1

n
∑

p=1

n
∑

r=1

6 × aipaprari,

i.e.,
n

∑

i=1

n
∑

p=1

n
∑

r=1

hiphprhri = 6 ×
n

∑

i=1

n
∑

p=1

n
∑

r=1

aipaprari,

i.e.,
n

∑

i=1

(A(H)3)ii = 6 ×
n

∑

i=1

(A3)ii,

i.e.,

n
∑

i=1

λi
3 = 6 ×

n
∑

i=1

λ3
Ai = 36 × ∆ by (4.1).

�

For example, consider the following dualist graph ID(H7):

ID(H7)

Figure 6. Inner dual ID(H7) of a hexagonal system H7.

Let A be the adjacency matrix of ID(H7), and A(H7) be the He matrix. Then

A =









0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0









, A(H7) =









0 2 3 0

2 0 1 3

3 1 0 2

0 3 2 0









Therefore, the eigenvalues of A and A(H7) are

λ(A) = {2.56155,−1.56153,−1, 0},
λ(A(H7)) = {5.52494,−4.52494,−1.61803, 0.618034},

their cubed values are

λ3(A) = {16.8077,−3.8076,−1, 0},
λ3(A(H7)) = {168.648,−92.6484,−4.23607, 0.236068},

and their 3-rd spectral moments are

n
∑

i=1

λ3
i (A) = 12,

n
∑

i=1

λ3
i (A(H7)) = 72.
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Therefore,
n

∑

i=1

λ3
i (A) = 6 × ∆,

n
∑

i=1

λ3
i (A(H7)) = 36 × ∆,

where ∆ is the number of triangles in the inner dual ID(H7).

5. Upper bound on the He energy of a hexagonal system

The He energy [6] of a hexagonal system H is defined as EH =
n
∑

i=1

|λi|, where λi,

1 6 i 6 n are the eigenvalues of the He matrix of the dualist graph ID(H), and n,

and is the number of vertices in ID(H).

In this section we describe a new relation between the He energy of a dualist graph,

the number of vertices n, and the number of edges of each orientation in ID(H).

For the following theorem and its proof, we define “orientation of the edge (ij)”

as the entry in the He matrix at the position (ij). Thus an edge with an orientation

of x is at an angle (x− 1) × 60◦, x = 1, 2, 3.

Theorem 5.1. The He energy EH of the dualist graph ID(H) of a hexagonal

system H is bounded above by the inequality

EH 6
√

2n(m1 + 4m2 + 9m3),

where mi is the number of edges of orientation i, for 1 6 i 6 3, and n is the number

of vertices in ID(H).

P r o o f. A following well-known relation between the eigenvalues of an n × n

Hermitian matrix B = (bij) and n is

(5.1)

n
∑

i=1

|λi| 6
√
n · ‖B‖F ,

where ‖B‖F is the Frobenius norm of B, given by

‖B‖F =

Ã

n
∑

i=1

n
∑

j=1

|bij |2.

Now let A(H) be the He matrix of the dualist graph ID(H) of a hexagonal sys-

tem H . Thus aij = 0, 1, 2 or 3 for 1 6 i, j 6 n.

We define πk as the number of entries in A(H) of value k, 0 6 k 6 3. Thus π1 is

the number of 1’s in A(H), and so on. If A(H) = [aij ], squaring the entries in A(H)
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results in the matrix A(H∗) = [a2
ij ]. The number of each k

2 (k = 0, 1, 2, 3) in A(H∗)

is equal to the number of k’s in A(H), i.e.,

# of k2’s in A(H∗) = # of k’s in A(H) = πk

When adding the entries in A(H∗), all occurrences of k2 for each k (i.e. occurrences

of 0, 1, 4, and 9 in A(H∗)) can be grouped. Since πk represents the number of times

each value occurs in A(H∗), this results in:

n
∑

i=1

n
∑

j=1

|aij |2 =

3
∑

k=0

k2πk

Since each edge is represented by 2 entries in A(H), we have πk = 2mk, where mk

is the number of edges of orientation k. Therefore,

n
∑

i=1

n
∑

j=1

|aij |2 =

3
∑

k=0

k2 × 2mk = 1(2m1) + 4(2m2) + 9(2m3)

= 2(m1 + 4m2 + 9m3).

The Frobenius norm can now be written for the dualist graph of a hexagonal

system as

‖A(H)‖F =
√

2(m1 + 4m2 + 9m3).

From (5.1), we have

n
∑

i=1

|λi| 6
√
n×

√

2(m1 + 4m2 + 9m3).

Hence the theorem. �

For example, consider the dualist graphs ID(H8) and ID(H9):

ID(H8) : n = 5, m1 = 3, m2 = 2, m3 = 1,

ID(H9) : n = 7, m1 = 3, m2 = 3, m3 = 3

Figure 7. Graph ID(H8) with 5 vertices and 6 edges, and graph ID(H9) with 7 vertices and
9 edges.
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For the dualist graph ID(H8),

A(H8) =















0 1 0 2 3

1 0 0 0 2

0 0 0 1 0

2 0 1 0 1

3 2 0 1 0















,

The eigenvalues of A(H8) are {4.88335,−3.31712,−2.04794, 0.888729,−0.40702},
and thus the Energy = EH8

= 11.5442.

Here,

π1 = 6, π2 = 4, π3 = 2 ⇒ m1 = 3, m2 = 2, m3 = 1

and n = 5. Thus
√

2n(m1 + 4m2 + 9m3) = 10
√

2 ≈ 14.142, which is greater than

the energy calculated.

For the dualist graph ID(H9),

A(H9) =























0 0 2 3 0 0 0

0 0 1 0 0 3 0

2 1 0 1 0 2 0

3 0 1 0 1 0 3

0 0 0 1 0 0 2

0 3 2 0 0 0 0

0 0 0 3 2 0 0























The eigenvalues of A(H9) are {5.55993,−4.29929, 3.90212,−3.30324,−2.09694,

1.53998,−1.30256}, and thus the Energy = EH9
= 22.0041.

Now m1 = 3, m2 = 3, m3 = 3, and n = 5. Thus
√

2n(m1 + 4m2 + 9m3) =

6
√

14 ≈ 22.45, which is greater than the energy calculated.

6. Coalescence

In [11], W. So et al. have described the coalescence of two graphs. The concept can

be extended to hexagonal systems. The coalescence of two hexagonal systems can

be interpreted as the coalescence of two faces, or hexagons, of each system, which

implies a coalescence of the inner dual graphs.

Definition 6.1. Let H10 and H11 be the inner dual graphs of two hexagonal

systems with disjoint vertex sets. Let u ∈ H10 and v ∈ H11. Create a new graph

H12 by identifying vertices u and v, and call this new vertex w. If I(x) be the set of

edges incident on vertex x, I(w) = I(u) ∪ I(v). Then H12 is called the coalescence

of H10 and H11.
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A simple example is in Figure 8. Vertices u in H10 and v in H11 are merged to

form the inner dual graph H12. The vertices u and v are consolidated into w.

u

H10

v

H11

w

H12

Figure 8. Graphs H10, H11 and H12.

The coalescence of hexagonal systems G and H may yield an inner dual graph

which is different from simply coalescing the two inner dual graphs of G and H .

This is due to two or more hexagons from G and H now becoming adjacent to each

other, thereby requiring an additional edge in the new inner dual graph. We call

such an edge an induced edge. For example,

Figure 9 (a) and (b) show two graphs that are coalesced on vertices a in H13 and

d in H14. The vertices a and d merge to form f . Figure 9 (c) shows the coalescence

of the hexagonal systems H13 and H14, and Figure 9 (d) shows the coalescence of

inner dual graphs of H13 and H14.

b c

a

(a) H13

d c

(b) H14

b c

f e

(c) H15

b c

f e

(d)

Figure 9. Graphs H13, H14 and H15.

The inner dual graph in (d) lacks the edge between hexagons e and c. The edge,

however, is present in (c). Therefore the edge (ce) is an induced edge, or in other

words, (ce) was induced in the coalescence.

Lemma 6.2. An edge is induced in the coalescence of G and H wherever an edge

from ID(H) makes an angle of π/3 with an edge from ID(G).

P r o o f. Since there are 2 edges, there must be 3 vertices/hexagons. If hexagon

a is adjacent to c and b is also adjacent to c such that the angle between ac and

bc is π/3, hexagon a must be adjacent to hexagon b. Thus the edge ab must be

induced. �
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W.So et al. [11] have provided an upper bound on the energy of G ◦H . We show
that the bound holds when there are no induced edges in G ◦H , but in the case of
induced edges, the bound increases by the energy of the induced edges.

Hereafter, E(G) stands for the energy of the inner dual graph G, which is defined

in [6].

Lemma 6.3. Let G and H be two hexagonal systems. If there are no induced

edges in G ◦H , then E(G ◦H) 6 E(G) + E(H).

P r o o f. Since no induced edges are added, the concept remains the same as

described in [11]. The proof follows directly from the paper. It should be noted that

the method employed in [11] is applicable to all real symmetric matrices, and is thus

suitable for the He matrix. �

When there are one or more induced edges, the above result fails in most cases.

To this end, we provide the following more general theorem:

Theorem 6.4. Let G1 and G2 be two hexagonal systems. If there exist induced

edges in G1 ◦G2, then

E(G1 ◦G2) 6 E(G1) + E(G2) + E(I)

where E(I) is the combined energy of the induced edges.

P r o o f. Consider the inner dual graphs ID(G1) and ID(G2). Let G
′ be the

hypothetical coalescence of these two graphs if the induced edges were to be ignored.

Then the He matrices can be related by:

He(G′) = He(G1) +He(G2).

From [11] it follows that

E(G′) 6 E(G1) + E(G2).

Now let I be the hypothetical graph comprising only of the induced edges. Denote

the actual coalescence graph by G1 ◦G2. Now G1 ◦G2, G
′ and I can be related by:

He(G1 ◦G2) = He(G′) +He(I).

Again, from [11],

E(G1 ◦G2) 6 E(G′) + E(I).

Using the above two inequalities, we arrive at

E(G1 ◦G2) 6 E(G1) + E(G2) + E(I).

�
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There are several graphs where E(G1 ◦G2) 6 E(G1) + E(G2) holds even if there

are induced edges. However, such coalescences are not common.

7. Conclusion

In this paper, we have presented some new avenues which have opened up after

the introduction of the He matrix in 1986. The idea of the He matrix had been lying

untouched for the last 25 years, and after discussions with various chemists and

physicists, we are at a loss as to why further work was not conducted on this topic.

The He matrix appears to be useful because rotations and reflections of hexagonal

systems result in different eigenvalues and energy. It should be noted that the He

matrix of a hexagonal system after a rotation of 180◦ is only a different permutation

of the original He matrix; thus it has the same eigenvalues. A few applications

originated in chemistry, particularly for the molecular structures, without the use of

the spectrum of the He matrix for hexagonal systems.

We have discussed the work that we have conducted on the relationship between

a hexagonal system’s eigenvalues and its structural properties. Although closely

related to eigenvalues, the concept of He energy appears to be so rich in applications

that it deserves special attention. Although our work has been more focused on

the bounds on the energy of hexagonal systems, earlier work on adjacency matrices

have established relationships between the energy of a graph and its rank, chromatic

number, etc.—this needs to be propagated to hexagonal systems using the He matrix.

Finally, there remain several areas to be explored in the study of hexagonal systems

using the He matrix, both theoretical and applied. This and earlier papers focused

mainly on setting the theoretical basis for future studies in applied fields, such as

hydrocarbon chemistry, robotics, self-assembly, telecommunications and antennae.
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