
Czechoslovak Mathematical Journal

Marek Cúth; Martin Rmoutil
σ-porosity is separably determined

Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 1, 219–234

Persistent URL: http://dml.cz/dmlcz/143181

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143181
http://dml.cz


Czechoslovak Mathematical Journal, 63 (138) (2013), 219–234
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Abstract. We prove a separable reduction theorem for σ-porosity of Suslin sets. In
particular, if A is a Suslin subset in a Banach space X, then each separable subspace of
X can be enlarged to a separable subspace V such that A is σ-porous in X if and only if
A∩V is σ-porous in V . Such a result is proved for several types of σ-porosity. The proof is
done using the method of elementary submodels, hence the results can be combined with
other separable reduction theorems. As an application we extend a theorem of L. Zajíček
on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable
setting.
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1. Introduction

The aim of this article is to obtain separable reduction theorems for some classes

of σ-porous sets by employing the method of elementary submodels. This is a set-

theoretical method which can be used in various branches of mathematics. A. Dow

in [2] illustrated the use of this method in topology, W.Kubís in [4] used it in func-

tional analysis, namely to construct projections on Banach spaces.

In this article we shall use the method of elementary submodels to prove Theo-

rem 5.1 and Theorem 5.4 which have as a consequence for example the following:

Theorem 1.1. Let 〈X, ‖ · ‖〉 be a Banach space and let A ⊂ X be a Suslin set.

Then for every separable subspace V0 ⊂ X there exists a closed separable space

V ⊂ X such that V0 ⊂ V and

M.Cúth was supported by the Grant No. 282511/B-MAT/MFF of the Grant Agency of
the Charles University in Prague. M.Rmoutil was supported by the Grant SVV-2011-
263316.
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(i) A is σ-upper porous if and only if A ∩ V is σ-upper porous in the space V ,

(ii) A is σ-lower porous if and only if A ∩ V is σ-lower porous in the space V .

As a consequence of Theorem 5.1 and [1, Theorem 5.10] we get the following:

Theorem 1.2. LetX, Y be Banach spaces, G ⊂ X an open subset and f : G → Y

a function. Then for every separable subspace V0 ⊂ X there exists a closed separable

space V ⊂ X such that V0 ⊂ V and that the following two conditions are equivalent:

(i) the set of the points where f is not Fréchet differentiable is σ-upper porous,

(ii) the set of the points where f ↾ V is not Fréchet differentiable is σ-upper porous

in V .

The first result is in a certain sense an improvement of the result of J. Linden-

strauss, D. Preiss and J.Tišer [6, Corrolary 3.6.7], from where only the implication

(i) → (ii) follows. Moreover, we are able to easily extend results concerning points

of non-differentiability from separable Banach spaces to the non-separable case. An

example of such a result is Theorem 5.5 which has been proved in the article [9]—the

generalization is in Theorem 5.6.

Let us recall the most relevant notions, definitions and notations:

Notation. We denote by ω the set of all natural numbers (including 0), by N the

set ω\{0}, by R+ the interval (0,∞) andQ+ stands for R+∩Q. Whenever we say that

a set is countable, we mean that the set is either finite or infinite and countable. If f

is a mapping then we denote by Rng f the range of f and by Dom f the domain of f .

By writing f : X → Y we mean that f is a mapping with Dom f = X and Rng f ⊂ Y .

By the symbol f ↾Z we denote the restriction of the mapping f to the set Z.

If 〈X, ̺〉 is a metric space, we denote by U(x, r) the open ball (i.e. the set {y ∈

X : ̺(x, y) < r}) and by d(x, A) the distance function from a set A ⊂ X (i.e.

d(x, A) = inf{̺(x, a); a ∈ A}). We shall consider normed linear spaces over the field

of real numbers (but many results hold for complex spaces as well). If X is a normed

linear space, X∗ stands for the (continuous) dual space of X .

2. Elementary submodels

The method of elementary submodels enables us to find specific separable sub-

spaces (of Banach spaces) which can be used for proofs of separable reduction theo-

rems. In this section we briefly describe this method and recall some basic notions.

More information can be found in [1] where this method is described in greater detail.

First, let us recall some definitions:
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Let N be a fixed set and ϕ a formula in the language of ZFC. Then the rela-

tivization of ϕ to N is the formula ϕN which is obtained from ϕ by replacing each

quantifier of the form “∀x” by “∀x ∈ N” and each quantifier of the form “∃x” by

“∃x ∈ N”.

For example, if

ϕ = ∀x ∀y ∃z ((x ∈ z) ∧ (y ∈ z))

and N = {a, b}, then the relativization of ϕ to N is

ϕN = ∀x ∈ N ∀y ∈ N ∃z ∈ N ((x ∈ z) ∧ (y ∈ z)).

It is clear that ϕ is satisfied, but ϕN is not.

If ϕ(x1, . . . , xn) is a formula with all free variables shown (i.e. a formula whose

free variables are exactly x1, . . . , xn) then ϕ is absolute for N if and only if

∀a1, . . . , an ∈ N (ϕN (a1, . . . , an) ↔ ϕ(a1, . . . , an)).

The method is based mainly on the following set-theoretical theorem (a proof can

be found in [5, Chapter IV, Theorem 7.8]).

Theorem 2.1. Let ϕ1, . . . , ϕn be any formulas and X any set. Then there exists

a set M ⊃ X such, that

(ϕ1, . . . , ϕn are absolute for M) ∧ (|M | 6 max(ω, |X |)).

Since the previous theorem will often be used throughout the paper, the following

notation is useful.

Definition. Let ϕ1, . . . , ϕn be any formulas and let X be any countable set. Let

M ⊃ X be a countable set satisfying that ϕ1, . . . , ϕn are absolute for M . Then we

say that M is an elementary submodel for ϕ1, . . . , ϕn containing X . This is denoted

by M ≺ (ϕ1, . . . , ϕn; X).

Let ϕ(x1, . . . , xn) be a formula with all free variables shown and let M be some

elementary submodel for ϕ. To use the absoluteness of ϕ for M efficiently, we need

to know that many sets are elements of M . The reason is that for a1, . . . , an ∈ M

we have ϕ(a1, . . . , an) if and only if ϕM (a1, . . . , an). Using the following lemma we

can force the elementary submodel M to contain all the required objects created

(uniquely) from elements of M (for a proof see [1, Lemma 2.6]).
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Lemma 2.2. Let ϕ(y, x1, . . . , xn) be a formula with all free variables shown and

let X be a countable set. Let M be a fixed set, M ≺ (ϕ, ∃y ϕ(y, x1, . . . , xn); X) and

let a1, . . . , an ∈ M be such that there exists only one set u satisfying ϕ(u, a1, . . . , an).

Then u ∈ M .

It would be very laborious and pointless to use only the basic language of the set

theory. For example, we often write x < y and we know that this is in fact a shortcut

for the formula ϕ(x, y, <) with all free variables shown. Therefore, in the following

text we use this extended language of the set theory as we are used to. We shall also

use the following convention.

Convention 2.3. Whenever we say for any suitable elementary submodel M

(the following holds...), we mean that there exists a list of formulas ϕ1, . . . , ϕn and

a countable set Y such that for every M ≺ (ϕ1, . . . , ϕn; Y ) (the following holds...).

By using this new terminology we lose the information about the formulas

ϕ1, . . . , ϕn and the set Y . This is, however, not important in applications.

Remark 2.4. We are able to combine any finite number of results we have proved

using the technique of elementary submodels. This includes all the theorems starting

with “For any suitable elementary submodelM the following holds:” More precisely:

Let us have sentences T1(a), . . . , Tn(a). Assume that whenever an i ∈ {1, . . . , n} is

given, then for any suitable elementary submodelMi the sentence Ti(Mi) is satisfied.

Then it is easy to verify that for any suitable model M the sentence

T1(M) ∧ . . . ∧ Tn(M)

is satisfied (it suffices to combine all the lists of formulas and all the sets from the

definition above).

Let us recall several more results about suitable elementary submodels (proofs can

be found in [1, Chapters 2 and 3]):

Proposition 2.5. For any suitable elementary submodel M the following holds:

(i) If A, B ∈ M , then A ∩ B ∈ M , B \ A ∈ M and A ∪ B ∈ M .

(ii) Let f be a function such that f ∈ M . Then Dom f ∈ M , Rng f ∈ M and for

every x ∈ Dom f ∩ M , f(x) ∈ M .

(iii) Let S be a finite set. Then S ∈ M if and only if S ⊂ M .

(iv) Let S ∈ M be a countable set. Then S ⊂ M .

(v) For every natural number n > 0 and for arbitrary (n + 1) sets a0, . . . , an it is

true that

a0, . . . , an ∈ M ↔ 〈a0, . . . , an〉 ∈ M.
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Notation 2.6.

• If A is a set, then by saying that an elementary model M contains A we mean

that A ∈ M .

• If 〈X, ̺〉 is a metric space (resp. 〈X, +, ·, ‖ · ‖〉 is a normed linear space) and M

an elementary submodel, then by saying M contains X (or by writing X ∈ M)

we mean that 〈X, ̺〉 ∈ M (resp. 〈X, +, ·, ‖ · ‖〉 ∈ M).

• If X is a topological space and M an elementary submodel, then we denote by

XM the set X ∩ M .

Proposition 2.7. For any suitable elementary submodel M the following holds:

(i) If X is a metric space then whenever M contains X , it is true that

∀r ∈ R+ ∩ M ∀x ∈ X ∩ M U(x, r) ∈ M.

(ii) If X is a normed linear space then whenever M contains X , it is true that

XM is closed separable subspace of X.

Convention 2.8. The proofs in the following text often begin in the same way.

To avoid unnecessary repetitions, by saying “Let us fix a (∗)-elementary submodel

M [containing A1, . . . , An]” we will understand the following:

Let us have formulas ϕ1, . . . , ϕm and a countable set Y such that the elementary

submodel M ≺ (ϕ1, . . . , ϕm; Y ) is suitable for all the propositions from [1]. Add

to them formulas marked with (∗) in all the preceding proofs from this paper and

formulas marked with (∗) in the proof below (and all their subformulas). Denote

such a list of formulas by ϕ1, . . . , ϕk. Let us fix a countable set X containing the

sets Y , ω, Z, Q, Q+, R, R+ and all the common operations and relations on real

numbers (+, −, ·, : , <). Fix an elementary submodel M for formulas ϕ1, . . . , ϕk

containing X [such that A1, . . . , An ∈ M ].

Thus, any (∗)-elementary submodel M is suitable for the results from [1] and all

the preceding theorems and propositions from this paper, making it possible to use

all of these results for M .

In order to demonstrate how this technique works, we prove the following two easy

lemmas which we use later (the proof of the second lemma is also contained in the

proof of Proposition 4.1 in [1]).

223



Lemma 2.9. For any suitable elementary submodel M the following holds:

Whenever A ∈ M is a nonempty set, then A ∩ M is nonempty.

P r o o f. Let us fix a (∗)-elementary submodel M and fix some nonempty set

A ∈ M . Then

(∗) ∃x (x ∈ A).

This formula has only one free variable A and the set A is contained inM . Thus, due

to the absoluteness of the formula above, there exists an x ∈ M such that x ∈ A. �

Lemma 2.10. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a metric space, B ⊂ X . Then whenever M contains X , B and a set

D ⊂ B, it is true that

D is dense in B → D ∩ M is dense in B ∩ XM .

P r o o f. Let us fix a (∗)-elementary submodelM containing X such that B, D ∈

M . If the set B is empty then the proposition is obvious. Otherwise fix b ∈ B ∩XM

and r > 0. Choose some b0 ∈ U(b, r/2)∩M and a rational number q ∈ (̺(b, b0), r/2).

Then U(b0, q) ⊂ U(b, r) and

(∗) ∃d ∈ D (d ∈ U(b0, q)).

In the preceding formula we use the shortcut d ∈ U(b0, q) which stands for d ∈

X ∧ ̺(d, b0) < q. Free variables in this formula are X , ̺, <, D, b0, q. Those are

contained in M and thus we can use the absoluteness to find a d ∈ D ∩ M such

that (d ∈ U(b0, q))
M . Using the absoluteness again we obtain that d is an element

of U(b0, q). Consequently,

U(b, r) ∩ D ∩ M ⊃ U(b0, q) ∩ D ∩ M 6= ∅

and so the set D ∩ M is dense in B ∩ XM . �
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3. σ-porous sets

In this section we compile several known results concerning different notions of

σ-porous sets. The usefulness of these facts for our needs will be apparent later; for

more information about properties and applications of different types of porosity we

refer the reader to survey articles [10] and [13]. On some occasions we shall also refer

to the paper [8].

Let us begin by stating several basic definitions.

Definition. Let 〈X, ̺〉 be a metric space, A ⊂ X , x ∈ X and R > 0. Then we

denote by γ(x, R, A) the supremum of all r > 0 for which there exists z ∈ X such

that U(z, r) ⊂ U(x, R) \ A. The set A is called upper porous at x in the space X if

lim sup
R→0+

γ(x, R, A)

R
> 0.

In most cases it is clear which space X we have in mind. Therefore we often omit

the words “in the space X”. (We shall apply this convention to other notions as

well.)

Let g be a strictly increasing and continuous real-valued function defined on [0, h)

(where h > 0) with g(0) = 0. We call such a function porosity function. We say

that A is 〈g〉-porous at x (in the space X) if there exists a sequence of open balls

{U(cn, rn)} such that cn → x, U(ck, rk) ∩ A = ∅ and x ∈ U(ck, g(rk)) for each k.

We say the set A is 〈g〉-porous if it is 〈g〉-porous at each of its points and σ-〈g〉-

porous if it is a countable union of 〈g〉-porous sets. The set A is upper-porous if it

is upper-porous at each of its points and σ-upper porous if it is a countable union of

upper-porous sets.

Definition. Let 〈X, ̺〉 be a topologically complete metric space and let g be

a porosity function. We say that F is a Foran system for 〈g〉-porosity in X if the

following conditions hold:

(i) F is a nonempty family of nonempty Gδ subsets of X .

(ii) For each S ∈ F and each open set G ⊂ X with S ∩ G 6= ∅ there exists S∗ ∈ F

such that S∗ ⊂ S ∩ G and S is 〈g〉-porous at no point of S∗.

Proposition 3.1 (Foran Lemma). Let 〈X, ̺〉 be a topologically complete metric

space and let F be a Foran system for 〈g〉-porosity in X . Then no member of F is

σ-〈g〉-porous.

This is a special case of the general Foran Lemma (see [12, Proposition 1]) which

works for any porosity-like relation. Our definition of Foran system is, therefore,

accordingly simplified as well. We also need the following.
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Notation 3.2. By 3-porosity we mean 〈g〉-porosity where g(x) = 3x for x ∈ R.

Lemma 3.3 ([12, Lemma E]). Let 〈X, ̺〉 be a metric space and let A ⊂ X . Then

A is σ-upper porous if and only if it is σ-3-porous.

Another result from [12] which we shall use is the following partial converse of the

Foran Lemma. For ordinary σ-upper porosity we can extend its validity from Gδ

sets to Suslin sets using the inscribing Theorem 3.5 of J. Pelant and M. Zelený from

the paper [15].

It could be interesting to note that in case our metric space X is locally com-

pact, we can use a different inscribing theorem due to L. Zajíček and M. Zelený [15,

Theorem 5.2] and obtain an extension of Lemma 3.4 to analytic sets for general

σ-〈g〉-porosity.

Lemma 3.4 ([12, Corollary 1]). Let 〈X, ̺〉 be a topologically complete metric

space, let ∅ 6= A ⊂ X be Gδ and let g be a porosity function. Then A is not

σ-〈g〉-porous if and only if it contains a member of a Foran system for 〈g〉-porosity.

Theorem 3.5 ([16, Theorem 3.1]). Let 〈X, ̺〉 be a topologically complete metric

space and let S ⊆ X be a non-σ-upper porous Suslin set. Then there exists a closed

non-σ-upper porous set F ⊆ S.

Definition. Let 〈X, ̺〉 be a metric space, A ⊂ X and x ∈ X . We say that A is

lower porous at x if

lim inf
R→0+

γ(x, R, A)

R
> 0.

The set A is lower porous if it is lower porous at each of its points and σ-lower

porous if it is a countable union of lower porous sets.

Even though the Foran Lemma can be used for any notion of porosity, we have to

use a different approach in the case of lower porosity. The reason is that unlike in

the case of upper porosity, we were unable to separably reduce the property of not

being lower porous at a point. Therefore, we use the following proposition.

Proposition 3.6 ([7, Proposition 2.11]). Let 〈X, ̺〉 be a topologically complete

metric space and let A ⊆ X be a Suslin set. Then the following propositions are

equivalent:

(i) A is not σ-lower porous.

(ii) There exists a closed set F ⊆ A and a set D ⊆ F dense in F such that F is

lower porous at no point of D.
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4. Auxiliary results

In this section we prove some preliminary statements which will be of use later. In

general, for a space X and a set A ⊂ X , we are trying to find a separable subspace

XM ⊂ X with certain special properties. The first desired property is: Whenever A

is a member of a Foran system in X then A ∩ XM is a member of a Foran system

in XM . Together with Lemma 3.4 this will be essential to the proof of Theorem 5.1

about σ-upper porosity.

Also, in order to prove a result similar to Theorem 5.1 for σ-lower porosity, two

auxiliary propositions (based on the ideas from [1]) are collected.

Proposition 4.1. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a metric space and g a porosity function. Then wheneverM contains

X and a set A ⊂ X , it is true that for every x ∈ XM

A is not 〈g〉-porous at x → A ∩ XM is not 〈g〉-porous at x in the space XM .

If M contains also g, then

A is not 〈g〉-porous→ A ∩ XM is not 〈g〉-porous in the space XM .

P r o o f. Let us fix a (∗)-elementary submodel M containing X and A and fix

some x ∈ XM such that A is not 〈g〉-porous at x. Take sequences {cn}n∈N ⊂ XM

and {rn}n∈N ⊂ (0,∞) such that cn → x and x ∈ U(cn, g(rn)) for all n ∈ N. It is

sufficient to show that there exists an n ∈ N satisfying U(cn, rn) ∩ A ∩ XM 6= ∅.

Since A is not 〈g〉-porous, we can fix some n ∈ N such that U(cn, rn) ∩ A 6= ∅. Take

some a ∈ A∩U(cn, rn) and choose an ε > 0 such that ̺(a, cn) + 2ε < rn. Then take

a point c ∈ X ∩ M ∩ U(cn, ε) and qn ∈ Q ∩ (̺(a, cn) + ε, rn − ε). Hence,

(∗) ∃a ∈ A (̺(a, c) < qn).

Thus, by the absoluteness, there exists an a ∈ A ∩ M such that

̺(a, cn) 6 ̺(a, c) + ε < qn + ε < rn.

Consequently, a ∈ A ∩ U(cn, rn) ∩ M and thus the set A ∩ XM is not 〈g〉-porous at

x in the space XM .

If A is not 〈g〉-porous then

(∗) ∃x ∈ A (A is not 〈g〉-porous at x).

Using the absoluteness and the already proved part we obtain an x ∈ A ∩ M such

that A ∩ XM is not 〈g〉-porous at x in the space XM . �
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Proposition 4.2. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a topologically complete metric space and g a porosity function.

Then wheneverM contains X , g and a set A ⊂ X , it is true that if A is a member of

a Foran system for 〈g〉-porosity in X , then A ∩ XM is a member of a Foran system

for 〈g〉-porosity in XM .

P r o o f. Let us fix a (∗)-elementary submodelM containing X such that A ∈ M

and let the following formula be true

(∗) ∃F (F is a Foran system for 〈g〉-porosity in X such that A ∈ F ).

Notice that the preceding is a formula with all parameters in M . Thus, by the

absoluteness, there exists an F ∈ M which is a Foran system for 〈g〉-porosity in X

with A ∈ F . Set

F
′ := {S ∩ XM : S ∈ F ∩ M, S ∩ XM 6= ∅}.

First we notice that, by Lemma 2.9, the set A ∩ M is nonempty; it follows that

A ∩ XM ∈ F ′. Thus it suffices to establish that F ′ is a Foran system for 〈g〉-

porosity in XM . Clearly, F
′ is a nonempty family of nonempty Gδ subsets of XM so

there only remains to be verified the second condition from the definition of Foran

system.

To that end, take some S ∈ F ∩M such that S ∩XM 6= ∅ (denote by SM the set

S ∩ XM ). Then take an arbitrary open set G ⊂ X with SM ∩ G 6= ∅ and fix some

x ∈ SM ∩ G and r ∈ Q+ such that U(x, r) ⊂ G. Choose x0 ∈ U(x, r/2) ∩ M . Then

x ∈ U(x0, r/2) ⊂ U(x, r); thus, S ∩ U(x0, r/2) 6= ∅. Using Propositions 2.5 and 2.7

we obtain that S ∩ U(x0, r/2) ∈ M .

Now, as F is a Foran system (in X), the following formula is true:

∃S∗ ∈ F : (S∗ ⊂ S ∩ U(x0, r/2), S is 〈g〉-porous at no point of S∗).

By the absoluteness, there exists an S∗ ∈ M satisfying the formula above. Using

Lemma 2.9 we can see that S∗ ∩ M 6= ∅. Thus, S∗ is a member of F ′, S∗ ∩ XM ⊂

SM ∩ U(x0, r/2) ⊂ SM ∩ G and by Proposition 4.1 above, SM is 〈g〉-porous at no

point of S∗ ∩ XM . Consequently, A ∩ XM is, indeed, a member of a Foran system

for 〈g〉-porosity in XM—the system F ′. �

Remark 4.3. Note that the last proof depends solely on our ability to separably

reduce 〈g〉-porosity of a set at a point. It would work for any other type of porosity

which fulfils this condition, e.g., the (g)-porosity (for the definition see [8] or [10]).
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Before proceeding to the last section where we use the propositions above, let us

briefly turn our attention to the matter of lower porosity and formulate two related

facts:

Lemma 4.4. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a metric space, A ⊂ X and d(·, A) : X → R the function defined by

the formula d(·, A)(x) := d(x, A). Then whenever M contains X and A then d(·, A)

is an element of M .

P r o o f. Let us fix a (∗)-elementary submodelM containingX such that A ∈ M .

Then the lemma follows immediately from Lemma 2.2 and from the absoluteness of

the following formula and its subformulas

(∗) ∃d(·, A) (d(·, A) is a function which maps every x ∈ X

to the real number inf{̺(x, a); a ∈ A}).

�

Finally, we present the following proposition (its proof is contained in the proof of

Proposition 4.10 in [1]).

Proposition 4.5. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a metric space and A ⊂ X . Then whenever M contains X and A, it

is true that for every x ∈ A ∩ M

A is not lower porous at x → A ∩ XM is not lower porous at x in the space XM .

Note that this is exactly the moment where we were unable to reduce the property

of not being lower porous at a point. However, thanks to Proposition 3.6, this

proposition will be sufficient.

5. Main results

In the main part of this article we show that the set properties “to be σ-upper

porous” and “to be σ-lower porous” are separably determined. We formulate the

related theorems in the language of elementary submodels (which is useful when we

want to combine several results concerning elementary submodels together). How-

ever, we also formulate a corollary of these results in such a setting that no knowledge

of elementary submodels is required (see Theorem 1.1).
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Next, we show that these results may be useful for proving that some results con-

cerning separable spaces hold in a nonseparable setting as well. This is demonstrated

in Theorem 5.6.

First, let us show that σ-upper porosity is a separably determined notion.

Theorem 5.1. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a topologically complete metric space, g a porosity function and

A ⊂ X a Suslin set. Then whenever M contains X and A, it is true that

A is σ-upper porous in X ↔ A ∩ XM is σ-upper porous in XM .

Moreover, if A is Gδ and M contains also g, then

A is not σ-〈g〉-porous in X → A ∩ XM is not σ-〈g〉-porous in XM .

P r o o f. Let us fix a (∗)-elementary submodel M containing X such that g, A ∈

M . Assume the set A is of the type Gδ; we shall prove the second part of the

proposition first. Due to Lemma 3.4 and the absoluteness of the formula (and its

subformulas)

(∗) ∃B (B ⊂ A and B is a member of a Foran system for 〈g〉-porosity),

we can assume that the set A is a member of a Foran system F for 〈g〉-porosity.

Hence the set A ∩ XM is a member of a Foran system F ′ for 〈g〉-porosity in XM

(Proposition 4.2) and thus is not σ-〈g〉-porous in XM (Proposition 3.1).

The implication from the left to the right for σ-upper porosity follows immediately

from Lemma 4.4 and [1, Corollary 4.16].

We shall prove the other implication indirectly; owing to Theorem 3.5 we can

assume that A is Gδ again (even closed). The result now follows from the already

proved part and Lemma 3.3, using the absoluteness of the formula (and its subfor-

mulas)

(∗) ∃g (g : R → R is a function such that for all x ∈ R is g(x) = 3x).

�

Remark 5.2. It is not known to the authors whether the other implication for

σ-〈g〉-porosity holds. However, under the assumptions of the preceding theorem, it

is true that whenever A is σ-〈g〉-porous then A∩XM is σ-〈dg〉-porous in XM for any

d > 2. This may be established in the following way:
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First, using the ideas presented in [1] (mainly Proposition 4.12 and Corollary 4.13),

we are able to see that if A is σ-(g, c)-porous in X (where c > 0; the definition is

natural—see [8]), then A ∩ XM is σ-(g, c/2)-porous in the space XM .

Now let us assume the set A is σ-〈g〉-porous in X . Then [8, Lemma 3.1(ii)] implies

it is σ-(g, 1/2)-porous in X and thus A ∩ XM is σ-(g, 1/4)-porous in the space XM .

In the nontrivial case when there exists a δ > 0 such that g(x) > x for all x ∈ (0, δ)

(if that is not the case, then the notion of 〈g〉-porosity is usually not very interesting)

it is not difficult to prove that g satisfies the assumption from [8, Proposition 4.4].

Thus A ∩ XM is σ-(g, c)-porous for any c ∈ (0, 1/2). To pass back to 〈·〉-porosity,

we use a slightly refined version of [8, Lemma 3.1(i)] which for any d > 1 states that

(f, d)-porosity of a given set N at a given point x implies 〈f〉-porosity of N at x. We

easily obtain that the set A ∩ XM is σ-〈dg〉-porous for any d > 2.

Moreover, under the additional assumption that there exists a d > 2 and a δ > 0

such that g(x) > dx for any x ∈ (0, δ), we are able to prove (similarly as above) that

whenever A is σ-〈g〉-porous then A ∩ XM is σ-〈g〉-porous in XM .

Remark 5.3. Under the assumptions of Theorem 5.1 the following holds: If g is

a porosity function such that for some c > 0 there is a δ > 0 such that cg(x) > x for

all x ∈ (0, δ), then

A is σ-(g)-porous in X ↔ A ∩ XM is σ-(g)-porous in XM .

This can be established as follows: Let d = 12c and let A be non-σ-(g)-porous in X .

Then it is non-σ-(dg, 1)-porous and thus A is non-σ-〈gd/2〉-porous inX . Theorem 5.1

asserts that the same holds also for A∩XM inXM . Hence, A∩XM is non-σ-(gd/2, 2)-

porous ([8, Lemma 3.1(i)]), i.e., it is non σ-(gd/12, 1/3)-porous (in XM ). Now, since

the function gd/12 = cg satisfies the assumption of [8, Proposition 4.4], we obtain

that A ∩ XM is not σ-(g)-porous in XM .

For the proof of the other implication assume that the set A is σ-(g)-porous. It is

easy to see that there exist (g, cn)-porous sets An (with cn > 0 for each n ∈ N) such

that A =
∞⋃

n=1

An. In the same way as in the previous remark we obtain that An∩XM

is (g, cn/2)-porous in XM for each n. Hence, A ∩ XM is σ-(g)-porous in XM .

We shall now turn our attention to σ-lower porosity and show it is separably

determined.

Theorem 5.4. For any suitable elementary submodel M the following holds:

Let 〈X, ̺〉 be a topologically complete metric space and let A ⊂ X be a Suslin set.

Then whenever M contains X and A, it is true that

A is σ-lower porous in X ↔ A ∩ XM is σ-lower porous in XM .
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P r o o f. Let us fix a (∗)-elementary submodelM containingX such that A ∈ M .

Then the implication from the left to the right follows from [1, Corollary 4.16] and

from Lemma 4.4.

To prove the opposite implication we use Proposition 3.6. Let us assume that the

set A is not σ-lower porous in X . Then

(∗) ∃F ∃D (F ⊂ A is a nonempty closed set such that D ⊂ F is dense in F

and F is not lower porous at any point of D).

By the absoluteness of this formula (and its subformulas) above, we are able to find

sets F, D ∈ M satisfying the conditions above. Using Lemma 2.9 and Lemma 2.10 we

can see that F ∩M 6= ∅ and D∩M is dense in F ∩XM . Moreover, by Proposition 4.5,

F ∩ XM is not lower porous at any point of D ∩ M . Thus, from Proposition 3.6 it

follows that the set A ∩ XM is not σ-lower porous in the space XM . �

Theorem 1.1 from the introduction is just an easy consequence of Theorem 5.1,

Theorem 5.4 and Proposition 2.7 since Convention 2.3 allows us to combine these

three results; by doing that we obtain a theorem in the setting of Banach spaces

which concerns both types of porosity. In a similar way, Theorem 1.2 follows from

the Theorem 5.1, Theorem 5.7 in [1] and Proposition 2.7 (because the set of the

points where a function is Fréchet differentiable is a Fσδ set—see for example [1,

Theorem 5.11]).

Finally, we give the following application of our results. In [9] the following theorem

is proved (we use the more common terminology from [3]).

Definition. Let 〈X, ‖ · ‖〉 be a Banach space and let f be a real function defined

on X . We say that f is Fréchet superdifferentiable at x ∈ X if and only if there

exists x∗ ∈ X∗ such that

lim sup
h→0

(f(x + h) − f(x) − x∗(h))

‖h‖
6 0.

Theorem 5.5 ([9, Theorem 2]). Let 〈X, ‖ · ‖〉 be a Banach space with separable

dual space and let G ⊂ X be an open set. Let f be a Lipschitz function on G and

let A be the set of all the points x ∈ G such that f is Fréchet superdifferentiable at

x and f is not Fréchet differentiable at x. Then A is σ-upper porous.

Using the method of elementary submodels, it is now easy to extend the validity

of this result to general Asplund spaces.
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Theorem 5.6. Let 〈X, ‖ · ‖〉 be an Asplund space and let G ⊂ X be an open set.

Let f be a Lipschitz function on G and let A be the set of all the points x ∈ G such

that f is Fréchet superdifferentiable at x and f is not Fréchet differentiable at x.

Then A is σ-upper porous.

P r o o f. Let us denote by D(f) the set of points where f is Fréchet differentiable

and by S(f) the set of points where f is Fréchet superdifferentiable. It easily follows

from the article [11] (Section 4, Lemma 3 and Lemma 4) that the set S(f) is Suslin.

Now, using Theorem 5.1, Proposition 2.7 and [1, Theorem 5.10], take an elementary

submodel M satisfying:

⊲ XM is a separable subspace of X ,

⊲ D(f) ∩ XM = D(f ↾XM
),

⊲ A is σ-upper porous if and only if A ∩XM is σ-upper porous in the space XM .

Note that A ∩ XM ⊂ {x ∈ XM ; x ∈ S(f ↾XM
) \ D(f ↾XM

)} and that the set on the

right side is σ-upper porous (because XM is a separable space with separable dual);

thus the set A is σ-upper porous. �
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