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Remarks on sequence-covering maps

Luong Quoc Tuyen

Abstract. In this paper, we prove that each sequence-covering and boundary-
compact map on g-metrizable spaces is 1-sequence-covering. Then, we give some
relationships between sequence-covering maps and 1-sequence-covering maps or
weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin
and S. Lin in [9].
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1. Introduction

A study of images of topological spaces under certain sequence-covering maps
is an important question in general topology ([1], [2], [8]–[11], [13], [16], [21], for
example). In 2000, P. Yan, S. Lin and S.L. Jiang proved that each closed sequence-
covering map on metric spaces is 1-sequence-covering ([21]). Furthermore, in 2001,
S. Lin and P. Yan proved that each sequence-covering and compact map on metric
spaces is 1-sequence-covering ([13]). After that, T.V. An and L.Q. Tuyen proved
that each sequence-covering π and s-map on metric spaces is 1-sequence-covering
([1]). Recently, F.C. Lin and S. Lin proved that each sequence-covering and
boundary-compact map on metric spaces is 1-sequence-covering ([8]). Also, the
authors posed the following question in [9].

Question 1.1 ([9, Question 4.6]). Let f : X −→ Y be a sequence-covering and

boundary-compact map. If X is g-metrizable, then is f an 1-sequence-covering
map?

In this paper, we prove that each sequence-covering and boundary-compact
map on g-metrizable spaces is 1-sequence-covering. Then, we give some relation-
ships between sequence-covering maps and 1-sequence-covering maps or weak-
open maps, and give an affirmative answer to the problem posed by F.C. Lin and
S. Lin in [9].

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are
continuous and onto, N denotes the set of all natural numbers, ω denotes N∪{0},
and convergent sequence includes its limit point. Let f : X → Y be a map and
P be a collection of subsets of X , we denote

⋃

P =
⋃

{P : P ∈ P},
⋂

P =
⋂

{P :
P ∈ P}, f(P) = {f(P ) : P ∈ P}.
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Definition 1.2. Let X be a space, and P ⊂ X .

(1) A sequence {xn} in X is called eventually in P , if {xn} converges to x,
and there exists m ∈ N such that {x}

⋃

{xn : n ≥ m} ⊂ P .
(2) P is called a sequential neighborhood of x in X [5], if whenever {xn} is a

sequence converging to x in X , then {xn} is eventually in P .

Definition 1.3. Let P =
⋃

{Px : x ∈ X} be a cover of a space X . Assume that
P satisfies the following conditions (a) and (b) for every x ∈ X .

(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.

(1) P is a weak base of X [3], if for G ⊂ X , G is open in X and every
x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to be a weak
neighborhood base at x.

(2) P is an sn-network for X [10], if each element of Px is a sequential
neighborhood of x for all x ∈ X ; Px is said to be an sn-network at x.

Definition 1.4. Let X be a space. Then

(1) X is gf -countable [3] (resp., snf -countable [6]), if X has a weak base
(resp., sn-network) P =

⋃

{Px : x ∈ X} such that each Px is countable;
(2) X is g-metrizable [17], if X is regular and has a σ-locally finite weak base;
(3) X is sequential [5], if whenever A is a non-closed subset of X , then there

is a sequence in A converging to a point not in A.

Remark 1.5. (1) Each g-metrizable space or gf -countable space is sequential.
(2) A spaceX is gf -countable if and only if it is sequential and snf -countable.

Definition 1.6. Let f : X −→ Y be a map. Then

(1) f is a compact map [4], if each f−1(y) is compact in X ;
(2) f is a boundary-compact map [4], if each ∂f−1(y) is compact in X ;
(3) f is a weak-open map [18], if there exists a weak base P =

⋃

{Py : y ∈ Y }
for Y , and for y ∈ Y , there exists xy ∈ f−1(y) such that for each open
neighborhood U of xy , Py ⊂ f(U) for some Py ∈ Py;

(4) f is an 1-sequence-covering map [10], if for each y ∈ Y , there is xy ∈
f−1(y) such that whenever {yn} is a sequence converging to y in Y , there
is a sequence {xn} converging to xy in X with xn ∈ f−1(yn) for every
n ∈ N;

(5) f is a sequence-covering map [16], if every convergent sequence of Y is
the image of some convergent sequence of X ;

(6) f is a quotient map [4], if whenever f−1(U) is open in X , then U is open
in Y .

Remark 1.7. (1) Each compact map is a compact-boundary map.
(2) Each 1-sequence-covering map is a sequence-covering map.
(3) Each closed map is a quotient map.

Definition 1.8 ([7]). A function g : N×X −→ P(X) is a CWC-map, if it satisfies
the following conditions:
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(1) x ∈ g(n, x) for all x ∈ X and n ∈ N;
(2) g(n+ 1, x) ⊂ g(n, x) for all n ∈ N;
(3) {g(n, x) : n ∈ N} is a weak neighborhood base at x for all x ∈ X .

2. Main results

Theorem 2.1. Each sequence-covering and boundary-compact map on g-
metrizable spaces is 1-sequence-covering.

Proof: Let f : X −→ Y be a sequence-covering and boundary-compact map
and X be a g-metrizable space. Firstly, we prove that Y is snf -countable. In
fact, since X is g-metrizable, it follows from Theorem 2.6 in [20] that there exists
a CWC-map g on X satisfying that yn → x whenever {xn}, {yn} are two sequences
in X such that xn → x and yn ∈ g(n, xn) for all n ∈ N. For each y ∈ Y and
n ∈ N, we put

Py,n = f
(

⋃

{g(n, x) : x ∈ ∂f−1(y)}
)

, and Py = {Py,n : n ∈ N}.

Then each Py is countable and Py,n+1 ⊂ Py,n for all y ∈ Y and n ∈ N. Further-
more, we have

(1) Py is a network at y. Indeed, let y ∈ U with U open in Y . Then there
exists n ∈ N such that

⋃

{g(n, x) : x ∈ ∂f−1(y)} ⊂ f−1(U).

If not, for each n ∈ N, there exist xn ∈ ∂f−1(y) and zn ∈ X such that zn ∈
g(n, xn) − f−1(U). Since X is g-metrizable, it follows that each compact subset
of X is metrizable. Since {xn} ⊂ ∂f−1(y) and f is a boundary-compact map,
there exists a subsequence {xnk

} of {xn} such that xnk
→ x ∈ ∂f−1(y). Now, for

each i ∈ N, we put

ai =

{

xn1
if i ≤ n1

xnk+1
if nk < i ≤ nk+1;

bi =

{

zn1
if i ≤ n1

znk+1
if nk < i ≤ nk+1.

Then ai → x. Because g(n+ 1, x) ⊂ g(n, x) for all x ∈ X and n ∈ N, it implies
that bi ∈ g(i, ai) for all i ∈ N. By the property of g, it implies that bi → x. Thus,
znk

→ x. This contradicts that f−1(U) is a neighborhood of x and znk
/∈ f−1(U)

for all k ∈ N. Therefore, Py,n ⊂ U , and Py is a network at y.
(2) Let Py,m, Py,n ∈ Py. If we take k = max{m,n}, then Py,k ⊂ Py,m ∩ Py,n.
(3) Each element of Py is a sequential neighborhood of y. Let Py,n ∈ Py and

{yn} be a sequence converging to y in Y . Since f is sequence-covering, {yn} is
an image of some sequence converging to x ∈ ∂f−1(y). On the other hand, since
g(n, x) is a weak neighborhood of x, {yn} is eventually in g(n, x). This implies
that {yn} is eventually in Py,n. Therefore, Py,n is a sequential neighborhood of y.
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Therefore,
⋃

{Py : y ∈ Y } is an sn-network for X , and Y is an snf -countable
space.

Next, let B =
⋃

{Bx : x ∈ X} be a σ-locally finite weak base for X . We
prove that for each non-isolated point y ∈ Y , there exists xy ∈ ∂f−1(y) such
that for each B ∈ Bxy

, there exists P ∈ Py satisfying P ⊂ f(B). Otherwise,

there exists a non-isolated point y ∈ Y so that for each x ∈ ∂f−1(y), there
exists Bx ∈ Bx such that P 6⊂ f(Bx) for all P ∈ Py. Since B is a σ-locally
finite weak base and ∂f−1(y) is compact, it follows that {Bx : x ∈ ∂f−1(y)}
is countable. Assume that {Bx : x ∈ ∂f−1(y)} = {Bm : m ∈ N}. Hence,
for each m,n ∈ N, there exists xn,m ∈ Py,n − f(Bm). For n ≥ m, we denote
yk = xn,m with k = m+n(n−1)/2. Since Py is a network at y and Py,n+1 ⊂ Py,n

for all n ∈ N, {yk} is a sequence converging to y in Y . On the other hand,
because f is a sequence-covering map, {yk} is an image of some sequence {xn}
converging to x ∈ ∂f−1(y) in X . Furthermore, since Bx ∈ {Bm : m ∈ N}, there
exists m0 ∈ N such that Bx = Bm0

. Because Bm0
is a weak neighborhood of x,

{x}
⋃

{xk : k ≥ k0} ⊂ Bm0
for some k0 ∈ N. Thus, {y}

⋃

{yk : k ≥ k0} ⊂ f(Bm0
).

But if we take k ≥ k0, then there exists n ≥ m0 such that yk = xn,m0
, and it

implies that xn,m0
∈ f(Bm0

). This contradicts to xn,m0
∈ Py,n − f(Bm0

).
We now prove that f is an 1-sequence-covering map. Suppose y ∈ Y . By

the above proof there is xy ∈ ∂f−1(y) such that whenever B ∈ Bxy
, there exists

P ∈ Py satisfying P ⊂ f(B). Let {yn} be a sequence in Y , which converges
to y. Since Bxy

is a weak neighborhood base at xy, we can choose a decreasing
countable network {By,n : n ∈ N} ⊂ Bxy

at xy. We choose a sequence {zn} in X
as follows.

Since By,n ∈ Bxy
, by the above argument, there exists Py,kn

∈ Py satisfying
Py,kn

⊂ f(By,n) for all n ∈ N. On the other hand, since each element of Py

is a sequential neighborhood of y, it follows that for each n ∈ N, f(By,n) is a
sequential neighborhood of y in Y . Hence, for each n ∈ N, there exists in ∈ N

such that yi ∈ f(By,n) for every i ≥ in. Assume that 1 < in < in+1 for each
n ∈ N. Then for each j ∈ N, we take

zj =

{

zj ∈ f−1(yj) if j < i1

zj,n ∈ f−1(yj) ∩By,n if in ≤ j < in+1.

If we put S = {zj : j ≥ 1}, then S converges to xy in X , and f(S) = {yn}.
Therefore, f is 1-sequence-covering. �

Remark 2.2. By Theorem 2.1, we get an affirmative answer to Question 1.1.

Corollary 2.3. Each sequence-covering quotient and boundary-compact map on

g-metrizable spaces is weak-open.

Proof: Let f : X −→ Y be a sequence-covering quotient and boundary-compact
map and X be a g-metrizable space. By Theorem 2.1, f is 1-sequence-covering.
Since f is quotient andX is sequential, f is weak-open by Corollary 3.5 in [18]. �

By Theorem 2.1 and Remark 1.7(1), the following corollaries hold.
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Corollary 2.4. Each sequence-covering and compact map on g-metrizable spaces

is 1-sequence-covering.

Corollary 2.5 ([8, Theorem 2.1]). Each sequence-covering and boundary-com-

pact map on metric spaces is 1-sequence-covering.

Corollary 2.6 ([9, Theorem 4.5]). Each closed sequence-covering map on g-
metrizable spaces is 1-sequence-covering.

Proof: Let f : X −→ Y be a closed sequence-covering map and X be a g-
metrizable space. By Lemma 3.1 in [15], Y is gf -countable. Furthermore, since
Y is gf -countable and f is a closed map, it follows from Corollary 8 in [14]
and Corollary 10 in [19] that Y contains no closed copy of Sω. By Lemma 3.2
in [15], f is a boundary-compact map. Therefore, f is 1-sequence-covering by
Theorem 2.1. �

By Corollary 2.6, we have the following corollary.

Corollary 2.7 ([11, Theorem 3.4.6]). Each closed sequence-covering map on

metric spaces is 1-sequence-covering.

Corollary 2.8. Each closed sequence-covering map on g-metrizable spaces is

weak-open.

Proof: Let f : X −→ Y be a closed sequence-covering map and X be a g-
metrizable space. It follows from Corollary 2.6 that f is 1-sequence-covering.
Since f is closed and X is sequential, f is weak-open by Corollary 3.5 in [18]. �
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